JPH02122011A - Method and apparatus for floating up and separating inclusion - Google Patents
Method and apparatus for floating up and separating inclusionInfo
- Publication number
- JPH02122011A JPH02122011A JP27543588A JP27543588A JPH02122011A JP H02122011 A JPH02122011 A JP H02122011A JP 27543588 A JP27543588 A JP 27543588A JP 27543588 A JP27543588 A JP 27543588A JP H02122011 A JPH02122011 A JP H02122011A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- magnetic field
- inclusion
- current
- force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 66
- 229910052751 metal Inorganic materials 0.000 claims abstract description 66
- 230000005484 gravity Effects 0.000 claims abstract description 25
- 238000000926 separation method Methods 0.000 claims abstract description 18
- 238000005188 flotation Methods 0.000 claims description 16
- 230000001737 promoting effect Effects 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 description 15
- 239000010959 steel Substances 0.000 description 15
- 230000004907 flux Effects 0.000 description 7
- 239000004020 conductor Substances 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 150000003568 thioethers Chemical class 0.000 description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 238000010313 vacuum arc remelting Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
(産業上の利用分野)
本発明は、溶融金属中に含まれる介在物の浮上分離を促
進し、溶融金属中に含まれる介在物品、をできるだけ少
なくして清浄度の高い溶融金属を得るのに利用される介
在物の浮上分離方法および浮上分離装置に関するもので
ある。
(従来の技術)
溶融金属中に含まれる介在物としては、ガス成分のほか
、酸化物、硫化物などの非金属介在物があるが、このよ
うな介在物を溶融金属から分離除去する従来の方法とし
ては、真空誘導溶解(VIM)法や、真空アーク再溶解
(VAR)法や、エレクトロスラグ再溶解(E S R
)法などの真空雰囲気中やスラグ雰囲気中での溶解法が
あり、また炉外精錬法として吸上式真空精錬法(DH法
、RH法)などがあった。
(発明が解決しようとする課題)
しかしながら、このような従来の介在物の分離除去方法
では、再溶解をする必要があるとか、真空あるいはスラ
グなどの特殊な雰囲気を形成する必要があり、介在物の
分離除去を通常の雰囲気でそして従来の生産工程の中で
より簡便に行うことができないという課題があった。
(発明の目的)
本発明は、このような従来の技術がもつ課題にかんがみ
てなされたもので、溶融金属中に含まれる介在物の分離
除去を通常の雰囲気においてもより簡便にそして迅速に
行うことができ、例えば取鍋精錬、連続鋳造用タンデイ
ツシュ、連続鋳造用モールド、インゴット鋳造等の際に
適用して溶融金属中の介在物量を著しく低減させること
ができるようにすることを目的としている。(Industrial Application Field) The present invention promotes the flotation separation of inclusions contained in molten metal, reduces the amount of inclusions contained in molten metal as much as possible, and obtains highly clean molten metal. The present invention relates to a flotation separation method for inclusions and a flotation separation device to be used. (Prior art) Inclusions contained in molten metal include gas components as well as non-metallic inclusions such as oxides and sulfides. Conventional methods for separating and removing such inclusions from molten metal Methods include vacuum induction melting (VIM), vacuum arc remelting (VAR), and electroslag remelting (ESR).
) There are melting methods in a vacuum atmosphere or slag atmosphere, such as the method, and there are wicking vacuum refining methods (DH method, RH method) as out-of-furnace refining methods. (Problem to be Solved by the Invention) However, in such conventional methods for separating and removing inclusions, it is necessary to re-dissolve them, or it is necessary to create a special atmosphere such as a vacuum or slag. There has been a problem in that it is not possible to more easily separate and remove the particles in a normal atmosphere and within the conventional production process. (Object of the Invention) The present invention has been made in view of the problems with the conventional techniques, and is an object of the present invention to more easily and quickly separate and remove inclusions contained in molten metal even in a normal atmosphere. The purpose of the present invention is to significantly reduce the amount of inclusions in molten metal by applying it, for example, to ladle refining, continuous casting tundishes, continuous casting molds, ingot casting, etc.
