JP2011017482A - Method and device for removing inclusion in molten metal, and metallic material - Google Patents
Method and device for removing inclusion in molten metal, and metallic material Download PDFInfo
- Publication number
- JP2011017482A JP2011017482A JP2009162031A JP2009162031A JP2011017482A JP 2011017482 A JP2011017482 A JP 2011017482A JP 2009162031 A JP2009162031 A JP 2009162031A JP 2009162031 A JP2009162031 A JP 2009162031A JP 2011017482 A JP2011017482 A JP 2011017482A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- molten metal
- inclusions
- metal
- induction heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Furnace Details (AREA)
Abstract
Description
本発明は、溶融金属中の介在物を除去する介在物除去方法及び介在物除去装置、並びに金属材料に関する。 The present invention relates to an inclusion removal method and an inclusion removal apparatus for removing inclusions in molten metal, and a metal material.
金属材料の高品質、高信頼性の要求から、金属材料の溶解鋳造工程における介在物の分離除去が必要不可欠である。従来、溶解鋳造工程における介在物の分離除去方法として、浮上分離、濾過等の技術が実用に供されている。
浮上分離による介在物の分離除去方法は、溶融金属と介在物の密度差により浮上させて分離する方法が一般的である。しかし、数十ミクロン以下のような微小サイズの介在物は浮上速度が小さく、浮上しないのが現状である。また、濾過による介在物の分離除去方法は、濾過媒体の細孔の大きさで、捕捉できる介在物の大きさが決まってしまう。また、溶湯処理量や閉塞の観点から現実的な細孔の大きさには下限があり、必ずしも対象とする微小介在物を除去できるとは限らなかった。
Due to the demand for high quality and high reliability of metal materials, it is indispensable to separate and remove inclusions in the melting and casting process of metal materials. Conventionally, techniques such as flotation separation and filtration have been put to practical use as a method for separating and removing inclusions in the melt casting process.
As a method for separating and removing inclusions by flotation separation, a method is generally used in which the inclusion is levitated and separated due to the density difference between the molten metal and the inclusion. However, in the current situation, inclusions of a minute size such as several tens of microns or less have a low flying speed and do not float. Further, in the method for separating and removing inclusions by filtration, the size of inclusions that can be captured is determined by the size of the pores of the filtration medium. Further, there is a lower limit to the actual pore size from the viewpoint of the amount of molten metal treatment and blockage, and the target fine inclusions cannot always be removed.
そこで、新しい技術として電磁力を利用して溶融金属中の介在物を所定の方向に移動させて捕捉、除去する方法が種々提案されている。電磁力を利用して介在物を捕捉する方法として、例えば以下の方法が提案されている。
特許文献1では、取鍋において、底部に配置された誘導コイルにより介在物を底部に捕捉あるいは流動により凝集肥大化させて浮上分離する方法が開示されている。
特許文献2では、溶融金属に対し水平方向の磁場とそれに直行する方向の電流通電で介在物の浮上分離を促進する方法が開示されている。
特許文献3では、連続鋳造において、ノズルあるいはホットトップ部に高周波磁場を印加し介在物をノズル内壁あるいはホットトップ部内壁に捕捉する方法が開示されている。
非特許文献1では、交流磁場と細管束を用いた溶融金属中の非金属介在物の除去方法について基本理論が説明されている
Therefore, various methods for capturing and removing inclusions in molten metal by moving them in a predetermined direction using electromagnetic force have been proposed as new technologies. For example, the following method has been proposed as a method of capturing inclusions using electromagnetic force.
Patent Document 1 discloses a method in which a ladle floats and separates by trapping or agglomerating the inclusions into the bottom by using an induction coil arranged at the bottom, or by flowing, in a ladle.
Patent Document 3 discloses a method in which, in continuous casting, a high-frequency magnetic field is applied to a nozzle or a hot top portion to trap inclusions on the inner wall of the nozzle or the hot top portion.
Non-Patent Document 1 describes the basic theory of a method for removing non-metallic inclusions in molten metal using an alternating magnetic field and a bundle of thin tubes.
しかしながら、電磁力を利用する介在物除去方法を工業的な生産規模で鋳造工程へ適用した場合、除去効果が不十分であったり、捕捉した介在物の処理方法に問題があったり、装置構成が複雑であったり等の理由により、実際の鋳造工程への導入には種々の問題が生じた。 However, when the inclusion removal method using electromagnetic force is applied to the casting process on an industrial production scale, the removal effect is insufficient, there is a problem in the processing method of the trapped inclusions, and the device configuration is Due to the complexity and the like, various problems have occurred in the introduction into the actual casting process.
例えば、特許文献1に記載の方法では、流動と分離は相反する作用であり、効率的な分離除去が困難であるという問題があった。
また、特許文献2に記載の方法では、電極消耗の問題や、電磁力分布の不均一から溶融金属の攪拌作用が発生し、微小介在物は流れに追随し浮上しない、という問題があった。
For example, in the method described in Patent Document 1, there is a problem that flow and separation are contradictory functions, and that efficient separation and removal is difficult.
Further, the method described in
また、特許文献3の方法では、ノズルにおいて、一般にノズル内は非常に大きな流速であるから、電磁力が介在物を壁面に移動させようとする力よりも溶湯の流れが介在物を押し流す力が勝り、介在物除去効率が著しく低下するという問題があった。また、スライディングゲート等による流量調整によりノズル内の流速は変動する。この時一旦壁面に捕捉された介在物が脱落し再び溶湯中に巻き込まれてしまい、脱落した介在物を再度捕捉する手段もなくそのまま鋳型内に流入し、鋳塊中に混入してしまうという問題もあった。また、ホットトップ部において、高周波磁場の表皮厚さ領域は鋳型内の断面積に比べ非常に小さいため、溶湯流動による介在物の移動を考慮したとしても介在物除去効率としては低いものになってしまう。また、鋳型内の溶湯流動の変動や凝固条件の変動により、捕捉された介在物が脱落したり、凝固殻に捕捉されて鋳塊中に巻き込まれたりするという問題もあった。 Further, in the method of Patent Document 3, since the nozzle generally has a very large flow velocity, the force of the molten metal to push the inclusions is stronger than the force of the electromagnetic force to move the inclusions to the wall surface. There was a problem that the inclusion removal efficiency was significantly reduced. Further, the flow velocity in the nozzle varies by adjusting the flow rate by a sliding gate or the like. At this time, the inclusions once trapped on the wall surface fall off and get caught in the molten metal again, and there is no means to capture the fallen inclusions again and flow into the mold as it is, and it is mixed into the ingot. There was also. Further, in the hot top portion, the skin thickness region of the high-frequency magnetic field is very small compared to the cross-sectional area in the mold, so that the inclusion removal efficiency is low even if the movement of inclusions due to the molten metal flow is taken into consideration. End up. In addition, there has been a problem that the trapped inclusions fall off due to fluctuations in the flow of molten metal in the mold and fluctuations in solidification conditions, or they are trapped in the solidified shell and caught in the ingot.
また、非特許文献1の方法では、溶融金属に交流磁場を印加するとき、表皮効果により電磁力の作用する領域が溶融金属表層部に限定され除去効率が低下するという問題に対する解決策を提案している。非導電性の細管束を使用することで、個々の流路内の溶融金属にほぼ均等に交流磁場が作用するため、全体として電磁力作用領域の占める割合を増加させることができ、介在物除去効率が向上する。しかしながら、介在物が細管束内に蓄積した場合には細管束の交換が必要となるが、その点についてはまったく考慮されていない。このような装置を単に溶融金属流路に直列に配置した場合、連続鋳造途中に装置内流路が閉塞した時の対処が非常に困難となってしまうという問題がある。また、鋳造休止時に交換するにしても、非常に大掛かりな施工が必要となり実現性に乏しい。実工程に導入するためには、設置方法、交換方法、などが重要な事項であり、本文献においてはそれらについての提案はなされていない。 Further, the method of Non-Patent Document 1 proposes a solution to the problem that when an alternating magnetic field is applied to the molten metal, the region where the electromagnetic force acts is limited to the surface portion of the molten metal due to the skin effect, and the removal efficiency decreases. ing. By using a non-conductive bundle of thin tubes, an alternating magnetic field acts on the molten metal in each flow path almost evenly, so that the proportion of the electromagnetic force acting area as a whole can be increased, and inclusions are removed. Efficiency is improved. However, when the inclusions accumulate in the thin tube bundle, it is necessary to replace the thin tube bundle, but this point is not considered at all. When such an apparatus is simply arranged in series with the molten metal flow path, there is a problem that it is very difficult to cope with a case where the flow path in the apparatus is blocked during continuous casting. Moreover, even if it is replaced at the time of casting stoppage, very large construction is required and the feasibility is poor. In order to introduce into an actual process, an installation method, an exchange method, and the like are important matters, and no proposal is made for them in this document.
上述したように、従来の金属材料の溶解鋳造工程において、実工程に導入可能な電磁力を利用した溶融金属中の介在物の除去方法は未だ確立されてはいない。
本発明は、以上のような問題点を解決するためになされたもので、浮上分離や濾過により除去できない微小介在物を効率良く除去するとともに、簡便に実施可能で、かつ、簡便に設置可能な介在物除去方法及び介在物除去装置、並びに介在物の少ない金属材料を提供することを目的とする。
As described above, a method for removing inclusions in molten metal using an electromagnetic force that can be introduced into an actual process has not yet been established in the conventional melting and casting process of metal materials.
The present invention has been made to solve the above problems, and efficiently removes micro-inclusions that cannot be removed by flotation separation or filtration, and can be easily implemented and installed easily. It is an object of the present invention to provide an inclusion removal method, an inclusion removal apparatus, and a metal material with few inclusions.
すなわち、本発明は、
(1)誘導加熱溶解炉に磁場を与える誘導コイルに、周波数fAの高周波電流を加え、前記誘導加熱溶解炉の炉本体内に投入された金属を溶解、攪拌し、その後、前記周波数fAと異なる周波数fBの高周波電流を加え、前記溶解された金属中の介在物を分離することを特徴とする溶融金属中の介在物除去方法、
(2)誘導加熱溶解炉に磁場を与える誘導コイルに、周波数fAの高周波電流を加え、前記誘導加熱溶解炉の炉本体内に投入された金属を溶解、攪拌し、その後、前記周波数fAと異なる周波数fBの高周波電流を加え、さらにその後、周波数fAの高周波電流と周波数fBの高周波電流を交互に加え、前記溶解された金属中の介在物を分離することを特徴とする溶融金属中の介在物除去方法、
(3)前記周波数fA(Hz)の高周波電流を加えたとき、前記誘導加熱溶解炉の炉本体内の金属に加えられる電力PA(kW)が、下記式1を満たすことを特徴とする(1)または(2)項に記載の溶融金属中の介在物除去方法、
That is, the present invention
(1) A high frequency current having a frequency f A is applied to an induction coil that applies a magnetic field to the induction heating melting furnace to melt and stir the metal charged in the furnace body of the induction heating melting furnace, and then the frequency f A A method of removing inclusions in the molten metal, wherein a high frequency current having a frequency f B different from the above is applied to separate the inclusions in the molten metal,