(課題を解決するための手段)
本発明の第1請求項に係る介在物の浮上分離方法は、溶
鋼その他の溶融金属中に水平(概略水平の場合を含む、
)で且つ一定方向(概略一定方向の場合を含む)の磁場
を形成させると共に、前記溶融金属中に水平(概略水平
の場合を含む、)で且つ前記一定方向に対して直交する
(4it略直交する場合を含む。)方向に電流を流すこ
とにより、前記溶融金属に重力方向の力を作用させて見
掛は比重を増大させ、溶融金属中の介在物と溶融金属と
の間での見掛は上の比重差を大きくして介在物の浮上分
離を促進する構成としたことを特徴としており、本発明
の第2請求項に係る介在物の浮上分離装置は、溶融金属
中に水平(概略水平の場合を含む。)で且つ一定方向(
概略一定方向の場合を含む。〕の磁場を形成させる磁場
形成手段と、前記溶融金属中に水平(II略水平の場合
を含む、)で且つ前記一定方向に対して直交する(概略
直交する場合を含む、)方向に電流を流して前記磁場と
電流との作用により溶融金属に対して重力方向の力を作
用させる電流供給手段とを備えた構成としたことを特徴
としており、上述した介在物の浮上分離方法および浮上
分離装置の構成を前述した従来の課題を解決するための
手段としている。
(発明の作用)
物理法則の一つとして、電流の流れている電流媒体が磁
場によって受ける力は、互いに直交する方向に向けた左
手の親指1人さし指、中指のうち、中指1人さし指をそ
れぞれ電流の方向、磁場の方向に向けると、これらに垂
直に向けた親指の方向を向くというフレミングの左手の
法則がある。
これをさらに第4図により説明すると、磁場50を形成
するために対向して配設したN極側磁石51とS極側磁
石52と1こよって、N極側磁石51からS極側磁石5
2へと磁力線Bが発生した状態において、この磁力線B
に対し垂直に配設した電流媒体(導1ij)53に紙面
の下方から上方へ向けて電流■を流すと、前述したフレ
ミングの左手の法則によって電流媒体53に下向きの力
Fが作用する。
この際、電流媒体53に作用する下向きの力Fは、
F=1.02X10−7XI ・ B ・ l−・
自 (1)ただし、
F:電流媒体に作用する力[kg]
工:電流媒体に流れる電流[kA]
B:磁界の磁束密度[G]
交:電流媒体の長さ[ml
で表わされる。
そこで、電流媒体53を溶融金属の一部とみなしてこれ
が集積された状態を考えると、磁場中におかれた溶融金
属に電流を流すことによって溶融金属には下向きの力F
が作用し、溶融金属の見掛は比重は増大する。
他方、溶融金属中に含まれる介在物である酸化物や硫化
物は電流を実質的に流さないため、上記フレミングの左
手の法則による力(F)は作用せず、したがって介在物
の比重は変化しないため、前記の見掛は比重が増大した
溶融金属と比重が変化しない介在物との間での見掛は上
の比重差がより大きなものとなり、介在物が溶融金属か
ら受ける浮力が増大して、介在物の浮上分離がより一層
促進されることとなる。
(実施例)
第1図ないし第3図は本発明の一実施例を示している。
図に示す容器1は、この容器1内に収容される溶融金属
2の成分組成等を考慮した材質の耐火物3が内張すされ
ており、耐火物3の外側は後述するごとく溶融金属2を
貫通する磁場を形成させる関係上非磁性鋼(例えば、オ
ーステナイト系ステンレス鋼)からなる外皮4で被覆さ
れており、側部には吊り下げ用のトランオン軸5が設け
である。
この容器1の外側には、溶融金属2中において水平で且
つ一定方向の磁力線6が流れる磁場を形成するための磁
場形成手段7が配設しである。この磁場形成手段7は、
一対の電磁石8.9をそなえ、それぞれコア10.11
にコイル12.13を設け、コイル12.13に直流電
源14.15を接続して、一方の電磁石8から他方の電
磁石9に向けて、非磁性の外皮4.耐火物3.溶融金属
2を貫通する一定方向の磁力線6を発生させる。
また、容器1の内部には、電流供給手段16が配設しで
ある。この電流供給手段16は、一対の電極17.18
をそなえ、直流電源19に接続することによって、溶融
金属2中において、一方の電極17から他方の電極18
に向けて水モで且つ前記磁力線6の方向に対して直交す
る方向に電流20を流す。
このようにして、溶融金属2中において、それぞれ水平
方向で且つ互いに直交する方向に磁力線6と電流20と
が第1図に示す方向に流れている状態では、前述したフ
レミングの左手の法則によって溶融金属2は前記磁場に
より下向きの力を受け、溶融金属2の見掛は比重が増大
する。他方、溶融金属2中に含まれる酸化物や硫化物等