(2) A high frequency current having a frequency f A is applied to an induction coil that applies a magnetic field to the induction heating melting furnace to melt and stir the metal charged into the furnace body of the induction heating melting furnace, and then the frequency f A A high frequency current having a frequency f B different from that of the molten metal is added, and then a high frequency current having a frequency f A and a high frequency current having a frequency f B are alternately applied to separate inclusions in the molten metal. A method for removing inclusions in metal,
(3) When a high-frequency current having the frequency f A (Hz) is applied, the power P A (kW) applied to the metal in the furnace body of the induction heating melting furnace satisfies the following formula 1. (1) or the method for removing inclusions in molten metal according to (2),
(式中、Dは誘導加熱溶解炉の炉本体のるつぼ内径(m)を示す)、
(4)前記周波数fB(Hz)の高周波電流を加えたとき、前記誘導加熱溶解炉の炉本体内の金属に加えられる電力PB(kW)が、下記式2を満たすことを特徴とする(1)または(2)項に記載の溶融金属中の介在物除去方法、
(In the formula, D represents the crucible inner diameter (m) of the furnace body of the induction heating melting furnace),
(4) When a high-frequency current having the frequency f B (Hz) is applied, the power P B (kW) applied to the metal in the furnace body of the induction heating melting furnace satisfies the following
(式中、Dは誘導加熱溶解炉の炉本体のるつぼ内径(m)を示す)、
(5)前記周波数fBが、前記周波数fAの2〜10倍の周波数であることを特徴とする、(1)〜(4)のいずれか1項に記載の溶融金属中の介在物除去方法、
(6)るつぼ型誘導加熱溶解炉の炉本体と、前記炉本体を取り巻く誘導コイルと、前記炉本体内の金属を溶解及び攪拌する磁場を発生させるための周波数fAの高周波電流を発生させる高周波発生装置(A)と、溶解された金属中の介在物を分離する磁場を発生させるための前記周波数fAとは異なる周波数fBの高周波電流を発生させる高周波発生装置(B)とを備え、前記高周波発生装置(A)と前記高周波発生装置(B)とが、いずれか一方に切り替え可能な切替回路を介して前記誘導コイルに接続されていることを特徴とする溶融金属中の介在物除去装置。
(7)前記切替回路は、前記高周波発生装置(A)と前記高周波発生装置(B)とを交互に前記誘導コイルに接続するように作動することを特徴とする、(4)項に記載の溶融金属中の介在物除去装置、
(8)前記周波数fBが、前記周波数fAの2〜10倍の周波数であることを特徴とする、(6)または(7)項に記載の溶融金属中の介在物除去装置、
(9)(1)〜(5)のいずれか1項に記載の溶融金属中の介在物除去方法により介在物が除去された溶融金属から得られた金属鋳塊を、塑性加工して形成されてなる金属材料。
(In the formula, D represents the crucible inner diameter (m) of the furnace body of the induction heating melting furnace),
(5) The removal of inclusions in molten metal according to any one of (1) to (4), wherein the frequency f B is 2 to 10 times the frequency f A Method,
(6) A furnace body of a crucible type induction heating melting furnace, an induction coil surrounding the furnace body, and a high frequency that generates a high frequency current having a frequency f A for generating a magnetic field for melting and stirring the metal in the furnace body. A generator (A), and a high-frequency generator (B) for generating a high-frequency current having a frequency f B different from the frequency f A for generating a magnetic field for separating inclusions in the melted metal, Inclusion removal in molten metal, wherein the high-frequency generator (A) and the high-frequency generator (B) are connected to the induction coil via a switching circuit that can be switched to either one apparatus.
(7) The switching circuit operates so as to connect the high-frequency generator (A) and the high-frequency generator (B) to the induction coil alternately. Inclusion removal device in molten metal,
(8) The inclusion removal apparatus for molten metal according to (6) or (7), wherein the frequency f B is 2 to 10 times the frequency f A.
(9) A metal ingot obtained from a molten metal from which inclusions have been removed by the method for removing inclusions in molten metal according to any one of (1) to (5) is formed by plastic working. Metal material.
本発明において、介在物とは合金を構成する成分元素の未溶解物、成分元素の酸化物、炭化物、硫化物、その他の化合物、不可避不純物等、鋳塊に混入することによって以後の加工工程において健全な加工を阻害する原因になるもの、最終製品において各種性能の劣化の原因になるものをいう。
また、本発明において高周波とは、50Hzより高い周波数のことをいうが、用いられる商用電源の商用周波数(50Hzまたは60Hz)より高い周波数であることが望ましい。
In the present invention, the inclusion is an undissolved component element constituting the alloy, oxides, carbides, sulfides, other compounds, unavoidable impurities, etc. of the component elements, which are mixed in the ingot in subsequent processing steps. Those that cause a hindrance to sound processing and those that cause deterioration of various performances in the final product.
In the present invention, the high frequency means a frequency higher than 50 Hz, but is preferably higher than the commercial frequency (50 Hz or 60 Hz) of the commercial power source used.
本発明によれば、既存のるつぼ型誘導加熱溶解炉において、既存の周波数よりも高い適切な周波数の高周波発生装置を追加することにより、微小介在物をも除去する溶湯清浄化が行える。その結果、介在物の少ない清浄な鋳塊を得ることができる。この鋳塊から得られた金属材料は、介在物の非常に少ない高品質の材料が得られる。
また、本発明の方法では介在物は浮上分離されるため除去が容易であり、介在物捕捉部材等が必要ないため、消耗や交換が必要ない。
According to the present invention, in an existing crucible type induction heating and melting furnace, by adding a high-frequency generator having an appropriate frequency higher than the existing frequency, it is possible to perform molten metal cleaning that also removes minute inclusions. As a result, a clean ingot with few inclusions can be obtained. The metal material obtained from the ingot is a high quality material with very few inclusions.
Further, in the method of the present invention, inclusions are floated and separated, so that they are easy to remove, and no inclusion capturing member or the like is required, so that consumption and replacement are not necessary.