の介在物は電気良導体ではないため磁場の′#響は受け
ず、したがって介在物と溶融金属との間での見掛は上の
比重差がより大きくなって、介在物の浮と分離が促進さ
れ、とくに脱酸生成物の浮上分離を促進することによっ
て[0] <2 p pmの極清浄金属をねらうことが
できるようになる。
例えば、容器1が容量30tonの取鍋であり、溶融金
属2が溶鋼であって、溶鋼の見掛は比重が2倍となるよ
うに設定する場合について考える。
溶鋼(30ton)の見掛は比重が2倍になるというこ
とは、前記(1)式で示される力Fが30ton (3
0,000kg)):なるということである。
また、磁場形成手段7によって磁場の磁束密度Bが10
5ガウスとなるように設定する。ここで、tOSガウス
の磁束密度Bが得られるようにする場合について考える
と、コアto、iiに巻かれたコイル12.13の直径
が2mのものを採用するとして、コイル12.13の発
生する磁場Hは、
ただし、
H:コイルの発生する磁場[OeJ
n:コイルの巻数[ターン]
i:電流[A]
D=コイルの直径[m]
で表わされ、磁束密度Bと磁場Hとの関係は、B= μ
・ H・・・ (3)
ただし、
B:磁束密度[T=Wb/m2= 10’ GIJL:
透磁率[空気では4πX 10−)H/ m ]H:磁
場の強さ[A/m]
で表わされる。
したがって、磁束密度Bが10Sガウスの大きさで得ら
れるようにするためには、(3)式から=10’ [
OeJ
したがって、(2)式から
n1=1.11X10’
となり、コイル12.13の巻数nを1万ターンとした
ときには、コイル12.13に流す電流iを約11.I
Aとすればよい。
次に、電極17.18の間隔を1.5mとじた場合には
、前記(1)式より
I=19.6−=20kA
となり、直流電源19より20kAの電流を流すことに
よって、溶融金属(溶鋼)2の見掛は比重は約2倍とな
る。この場合、電圧は溶鋼の電気抵抗ロスのみ(電極1
7.18は浸漬されているのでアークの発生はない)で
あるので数ボルト程度であり、直流電源19としては小
さいものですむ。
また、容器1の外皮4は非磁性体であることが必要であ
るが、例えばオーステナイト系ステンレス鋼を使用した
場合にその透磁率は90〜95%程度であるので、磁場
の乱れは大きくないものとなる。
次に、磁場形成手段7によって形成された磁場の磁束密
度Bが105ガウス、−[流供給手段16によって溶鋼
中に供給される電流が20kAであって、溶鋼の見掛は
比重が約2倍となったときの介在物の浮上速度について
考える。
溶鋼中における介在物の浮上速度は、ストークスの法則
によって、
ただし、
U:介在物の浮上速度[cm/sec]g:重力加速度
LCm/SeC′]
ρ:溶鋼密度[g/cmjl
ρ :介在物密度[g/cm’]
壓:溶鋼粘性[g/cm−see]
r:介在物半径[弘m]
で表わされる。
そこで、溶鋼の場合に密度ρ=7.0、介在物がA交2
03である場合に密度ρ =3.5であり、ρ = (
1/2)ρとなり、前記(4)式よりpは比重差(密度
差ρ−ρ′)に比例することから、溶鋼の見掛は比重が
2倍となれば介在物の浮上速度Uは3倍となる。また、
溶鋼の見掛は比重を5倍にすれば、介在物の浮上速度は
9倍となる。
なお、上述した実施例では、電極17.18を溶融金属
2中に浸漬した場合を示しているが、この場合、電極と
して水冷銅電極方式のものとしてもよく、また電極17
.18は溶融金IIs 2と同様に30tonの横方向
の力を受けるのでそれに1耐えうる補強を行うことも必
要に応じて望ましく、さらには電極17.18を耐火物
3中に設けて電極17.18の内h1面を耐火物3の内
周方向に合わせたものとしてもよく、金属に限らず導電
性セラミックスも使用の対象となる。
また、上述した実施例では、容器1が取鍋である場合を
例にしたが、連続鋳造用タンデイツシュ、連続I造用モ
ールド、インゴットa造などにも適用することが可能で
ある。(Means for Solving the Problems) A method for flotation and separation of inclusions according to the first aspect of the present invention provides a method for flotation and separation of inclusions in molten steel or other molten metal.