溶融金属に交流磁場を印加すると、溶融金属表層の表皮厚さ内において、誘導電流と磁場の相互作用により溶融金属の中心に向かう方向の電磁力が作用する。溶融金属の介在物は、例えば、酸化物、硫化物、炭化物などの非金属介在物であり、一般に溶融金属よりも電気伝導度が小さいため、反作用として溶融金属に作用する電磁力の方向と逆方向に移動することになる。以下、このように介在物に作用する力を電磁分離力と呼ぶ。電磁分離力を利用することにより、介在物を所定の方向に移動させ、捕捉することができる。 When an alternating magnetic field is applied to the molten metal, an electromagnetic force in the direction toward the center of the molten metal acts due to the interaction between the induced current and the magnetic field within the skin thickness of the surface of the molten metal. Molten metal inclusions are, for example, non-metallic inclusions such as oxides, sulfides, and carbides, and generally have a lower electrical conductivity than the molten metal. Therefore, the direction of the electromagnetic force acting on the molten metal as a reaction is reversed. Will move in the direction. Hereinafter, the force acting on the inclusion in this way is referred to as electromagnetic separation force. By using electromagnetic separation force, inclusions can be moved and captured in a predetermined direction.
しかしながら、前述のように電磁分離力が作用する範囲は溶融金属表層の一定の領域に限られるため、るつぼ型溶解炉のように炉内径が表皮厚さよりもはるかに大きい場合には介在物除去効率が著しく低い。さらには、一般的にるつぼ型誘導加熱溶解炉においては電磁力により溶湯が攪拌されるため、溶湯流動による介在物を移動させる力(以下、流動による分離阻害力)が電磁分離力に勝り介在物は分離されない。本発明においては、溶融状態の金属に対し、介在物の分離を目的とした高周波周波数と、攪拌を目的とした高周波周波数とを用い、望ましくは交互に繰り返すことにより、溶融金属中のいずれの場所に存在する介在物についても移動、凝集、浮上分離による除去を実現することができる。その結果、溶湯の清浄化が実現し、介在物の少ない良好な品質の鋳塊が得られ、製品の介在物欠陥を低減することができる。 However, as described above, the range in which the electromagnetic separation force acts is limited to a certain region of the molten metal surface layer, so that the inclusion removal efficiency can be improved when the furnace inner diameter is much larger than the skin thickness as in a crucible melting furnace. Is remarkably low. Furthermore, generally in a crucible induction heating melting furnace, the molten metal is agitated by electromagnetic force, so the force to move inclusions by the molten metal flow (hereinafter referred to as separation inhibiting force by flow) is superior to the electromagnetic separation force and inclusions. Are not separated. In the present invention, with respect to the molten metal, a high frequency frequency for the purpose of separating inclusions and a high frequency frequency for the purpose of stirring are used, and preferably by repeating alternately, any location in the molten metal. It is also possible to realize removal by inclusion, movement, aggregation, and flotation separation. As a result, the molten metal can be purified, a good quality ingot with few inclusions can be obtained, and inclusion defects in the product can be reduced.
本発明の実施形態を、図面を用いて説明する。
図1は、本発明の溶融金属中の介在物除去方法の好ましい一実施態様の説明図である。図1において、1は誘導加熱溶解炉の炉本体(るつぼ)、2は誘導コイル、3は高周波発生装置(A)、4は高周波発生装置(B)、5はスイッチ(切替装置)である。
また、保持容器である炉本体1とそれを取り巻く環状の誘導コイル2は、従来と同様のるつぼ型誘導加熱型溶解炉を構成し、図1において、それらは概略断面図により示してある。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view of a preferred embodiment of the method for removing inclusions in molten metal of the present invention. In FIG. 1, 1 is a furnace body (crucible) of an induction heating melting furnace, 2 is an induction coil, 3 is a high frequency generator (A), 4 is a high frequency generator (B), and 5 is a switch (switching device).
Further, the furnace body 1 as a holding container and the
高周波発生装置(A)3により発生する高周波の周波数fAは、100Hz〜5000Hzの範囲から選ばれることが好ましく、300Hz〜3000Hzの範囲から選ばれることがさらに好ましい。また、高周波発生装置(B)4により発生する高周波の周波数fBは、高周波発生装置(A)3により発生する高周波の周波数fAとは異なるもので、周波数fAの2〜10倍であることが好ましく、3〜7倍であることがさらに好ましい。
本発明に用いられる高周波発生装置としては、交流電源に接続され、周波数、電圧、電流を制御された交流電流が印加可能な、通常の高周波発生装置を用いることができる。
The high frequency f A generated by the high frequency generator (A) 3 is preferably selected from the range of 100 Hz to 5000 Hz, more preferably from the range of 300 Hz to 3000 Hz. The high frequency of the frequency f B generated by the high-frequency generator (B) 4 is different from the frequency of the frequency f A generated by the high-frequency generator (A) 3, 2 to 10 times the frequency f A It is preferably 3 to 7 times.
As the high-frequency generator used in the present invention, a normal high-frequency generator that is connected to an AC power source and can apply an AC current whose frequency, voltage, and current are controlled can be used.
スイッチ5は、誘導コイル2に回路を介して接続される高周波発生装置を切り替えるもので、初期状態で、図1の実線で示されるように、高周波発生装置(A)3に接続され、発生する高周波磁場により、誘導加熱溶解炉の炉本体1に投入された金属原料が溶解、撹拌され、溶湯6となった後に、破線で示されるように切替えられて、高周波発生装置(B)4側に接続される。
なお、スイッチ5は、誘導コイル2に接続される高周波発生装置を高周波発生装置(A)3と高周波発生装置(B)4とを交互に切り替えるように制御されることが好ましい。
The
The
高周波発生装置(A)3により発生する高周波電流の周波数は、誘導加熱溶解炉における効率的な溶解を第一の目的とした周波数である。例えば、上記の好ましい範囲の周波数が挙げられ、一般的な高周波誘導加熱溶解炉においては、その溶解規模に応じて数百Hz〜数kHzであることが多い。この周波数においては、被加熱材の効率的な加熱および溶融金属の適度な攪拌が実施されることが主目的であり、溶融金属中の介在物の積極的な分離や除去を意図するものではない。 The frequency of the high frequency current generated by the high frequency generator (A) 3 is a frequency whose primary purpose is efficient melting in the induction heating melting furnace. For example, the frequency of said preferable range is mentioned, In a general high frequency induction heating melting furnace, it is often several hundred Hz-several kHz according to the melting scale. At this frequency, the main purpose is to carry out efficient heating of the material to be heated and appropriate stirring of the molten metal, and it is not intended to actively separate and remove inclusions in the molten metal. .
高周波発生装置(B)4により発生する高周波電流の周波数は、溶融金属中の介在物の電磁分離を第一の目的とした周波数である。電磁分離においては攪拌における溶湯流動により介在物に作用する力が電磁分離の阻害力となるため、溶湯を強攪拌している状態では介在物の分離が実現しない。周波数が高いほど攪拌力は低下するが、表皮厚さが小さくなるため分離可能な介在物の量が減少する。攪拌力をある程度抑制しつつ大きい表皮厚さを確保するという観点から、電磁分離に最適な、例えば上記の好ましい範囲の周波数が選択される。 The frequency of the high frequency current generated by the high frequency generator (B) 4 is a frequency whose primary purpose is electromagnetic separation of inclusions in the molten metal. In the electromagnetic separation, the force acting on the inclusions due to the molten metal flow in the stirring becomes an inhibition force of the electromagnetic separation, so that the inclusions cannot be separated in the state where the molten metal is strongly stirred. The higher the frequency, the lower the stirring force, but the smaller the skin thickness, the less the amount of inclusions that can be separated. From the viewpoint of securing a large skin thickness while suppressing the stirring force to some extent, a frequency in the above preferable range, for example, optimal for electromagnetic separation is selected.
本発明の方法によれば、高周波発生装置(A)3を用いて効率的な金属の溶解および溶融金属の攪拌を行い、高周波発生装置(B)4を用いて溶融金属中の介在物の効率的な分離を行うことで、溶融金属の清浄化を実現することができる。 According to the method of the present invention, the high-frequency generator (A) 3 is used to efficiently dissolve the metal and the molten metal is stirred, and the high-frequency generator (B) 4 is used to improve the efficiency of inclusions in the molten metal. It is possible to realize the cleaning of the molten metal by performing a general separation.
本発明の方法によれば、高周波発生装置(B)4の使用時には、電磁力による溶湯流動が小さいため流動による分離阻害力が小さい。よって表皮厚さ領域に存在する介在物は炉壁に分離され、凝集する。また、溶湯流動が小さいとはいえある程度の流動はあるため、表皮厚さ領域以外に存在する介在物の一部も溶湯流動に追随して表皮厚さ領域内に進入し分離され、凝集する。炉壁に分離され凝集した介在物は、炉壁に強固に付着した場合には炉内溶融金属の出湯後も炉壁に付着したままであるから、例えば出湯後に炉壁から剥離する等の手段により除去することができる。炉壁に付着せず出湯された溶融金属と共に炉外へ排出される場合には、例えばタンディッシュ内でのフィルターによる濾過等の手段により除去することができる。 According to the method of the present invention, when the high frequency generator (B) 4 is used, the molten metal flow due to the electromagnetic force is small, so that the separation inhibiting force due to the flow is small. Therefore, inclusions present in the skin thickness region are separated and aggregated in the furnace wall. Further, although there is a certain amount of flow even though the molten metal flow is small, some of the inclusions existing outside the skin thickness region enter the skin thickness region, separate, and agglomerate following the molten metal flow. If the inclusions separated and aggregated on the furnace wall adhere firmly to the furnace wall, they remain attached to the furnace wall even after the molten metal in the furnace has been tapped. Can be removed. When discharged to the outside of the furnace together with the molten metal discharged without adhering to the furnace wall, it can be removed by means such as filtration with a filter in the tundish.
次いで、再び高周波発生装置(A)3を使用すると、溶湯流動が大きいため流動による分離阻害力が電磁分離力に勝り、新たには介在物は炉壁に分離され難い。既に高周波発生装置Bの使用時に炉壁に分離された介在物は、炉壁への付着力が強固な場合には炉壁に留まる。しかし、多くの場合付着力が弱く炉壁から離脱する。しかしながら一旦炉壁に分離された介在物は凝集粗大化しているため、炉壁から離脱し再び溶融金属中に巻込まれても容易に浮上分離される。 Next, when the high-frequency generator (A) 3 is used again, since the molten metal flow is large, the separation inhibition force due to the flow is superior to the electromagnetic separation force, and the inclusions are not easily separated into the furnace wall. Inclusions already separated into the furnace wall when using the high-frequency generator B remain on the furnace wall when the adhesion to the furnace wall is strong. However, in many cases, the adhesive force is weak and leaves the furnace wall. However, since the inclusions once separated on the furnace wall are agglomerated and coarsened, they are easily levitated and separated even if they are separated from the furnace wall and re-wound into the molten metal.
溶融金属に対し、これらの高周波発生装置(A)3の使用と高周波発生装置(B)4の使用を交互に繰り返すことにより、溶融金属中のいずれの場所に存在する介在物についても炉壁に分離された後離脱して浮上分離され、例えば湯面のスラグをかき出す等の手段により除去することができる。 By alternately using the high-frequency generator (A) 3 and the high-frequency generator (B) 4 for the molten metal, inclusions present at any location in the molten metal can be added to the furnace wall. After being separated, it is separated and floated and separated, and for example, it can be removed by means such as scraping out slag on the surface of the molten metal.
上述のように、高周波発生装置(B)4の周波数は、溶融金属中の介在物の電磁分離を第一の目的とした周波数である。金属の溶解及び溶融金属の攪拌を目的とした高周波発生装置Aの周波数に対し、攪拌力を抑制しつつ大きい表皮厚さを確保するという、電磁分離に適した範囲の周波数であることが好ましい。 As described above, the frequency of the high frequency generator (B) 4 is a frequency whose primary purpose is electromagnetic separation of inclusions in the molten metal. It is preferable that the frequency is in a range suitable for electromagnetic separation, in which a large skin thickness is ensured while suppressing the stirring force with respect to the frequency of the high-frequency generator A for melting the metal and stirring the molten metal.