) and in a fixed direction (including the case of a substantially fixed direction), and in the molten metal horizontally (including the case of substantially horizontal) and orthogonal to the fixed direction (4it substantially perpendicular to the fixed direction). ) By passing a current in the molten metal direction, a force in the gravitational direction is applied to the molten metal, increasing the apparent specific gravity, and increasing the apparent density between inclusions in the molten metal and the molten metal. The device for flotation and separation of inclusions according to the second aspect of the present invention is characterized by increasing the difference in specific gravity above the surface to promote flotation and separation of inclusions. (including horizontal cases) and in a certain direction (
Including cases where the direction is approximately constant. ]; and a magnetic field forming means for forming a magnetic field; and a current is applied in the molten metal in a direction horizontal (including the case where it is substantially horizontal) and perpendicular to the certain direction (including the case where it is substantially orthogonal). The present invention is characterized by a current supply means for applying a force in the direction of gravity to the molten metal through the action of the magnetic field and the current, and the method and device for flotation and separation of inclusions described above. This configuration is used as a means to solve the conventional problems mentioned above. (Operation of the invention) As one of the laws of physics, the force exerted by a magnetic field on a current medium in which a current is flowing is determined by the force exerted by a magnetic field on a current medium in which a current is flowing. Fleming's left hand rule states that if you point in the direction of the magnetic field, your thumb will point perpendicular to these. To further explain this with reference to FIG. 4, the N-pole side magnet 51 and the S-pole side magnet 52 are arranged to face each other in order to form a magnetic field 50.
In the state where the line of magnetic force B is generated towards 2, this line of magnetic force B
When a current {circle around (2)} flows from below to above the plane of the paper through a current medium (conductor 1ij) 53 disposed perpendicularly to the current medium (conductor 1ij), a downward force F acts on the current medium 53 according to Fleming's left-hand rule described above. At this time, the downward force F acting on the current medium 53 is F=1.02X10-7XI・B・l−・
(1) However, F: Force acting on the current medium [kg] F: Current flowing through the current medium [kA] B: Magnetic flux density of the magnetic field [G] Cross: Length of the current medium [ml] Therefore, if we consider the current medium 53 as part of the molten metal and consider the state in which it is accumulated, a downward force F is applied to the molten metal by passing a current through the molten metal placed in a magnetic field.
acts, and the apparent specific gravity of the molten metal increases. On the other hand, since oxides and sulfides, which are inclusions contained in molten metal, do not substantially conduct current, the force (F) according to Fleming's left hand rule does not act, and therefore the specific gravity of the inclusions changes. Therefore, the apparent difference in specific gravity between the molten metal whose specific gravity has increased and the inclusions whose specific gravity has not changed becomes larger, and the buoyant force that the inclusions receive from the molten metal increases. As a result, flotation and separation of inclusions is further promoted. (Embodiment) FIGS. 1 to 3 show an embodiment of the present invention. The container 1 shown in the figure is lined with a refractory 3 made of a material that takes into account the composition of the molten metal 2 contained in the container 1, and the outside of the refractory 3 is lined with molten metal 2 as described below. It is covered with an outer skin 4 made of non-magnetic steel (for example, austenitic stainless steel) in order to form a magnetic field penetrating it, and a tran-on shaft 5 for hanging is provided on the side. A magnetic field forming means 7 is provided on the outside of the container 1 for forming a magnetic field in which horizontal lines of magnetic force 6 flow in a constant direction in the molten metal 2. This magnetic field forming means 7 is
Equipped with a pair of electromagnets 8.9, each with a core 10.11
A coil 12.13 is provided at the coil 12.13, a DC power source 14.15 is connected to the coil 12.13, and a non-magnetic outer sheath 4. Refractories 3. Generate lines of magnetic force 6 in a certain direction that penetrate the molten metal 2. Further, inside the container 1, a current supply means 16 is arranged. This current supply means 16 includes a pair of electrodes 17.18.