また、本発明においては、効率的な金属の溶解および溶融金属の攪拌を行う観点から、周波数fA(Hz)の高周波電流を加えたとき、Dを誘導加熱溶解炉の炉本体のるつぼ内径(m)とした場合、炉本体内の金属に加えられる電力PA(kW)は、下記式1を満たすことが好ましい。 In the present invention, from the viewpoint of efficient metal melting and molten metal stirring, when a high-frequency current of frequency f A (Hz) is applied, D is the inner diameter of the crucible of the furnace body of the induction heating melting furnace ( m), the power P A (kW) applied to the metal in the furnace body preferably satisfies the following formula 1.
また、周波数fBの高周波電流を加えたときには、溶融金属に加えられる電力PBが、下記式2を満たすことが、溶融金属中の介在物の電磁分離を効率的に行うために好ましい。
In addition, when a high frequency current having a frequency f B is applied, it is preferable that the electric power P B applied to the molten metal satisfies the following
本発明の介在物除去方法により介在物が除去された溶融金属から得られる金属鋳塊は、任意の方法により塑性加工して、各種の、介在物の少ない、高品質の金属材料を形成することができる。
また、本発明の介在物除去方法を用いることができる原料金属は特に限定されるものではないが、銅合金やアルミ合金などに好適に用いることができる。
The metal ingot obtained from the molten metal from which inclusions have been removed by the inclusion removal method of the present invention is plastically processed by any method to form various high-quality metal materials with few inclusions. Can do.
Moreover, the raw material metal which can use the inclusion removal method of this invention is not specifically limited, However, It can use suitably for a copper alloy, an aluminum alloy, etc.
以下、実施例に基づき、本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this.
参考例1
るつぼ径=80mm、周波数=1、10、および30kHzの溶解炉Xと、るつぼ径=280mm、周波数=1kHzの溶解炉Yとを用い、それぞれ溶融金属に与える電力Pを変化させた場合について試験した。るつぼ内には無酸素銅を溶解し、溶融銅中に約20ミクロンの炭化クロム粒子を1.0mass%分散させた後、誘導コイルに高周波電流を印加し、るつぼ内で凝固させた試料の高さ中心における水平断面を観察した。水平断面の観察により、粒子がるつぼ壁面に集積し、中心部とるつぼ壁面に接する周辺領域とが色調の異なった状態が観察された場合を「分離」、粒子集積が観察されなかった場合を「非分離」とした。一連の試験結果を整理したグラフを図2に示す。図2において、縦軸yは電力P(kW)、横軸xは
Using a melting furnace X with a crucible diameter = 80 mm, frequency = 1, 10, and 30 kHz and a melting furnace Y with a crucible diameter = 280 mm, frequency = 1 kHz, each was tested for the case where the electric power P applied to the molten metal was changed. . Oxygen-free copper is dissolved in the crucible, and about 20 micron chromium carbide particles are dispersed in the molten copper by 1.0 mass%, and then a high frequency current is applied to the induction coil to solidify the sample in the crucible. A horizontal section at the center was observed. When the horizontal cross-section is observed, particles are accumulated on the crucible wall surface, and the state where the central area and the peripheral area in contact with the crucible wall surface are in different colors is `` separated '', and the case where particle accumulation is not observed is "Non-separated". The graph which arranged a series of test results is shown in FIG. In FIG. 2, the vertical axis y is power P (kW), and the horizontal axis x is
参考例2
るつぼ内径=80mmの誘導加熱溶解炉を用いて、加えられる周波数と溶融銅中介在物の炉壁への分離の有無の関係について試験した。介在物として直径約20μmの炭化クロム粒子を用い、4kgの溶融銅中に1mass%の炭化クロム粒子を分散させ、種々の周波数にて炭化クロム粒子が炉壁へ分離される状態を観察した。試験方法は、炭化クロム粒子を分散させた溶融銅に溶解に用いたものと同一の所定の周波数の高周波磁場を60秒間印加し、その後自然冷却にて凝固させた。得られた円柱形の凝固物について、中心軸を含む任意の縦断面を調査対象とし、とりわけ炉壁に接する部分について詳細に調査した。なお、誘導加熱溶解炉の溶解目的の周波数は3kHzである。
炭化クロム粒子を分散させた溶融銅に5kHzの高周波磁場を印加した場合、炭化クロム粒子の炉壁への分離は見られたが炉壁のごく一部分への粒子の集積であり、炉壁の大部分は粒子の集積が見られなかった。これは溶湯流動による分離阻害力が大きいためである。10kHzでは分離による炉壁の大部分への粒子の集積が見られた。15kHzおよび20kHzでも分離(集積)が見られた。30kHzでも分離が見られたが、分離による粒子集積部の厚みが非常に薄かった。これは周波数の増大に伴い、表皮厚さが小さくなるため分離効率が著しく低下したためである。以上のことから、電磁分離に適した周波数として、溶解用周波数の2〜10倍が好ましく、3〜7倍であることがさらに好ましいことが分かった。
Reference example 2
Using an induction heating melting furnace having a crucible inner diameter = 80 mm, the relationship between the applied frequency and the presence or absence of separation of inclusions in the molten copper into the furnace wall was tested. Using chromium carbide particles having a diameter of about 20 μm as inclusions, 1 mass% of chromium carbide particles were dispersed in 4 kg of molten copper, and the state in which chromium carbide particles were separated to the furnace wall at various frequencies was observed. In the test method, a high-frequency magnetic field having the same predetermined frequency as that used for dissolution was applied to molten copper in which chromium carbide particles were dispersed for 60 seconds, and then solidified by natural cooling. With respect to the obtained cylindrical solidified product, an arbitrary longitudinal section including the central axis was examined, and in particular, a portion in contact with the furnace wall was investigated in detail. The induction frequency of the induction heating melting furnace is 3 kHz.