By connecting to the DC power source 19, one electrode 17 is connected to the other electrode 18 in the molten metal 2.
A current 20 is caused to flow in a direction perpendicular to the direction of the magnetic lines of force 6 in the direction of the water flow. In this way, when the magnetic lines of force 6 and the current 20 are flowing in the molten metal 2 horizontally and perpendicularly to each other in the directions shown in FIG. The metal 2 receives a downward force from the magnetic field, and the apparent specific gravity of the molten metal 2 increases. On the other hand, inclusions such as oxides and sulfides contained in the molten metal 2 are not good electrical conductors and are not affected by the magnetic field, so the apparent density between the inclusions and the molten metal is As the difference becomes larger, the floating and separation of inclusions is promoted, and in particular, by promoting the floating and separation of deoxidized products, it becomes possible to aim for ultra-clean metal with [0] <2 ppm. For example, consider a case where the container 1 is a ladle with a capacity of 30 tons, the molten metal 2 is molten steel, and the apparent specific gravity of the molten steel is set to be twice. The apparent specific gravity of molten steel (30 tons) is doubled, which means that the force F shown in equation (1) above is 30 tons (3
0,000kg)): That is. In addition, the magnetic field forming means 7 increases the magnetic flux density B of the magnetic field to 10
Set it to be 5 Gauss. Here, considering the case where the magnetic flux density B of tOS Gauss is obtained, assuming that the diameter of the coil 12.13 wound around the core to, ii is 2 m, the generated The magnetic field H is expressed as: H: Magnetic field generated by the coil [OeJ n: Number of turns of the coil [turns] i: Current [A] D = Diameter of the coil [m] It is expressed as follows: The magnetic flux density B and the magnetic field H The relationship is B=μ
・H... (3) However, B: Magnetic flux density [T=Wb/m2=10' GIJL:
Magnetic permeability [4πX 10-)H/m in air] H: Magnetic field strength [A/m]. Therefore, in order to obtain the magnetic flux density B with a magnitude of 10S Gauss, from equation (3), =10' [
OeJ Therefore, from equation (2), n1 = 1.11X10', and when the number of turns n of the coil 12.13 is 10,000 turns, the current i flowing through the coil 12.13 is approximately 11. I
It should be A. Next, when the interval between the electrodes 17.18 is 1.5 m, I = 19.6 - = 20 kA from the above equation (1), and by passing a current of 20 kA from the DC power supply 19, the molten metal ( The apparent specific gravity of molten steel) 2 is approximately double. In this case, the voltage is only the electrical resistance loss of the molten steel (electrode 1
7.18 is immersed, so no arc is generated), so the voltage is about several volts, which is small as the DC power source 19. In addition, the outer skin 4 of the container 1 must be made of a non-magnetic material, but if, for example, austenitic stainless steel is used, its magnetic permeability is about 90 to 95%, so the disturbance of the magnetic field should not be large. becomes. Next, the magnetic flux density B of the magnetic field formed by the magnetic field forming means 7 is 105 Gauss, the current supplied to the molten steel by the flow supply means 16 is 20 kA, and the apparent specific gravity of the molten steel is approximately twice Let us consider the floating speed of inclusions when . The floating speed of inclusions in molten steel is determined by Stokes' law as follows: U: floating speed of inclusions [cm/sec] g: gravitational acceleration LCm/SeC'] ρ: density of molten steel [g/cmjl ρ: inclusions Density [g/cm'] Unit: Molten steel viscosity [g/cm-see] r: Inclusion radius [Hirom] It is expressed as follows. Therefore, in the case of molten steel, the density ρ = 7.0 and the inclusions are A
03, the density ρ = 3.5, and ρ = (
1/2) ρ, and from equation (4) above, p is proportional to the specific gravity difference (density difference ρ - ρ'), so if the apparent specific gravity of molten steel is doubled, the floating speed U of inclusions will be It will be tripled. Also,
If the apparent specific gravity of molten steel is increased by 5 times, the floating speed of inclusions will be increased by 9 times. In the above embodiment, the electrodes 17 and 18 are immersed in the molten metal 2, but in this case, the electrodes may be of a water-cooled copper electrode type.
.. 18 is subjected to a lateral force of 30 tons in the same way as the molten gold IIs 2, so it is desirable to provide reinforcement that can withstand this force if necessary.Furthermore, the electrodes 17.18 are provided in the refractory material 3 so that the electrodes 17. The inner h1 surface of the refractory 3 may be aligned with the inner peripheral direction of the refractory 3, and not only metal but also conductive ceramics can be used. Further, in the above-described embodiments, the case where the container 1 is a ladle is taken as an example, but it can also be applied to a tundish for continuous casting, a mold for continuous I-making, an ingot A-making, etc.
本発明の第1請求項に係る介在物の浮上分離方法は、溶
融金属中に水平で且つ一定方向の磁場を形成させると共
に、前記溶融金属中に水平で且つ前記一定方向に対して
直交する方向に電流を流すことにより、前記溶融金属に
重力方向の力を作用させて見掛は比重を増大させ、溶融
金属中の介在物と溶融金属との間での見掛は上の比重差
を太きくして介在物の浮上分離を促進するようにし、ま
た本発明の第2請求項に係る介在物の浮上分離装置では
、溶融金属中に水平で1つ一定方向の磁場を形成させる
磁場形成手段と、前記溶融金属中に水モで11つ前記一
定方向に対して直交する方向に電流を流して前記磁場と
電流との作用により溶融金属に対して重力方向の力を作
用させる電流供給り段とを備えた構成としているので、
溶融金属中に含まれる介在物の浮上による分離除去を著
しく有効に行うことが可能となり、この際真空雰囲気や
スラグ雰囲気中に溶融金属をおく必要はかならずしもな
く、従来の生産工程の中で介在物の分離除去が容易に可
能であって、不純物の少ない高品質の金属材料を低コス
トで提供することができるようになるという著しく優れ
た効果がもたらされる。A method for flotation and separation of inclusions according to a first aspect of the present invention is to form a magnetic field in a horizontal and constant direction in a molten metal, and to generate a magnetic field in a horizontal direction in the molten metal in a direction perpendicular to the constant direction. By passing an electric current through the molten metal, a force in the direction of gravity is applied to the molten metal, increasing the apparent specific gravity, and the apparent difference in specific gravity between the inclusions in the molten metal and the molten metal increases. In the inclusion flotation separation device according to the second aspect of the present invention, a magnetic field forming means for forming a horizontal magnetic field in one constant direction in the molten metal is provided. , a current supply stage for applying a current in a direction perpendicular to the fixed direction through water flow through the molten metal to apply a force in the direction of gravity to the molten metal through the interaction of the magnetic field and the current; Since it is configured with
It is now possible to extremely effectively separate and remove inclusions contained in molten metal by flotation, and there is no need to place the molten metal in a vacuum atmosphere or slag atmosphere. can be easily separated and removed, resulting in a remarkable effect that a high-quality metal material with few impurities can be provided at a low cost.
第1図、第2図および第3図は本発明の一実施例を示す
介在物の浮上分離装置の各々部分破断平面図、部分破断
側面図および縦断面図、第4図は本発明の原理を示す説
明図である。
2・・・溶融金属、
6・・・磁力線、
7・・・磁場形成手段、
6・・・電流供給手段、
20・・・電流。1, 2, and 3 are a partially cutaway plan view, a partially cutaway side view, and a longitudinal sectional view of an inclusion flotation separation device showing an embodiment of the present invention, and FIG. 4 is a principle of the present invention. FIG. 2... Molten metal, 6... Lines of magnetic force, 7... Magnetic field forming means, 6... Current supply means, 20... Current.
Claims (2)
せると共に、前記溶融金属中に水平で且つ前記一定方向
に対して直交する方向に電流を流すことにより、前記溶
融金属に重力方向の力を作用させて見掛け比重を増大さ
せ、溶融金属中の介在物と溶融金属との間での見掛け上
の比重差を大きくして介在物の浮上分離を促進すること
を特徴とする介在物の浮上分離方法。(1) By forming a horizontal magnetic field in a fixed direction in the molten metal and passing a current horizontally in the molten metal in a direction perpendicular to the fixed direction, the molten metal is caused to move in the direction of gravity. An inclusion characterized in that the apparent specific gravity is increased by applying a force to increase the apparent specific gravity difference between the inclusion in the molten metal and the molten metal, thereby promoting flotation and separation of the inclusion. Flotation separation method.
せる磁場形成手段と、前記溶融金属中に水平で且つ前記
一定方向に対して直交する方向に電流を流して前記磁場
と電流との作用により溶融金属に対して重力方向の力を
作用させる電流供給手段とを備えたことを特徴とする介
在物の浮上分離装置。(2) A magnetic field forming means for forming a horizontal magnetic field in a fixed direction in the molten metal, and a means for forming a magnetic field in the molten metal in a direction horizontal to the fixed direction and perpendicular to the fixed direction to combine the magnetic field and the current. An apparatus for flotation and separation of inclusions, comprising current supply means for applying a force in the direction of gravity to molten metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27543588A JPH02122011A (en) | 1988-10-31 | 1988-10-31 | Method and apparatus for floating up and separating inclusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27543588A JPH02122011A (en) | 1988-10-31 | 1988-10-31 | Method and apparatus for floating up and separating inclusion |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02122011A true JPH02122011A (en) | 1990-05-09 |
Family
ID=17555479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27543588A Pending JPH02122011A (en) | 1988-10-31 | 1988-10-31 | Method and apparatus for floating up and separating inclusion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02122011A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03121759A (en) * | 1989-10-02 | 1991-05-23 | Toshiba Corp | Polishing device for spherical body |
JP2011017482A (en) * | 2009-07-08 | 2011-01-27 | Furukawa Electric Co Ltd:The | Method and device for removing inclusion in molten metal, and metallic material |
WO2019097799A1 (en) * | 2017-11-15 | 2019-05-23 | 謙三 高橋 | Device and method for continuous removal of impurities from molten metal |
-
1988
- 1988-10-31 JP JP27543588A patent/JPH02122011A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03121759A (en) * | 1989-10-02 | 1991-05-23 | Toshiba Corp | Polishing device for spherical body |
JP2011017482A (en) * | 2009-07-08 | 2011-01-27 | Furukawa Electric Co Ltd:The | Method and device for removing inclusion in molten metal, and metallic material |
WO2019097799A1 (en) * | 2017-11-15 | 2019-05-23 | 謙三 高橋 | Device and method for continuous removal of impurities from molten metal |
EP3711878A4 (en) * | 2017-11-15 | 2021-05-12 | Kenzo Takahashi | Device and method for continuous removal of impurities from molten metal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0543290A3 (en) | A process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot | |
US6355085B1 (en) | Method and device for separating particles from an electrically conductive liquid flow using electromagnetic forces | |
EP0080326A1 (en) | Improvements in or relating to the continuous casting of steel | |
US6010552A (en) | Apparatus for the process of melting and purification of aluminum, copper, brass, lead and bronze alloys | |
CA1120273A (en) | Method of influencing the distribution of various constituents in an electrically conductive liquid | |
JPH02122011A (en) | Method and apparatus for floating up and separating inclusion | |
KR960006325B1 (en) | Process for separating the inclusions contained in a bath of molten metal by filtration | |
Furui et al. | Fabrication of small aluminum ingot by electromagnetic casting | |
US4786320A (en) | Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals | |
JPH0328332A (en) | Remelting of metal material including decantation of intervening material | |
US1487275A (en) | Electrometallurgy | |
JP3624682B2 (en) | Metal cleaning methods | |
JP6167862B2 (en) | Molten metal cleaning method and molten metal cleaning apparatus | |
EP3708686A1 (en) | Metal product manufacturing device and metal product manufacturing method | |
JP2002346709A (en) | Continuous casting tundish, and continuous casting method using the same | |
RU2031171C1 (en) | Method for continuous casting of aluminum alloys | |
SU636056A1 (en) | Apparatus for electromagnetic treatment of crystallizing metal | |
JP5546170B2 (en) | Inclusion removal method in molten metal, inclusion removal apparatus in molten metal, and metal material | |
JPH0520673B2 (en) | ||
RU2043839C1 (en) | Method of stirring the molten metal in the mould during its continuous casting | |
JP2000256708A (en) | Production of clean metal powder | |
JPH0330456B2 (en) | ||
JP2000074568A (en) | Vacuum floating melting apparatus | |
SU782951A1 (en) | Method of continuous casting of metals | |
Choudhury et al. | Melting and refining of nickel-base-alloys in a VIDP-furnace--recent metallurgical results |