When a high frequency magnetic field of 5 kHz was applied to the molten copper in which chromium carbide particles were dispersed, chromium carbide particles were separated from the furnace wall, but the particles were accumulated on a very small part of the furnace wall. No accumulation of particles was observed in the part. This is because the separation inhibiting force due to the molten metal flow is large. At 10 kHz, particle accumulation on most of the furnace wall due to separation was observed. Separation (accumulation) was also observed at 15 kHz and 20 kHz. Although separation was observed even at 30 kHz, the thickness of the particle accumulation portion due to separation was very thin. This is because as the frequency increases, the skin thickness decreases and the separation efficiency decreases significantly. From the above, it was found that the frequency suitable for electromagnetic separation is preferably 2 to 10 times the frequency for dissolution, and more preferably 3 to 7 times.
比較例1
るつぼ径=80mmφのるつぼ型誘導加熱溶解炉において、誘導コイルに3kHzと10kHzの二系統の高周波発生装置をいずれか一方に切り替え可能な回路で設置した。被加熱材料としてCu−0.25mass%Cr合金を用い、3kHzで通常の溶解を行い、溶湯中の酸化物介在物の定量評価を行った。Cu−0.25mass%Cr合金はCrが易酸化性元素であるため溶湯中に酸化クロムが発生し有害介在物となる。溶湯サンプルを酸素分析することで酸化クロム量を定量評価することができる。
すなわち、るつぼ径=80mmφのるつぼ型誘導加熱溶解炉において、3kHzの高周波磁場を印加し、炉内のCu−0.25mass%Cr合金4kgを溶解し、溶湯均質部から採取したサンプルの酸素分析を行った。
溶湯サンプルの採取は公知のピンサンプラーを使用し、サンプリング後すみやかに水冷して棒状の凝固試料を得た。溶湯サンプルは5個採取し、各サンプルから分析用試料を切り出して分析を行い、5データの平均値を算出した。
結果を表1に示す。
Comparative Example 1
In a crucible type induction heating melting furnace with a crucible diameter = 80 mmφ, two induction generators of 3 kHz and 10 kHz were installed in the induction coil in a circuit that can be switched to either one. A Cu-0.25 mass% Cr alloy was used as a material to be heated, and normal dissolution was performed at 3 kHz to quantitatively evaluate oxide inclusions in the molten metal. In the Cu-0.25 mass% Cr alloy, Cr is an easily oxidizable element, so chromium oxide is generated in the molten metal and becomes a harmful inclusion. The amount of chromium oxide can be quantitatively evaluated by oxygen analysis of the molten metal sample.
That is, in a crucible type induction heating melting furnace with a crucible diameter = 80 mmφ, a high frequency magnetic field of 3 kHz is applied, 4 kg of Cu-0.25 mass% Cr alloy in the furnace is melted, and oxygen analysis of a sample taken from a homogeneous portion of the molten metal is performed. went.
The sample of the molten metal was collected using a known pin sampler, and immediately after sampling, the sample was immediately cooled with water to obtain a rod-shaped solidified sample. Five molten metal samples were collected, an analysis sample was cut out from each sample and analyzed, and an average value of the five data was calculated.
The results are shown in Table 1.
実施例1
3kHzで金属の溶解を行った後、10kHz−25kWを60秒間印加した以外は、比較例1と同様にCu−0.25mass%Cr合金の溶湯を作成し、溶湯中の酸化物介在物の定量評価を行った。結果を表1に示す。
Example 1
A melt of Cu-0.25 mass% Cr alloy was prepared in the same manner as in Comparative Example 1 except that 10 kHz-25 kW was applied for 60 seconds after the metal was melted at 3 kHz, and the amount of oxide inclusions in the melt was determined. Evaluation was performed. The results are shown in Table 1.
実施例2
3kHzで金属の溶解を行った後、また10kHz−25kWで10秒間、3kHz−25kWで10秒間を連続で5回繰り返し印加した以外は、比較例1と同様にCu−0.25mass%Cr合金の溶湯を作成し、溶湯中の酸化物介在物の定量評価を行った。結果を表1に示す。
Example 2
A Cu-0.25 mass% Cr alloy was prepared in the same manner as in Comparative Example 1 except that the metal was melted at 3 kHz and then repeatedly applied 10 times at 10 kHz-25 kW for 10 seconds and 3 kHz-25 kW for 10 seconds continuously. A molten metal was prepared and quantitative evaluation of oxide inclusions in the molten metal was performed. The results are shown in Table 1.
比較例2
るつぼ径=900mmφのるつぼ型誘導加熱溶解炉において、誘導コイルに500Hzと3kHzの二系統の高周波発生装置をいずれか一方に切り替え可能な回路で設置し、Cu−0.25mass%Cr合金6トンを500Hz−1000kWで溶解し溶湯均質部から採取したサンプルの酸素分析を行った。
以上の酸素分析結果を図2に合わせて示す。溶湯サンプルの採取は公知のピンサンプラーを使用し、サンプリング後すみやかに水冷して棒状の凝固試料を得た。溶湯サンプルは各条件で5個ずつ採取し各サンプルから分析用試料を切り出して分析を行い、5データの平均値を算出した。結果を表1に示す。
Comparative Example 2
In a crucible type induction heating and melting furnace with a crucible diameter of 900 mmφ, two induction generators of 500 Hz and 3 kHz are installed in the induction coil with a circuit that can be switched to either one, and 6 tons of Cu-0.25 mass% Cr alloy is installed. The oxygen analysis of the sample which melt | dissolved at 500 Hz-1000 kW and extract | collected from the molten metal homogeneous part was performed.
The above oxygen analysis results are shown in FIG. The sample of the molten metal was collected using a known pin sampler, and immediately after sampling, the sample was immediately cooled with water to obtain a rod-shaped solidified sample. Five molten metal samples were collected under each condition, and samples for analysis were cut out from each sample and analyzed, and an average value of five data was calculated. The results are shown in Table 1.
実施例3
Cu−0.25mass%Cr合金を溶解した後、3kHz−150kWで30秒間、500Hz−150kWで30秒間を連続で5回繰り返した以外は、比較例2と同様にCu−0.25mass%Cr合金の溶湯を作成し、溶湯中の酸化物介在物の定量評価を行った。結果を表1に示す。
Example 3
The Cu-0.25 mass% Cr alloy was the same as Comparative Example 2 except that the Cu-0.25 mass% Cr alloy was dissolved and then 3 kHz-150 kW for 30 seconds and 500 Hz-150 kW for 30 seconds were repeated continuously 5 times. A molten metal was prepared, and quantitative evaluation of oxide inclusions in the molten metal was performed. The results are shown in Table 1.
表1に示すデータから明らかなように、通常の溶解のみを行った比較例に比べ、溶解用周波数とは別の介在物分離用周波数を溶融銅に対して使用した実施例では、溶融銅中の平均酸素濃度で示される酸化クロム介在物量が少なくなり、特に、溶解用周波数と介在物分離用周波数を繰り返した実施例2および3では、溶融銅中の酸化クロム介在物量が非常に少なく、溶融銅の清浄化が実現した。 As is clear from the data shown in Table 1, compared to the comparative example in which only normal melting was performed, in the example in which the inclusion separation frequency different from the melting frequency was used for the molten copper, The amount of chromium oxide inclusions represented by the average oxygen concentration of the molten copper was reduced. In particular, in Examples 2 and 3 in which the frequency for dissolution and the frequency for separating inclusions were repeated, the amount of chromium oxide inclusions in the molten copper was very small, Copper cleaning was realized.
1 誘導加熱溶解炉の炉本体
2 誘導加熱溶解炉の誘導コイル
3 高周波発生装置(A)
4 高周波発生装置(B)
5 スイッチ(切替装置)
6 金属溶湯
DESCRIPTION OF SYMBOLS 1 Furnace body of induction
4 High frequency generator (B)
5 Switch (switching device)
6 Molten metal
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009162031A JP5546170B2 (en) | 2009-07-08 | 2009-07-08 | Inclusion removal method in molten metal, inclusion removal apparatus in molten metal, and metal material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009162031A JP5546170B2 (en) | 2009-07-08 | 2009-07-08 | Inclusion removal method in molten metal, inclusion removal apparatus in molten metal, and metal material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011017482A true JP2011017482A (en) | 2011-01-27 |
JP5546170B2 JP5546170B2 (en) | 2014-07-09 |
Family
ID=43595407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009162031A Expired - Fee Related JP5546170B2 (en) | 2009-07-08 | 2009-07-08 | Inclusion removal method in molten metal, inclusion removal apparatus in molten metal, and metal material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5546170B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6059389B1 (en) * | 2016-06-20 | 2017-01-11 | 北芝電機株式会社 | Melting control method for fast induction melting furnace |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02122011A (en) * | 1988-10-31 | 1990-05-09 | Daido Steel Co Ltd | Method and apparatus for floating up and separating inclusion |
JPH11229055A (en) * | 1998-02-17 | 1999-08-24 | Kobe Steel Ltd | Method for purifying aluminum or aluminum alloy |
JP2001289567A (en) * | 2000-04-06 | 2001-10-19 | Metts Corp | Control method for induction furnace |
-
2009
- 2009-07-08 JP JP2009162031A patent/JP5546170B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02122011A (en) * | 1988-10-31 | 1990-05-09 | Daido Steel Co Ltd | Method and apparatus for floating up and separating inclusion |
JPH11229055A (en) * | 1998-02-17 | 1999-08-24 | Kobe Steel Ltd | Method for purifying aluminum or aluminum alloy |
JP2001289567A (en) * | 2000-04-06 | 2001-10-19 | Metts Corp | Control method for induction furnace |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6059389B1 (en) * | 2016-06-20 | 2017-01-11 | 北芝電機株式会社 | Melting control method for fast induction melting furnace |
Also Published As
Publication number | Publication date |
---|---|
JP5546170B2 (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Application of electromagnetic (EM) separation technology to metal refining processes: a review | |
JPWO2007018243A1 (en) | Purification device and purification method | |
KR100229096B1 (en) | Device for evaluating cleanliness of metal and method therfor | |
He et al. | Effect of combined magnetic field on the eliminating inclusions from liquid aluminum alloy | |
JP5546170B2 (en) | Inclusion removal method in molten metal, inclusion removal apparatus in molten metal, and metal material | |
CN102140583A (en) | Method for purifying metal melt by combining power ultrasonic field and electric field | |
Yusupkhodjayev et al. | Usage of reducing-sulfidizing agents in copper-bearing slags depletion | |
US4909836A (en) | Apparatus and a method for improved filtration of inclusions from molten metal | |
Guo et al. | Effects of axial static magnetic field on inclusions removal in the liquid melt film during electroslag remelting process | |
KR20160117586A (en) | Continuous steel casting method | |
JP5006127B2 (en) | Continuous casting apparatus, ingot manufacturing method and ingot | |
Brant et al. | Fumeless in-line degassing and cleaning of liquid aluminum | |
JP4419811B2 (en) | Continuous casting method for molten steel | |
KR100379912B1 (en) | Apparatus for continuous elimination of Fe in Al alloy using an electromagnetic field | |
JP5354179B2 (en) | Continuous casting method for steel slabs | |
JP5117241B2 (en) | Inclusion removal apparatus and inclusion removal method | |
JP2008100248A (en) | Continuously casting tundish, and method of continuous casting | |
JP3357886B2 (en) | Method for separating insoluble substances contained in molten metal | |
LV et al. | Pulsating high gradient magnetic separation for purification of quartz | |
JP3308275B2 (en) | Apparatus and method for evaluating metal cleanliness | |
JP6167862B2 (en) | Molten metal cleaning method and molten metal cleaning apparatus | |
JP3624682B2 (en) | Metal cleaning methods | |
JP2008231526A (en) | Molten metal plating method, and device therefor | |
KR100416302B1 (en) | Process and apparatus for continuous elimination of inclusions in Al alloy using electromagnetic field | |
JPH02122011A (en) | Method and apparatus for floating up and separating inclusion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120508 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140422 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140513 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5546170 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |