JPH0330456B2 - - Google Patents

Info

Publication number
JPH0330456B2
JPH0330456B2 JP7646783A JP7646783A JPH0330456B2 JP H0330456 B2 JPH0330456 B2 JP H0330456B2 JP 7646783 A JP7646783 A JP 7646783A JP 7646783 A JP7646783 A JP 7646783A JP H0330456 B2 JPH0330456 B2 JP H0330456B2
Authority
JP
Japan
Prior art keywords
bubbles
molten steel
gas
molten metal
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7646783A
Other languages
Japanese (ja)
Other versions
JPS59202138A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7646783A priority Critical patent/JPS59202138A/en
Publication of JPS59202138A publication Critical patent/JPS59202138A/en
Publication of JPH0330456B2 publication Critical patent/JPH0330456B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は、溶融金属中に発生させる気泡を微細
化することを可能にする気泡発生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bubble generation method that makes it possible to make the bubbles generated in molten metal finer.

鋼材の鋳造においては、転炉、電気炉などで精
錬した溶鋼を取鍋に受け取り、必要があるなら、
更に二次的精錬工程を加え、鋳型に注ぎ、鋼塊あ
るいは鋼片としていく。鋼材成分は勿論所定成分
となるように予め調整するが、アルミナなどの介
在物や水素、窒素などのガス成分が混入し、鋼材
品質を悪化する恐れがあり、これらを除く一手段
としてバブリングが行なわれる。バブリングは鋳
造に到る工程の間で、取鍋、真空脱ガス精錬炉あ
るいは連続鋳造機におけるタンデイツシユなどの
様々な個所で実施されうるものである。取鍋に例
をとり説明すると、これは取鍋の底にジルコニア
などからなる多孔性煉瓦を取付け、該煉瓦を通し
て取鍋内溶鋼中にアルゴン(Ar)などの不活性
ガスを吹き込み、取鍋の底か溶鋼表面へ立ち昇る
気泡を作る。H2、N2ガスなどはこのArガス気泡
中に取込まれ、またアルミナなどの介在物はAr
ガス気泡の表面に付着して除去される。
In the casting of steel materials, molten steel refined in a converter, electric furnace, etc. is received in a ladle, and if necessary,
A secondary refining process is then added, and the steel is poured into molds and turned into steel ingots or billets. Of course, the composition of the steel material is adjusted in advance so that it has the specified composition, but inclusions such as alumina and gas components such as hydrogen and nitrogen may be mixed in and deteriorate the quality of the steel material, so bubbling is performed as a means to remove these. It will be done. Bubbling can be carried out at various locations during the process leading up to casting, such as a ladle, a vacuum degassing furnace, or a tundish in a continuous casting machine. Taking a ladle as an example, this involves attaching a porous brick made of zirconia or the like to the bottom of the ladle, and blowing an inert gas such as argon (Ar) into the molten steel in the ladle through the brick. Creates air bubbles that rise to the bottom or the surface of the molten steel. H 2 , N 2 gas, etc. are taken into this Ar gas bubble, and inclusions such as alumina are trapped in the Ar gas bubble.
It adheres to the surface of gas bubbles and is removed.

バブリングによる不純物除去を活発に行なわせ
るには微細気泡を作るのが有効である。即ち微細
気泡にすれば気泡表面積が増加して非金属介在物
の吸着に有利であり、またN2、H2ガスなども微
細、多数気泡の方が捕促されやすい。ガス、メタ
ル間の精錬反応速度は界面積に比例する。しかし
ながら従来法には気泡径を制御する有効な方法が
見当らない。多孔性煉瓦を用いる気泡発生では、
溶鋼ヘツドにより定まる圧力を越える圧力で不活
性ガスを供給し、多孔性煉瓦を抜けて溶鋼側へ出
た該ガスが次第に大きくなつて表面張力に打克つ
浮力を得、遂に多孔性煉瓦を離れて溶鋼中へ浮上
開始することにより発生するので、気泡径をある
程度以下(通常数mmφ程度)にすることは困難で
ある。
In order to actively remove impurities by bubbling, it is effective to create fine bubbles. That is, if the bubbles are formed into fine bubbles, the surface area of the bubbles increases, which is advantageous for adsorption of non-metallic inclusions, and N 2 and H 2 gases are also more easily trapped in fine and large numbers of bubbles. The refining reaction rate between gas and metal is proportional to the interfacial area. However, in the conventional methods, no effective method for controlling the bubble diameter has been found. In bubble generation using porous bricks,
Inert gas is supplied at a pressure that exceeds the pressure determined by the molten steel head, and the gas that passes through the porous brick and exits to the molten steel gradually becomes larger and gains buoyancy that overcomes the surface tension, and finally leaves the porous brick. Since bubbles are generated when the bubbles start floating into the molten steel, it is difficult to reduce the bubble diameter to a certain level or less (usually about several mmφ).

本発明はこの気泡径を制御する方法を提供しよ
うとするものであり、溶融金属を収容する容器の
下部から多孔性体を通してガスを吹込み、該溶融
金属中に気泡を発生させる方法において、該容器
中の溶融金属に変動する電磁力を発生させて該多
孔性体の表面に作用する見掛け圧を変動させ、該
多孔性体の表面より浮上する気泡の径を所望値に
制御することを特徴とするものである。以下図面
を参照しながらこれを詳細に説明する。
The present invention aims to provide a method for controlling the bubble diameter, and includes a method of blowing gas through a porous body from the lower part of a container containing molten metal to generate bubbles in the molten metal. It is characterized by generating a varying electromagnetic force in molten metal in a container to vary the apparent pressure acting on the surface of the porous body, and controlling the diameter of bubbles floating from the surface of the porous body to a desired value. That is. This will be explained in detail below with reference to the drawings.

第1図は本発明のの実施例を示し、10は取鍋
などの容器で、内部に溶鋼12を収容し、底部に
は多孔性煉瓦14を備える。16はこの多孔性煉
瓦に不活性ガスGを供給するパイプである。圧力
を加えてガスGをパイプ16に供給すれば多孔性
煉瓦14から多数の気泡18が溶鋼12内に発生
する。20,22は一対の磁界発生装置で、本例
では永久磁石であり、前者はN極、後者はS極
で、溶鋼12中にN極からS極へ向かう磁界を作
る。24,26は電極で、交流電源28に接続さ
れ、溶鋼12中に一方の電極から他方の電極へま
たこの逆へ電流を流す。
FIG. 1 shows an embodiment of the present invention, in which 10 is a container such as a ladle, which contains molten steel 12 and has a porous brick 14 at its bottom. 16 is a pipe that supplies inert gas G to this porous brick. When gas G is supplied to the pipe 16 under pressure, a large number of bubbles 18 are generated in the molten steel 12 from the porous bricks 14. Reference numerals 20 and 22 denote a pair of magnetic field generating devices, which are permanent magnets in this example, the former having a north pole and the latter having a south pole, creating a magnetic field in the molten steel 12 from the north pole to the south pole. Reference numerals 24 and 26 denote electrodes which are connected to an AC power source 28 and allow current to flow through the molten steel 12 from one electrode to the other and vice versa.

このような磁界発生手段および電流供給手段を
設けると溶鋼に電磁力が発生する。即ち磁界の磁
束密度をB、電流をI、電磁力をFとすればF=
B×Iであり(これらはいずれもベクトルで、×
はベクトルの外積)、磁界発生装置は永久磁石な
のでBは一定、電流Iは交流なので方向は正、逆
に変ると、電磁力Fは図示のように交互に上方ま
たは下方を向く。電磁力Fが上方を向くとき多孔
性煉瓦14の表面における溶鋼ヘツドは見掛け上
小になり、電磁力Fが下方を向くとき多孔性煉瓦
14の表面における溶鋼ヘツドは見掛け上大にな
る。第2図はこれを示すグラフで、横軸には時
間、縦軸には見掛け圧をとつてある。溶鋼圧がこ
のように変動すると、該圧力が大なるとき多孔性
煉瓦14の表面からの気泡浮上は抑れられ、該圧
力が小なるとき気泡浮上は促進される。つまり気
泡は圧力が下つたとき浮上するようになるから、
交流電源28の周波数及び電流振幅などを変える
ことにより気泡径の制御ができる。
When such magnetic field generation means and current supply means are provided, electromagnetic force is generated in the molten steel. That is, if the magnetic flux density of the magnetic field is B, the current is I, and the electromagnetic force is F, then F=
B × I (both of these are vectors, ×
Since the magnetic field generating device is a permanent magnet, B is constant, and since the current I is alternating current, the direction is positive, and when it changes in the opposite direction, the electromagnetic force F alternately points upward or downward as shown. When the electromagnetic force F is directed upward, the molten steel head on the surface of the porous brick 14 is apparently small, and when the electromagnetic force F is directed downward, the molten steel head on the surface of the porous brick 14 is apparently large. Figure 2 is a graph showing this, with time on the horizontal axis and apparent pressure on the vertical axis. When the molten steel pressure fluctuates in this manner, when the pressure increases, bubble floating from the surface of the porous brick 14 is suppressed, and when the pressure decreases, bubble floating is promoted. In other words, when the pressure drops, the bubbles will rise to the surface.
The bubble diameter can be controlled by changing the frequency, current amplitude, etc. of the AC power source 28.

溶鋼圧の変動幅は磁界の強さ及び又は電流の強
さにより調整でき、必要なら負圧にすることもで
きる。B=0.8T、I=10A/cm2のとき電磁力Fは
重力にほゞ等しいから、多孔性煉瓦14の表面に
は0〜2G範囲で変動する溶鋼圧が加わる。
The fluctuation range of the molten steel pressure can be adjusted by the strength of the magnetic field and/or the strength of the current, and if necessary, a negative pressure can be applied. Since the electromagnetic force F is approximately equal to gravity when B=0.8T and I=10A/cm 2 , a molten steel pressure varying in the range of 0 to 2G is applied to the surface of the porous brick 14.

煉瓦14は適宜の多孔性体に変えてよいが溶鋼
に用いる場合は勿論耐火性体である必要がある。
また溶鋼の場合は容器底部荷重は相当に大きくな
るから機械的強度に留意する必要があり、容器底
全面から発泡させる場合は多孔性体14を複数個
分散配置する。磁界は交流磁界としてもよいが、
溶鋼中に渦電流を発生させて磁気遮蕨効果を生じ
るから周波数を余り高くすることはできない。
The bricks 14 may be made of any suitable porous material, but if used for molten steel, it is of course necessary to be a refractory material.
In addition, in the case of molten steel, the load at the bottom of the container is considerably large, so it is necessary to pay attention to mechanical strength, and when foaming is carried out from the entire bottom of the container, a plurality of porous bodies 14 are distributed and arranged. The magnetic field may be an alternating magnetic field, but
The frequency cannot be made too high because eddy currents are generated in the molten steel, resulting in a magnetic shielding effect.

次に本発明方法による吹き込み気泡の微細化の
実例を挙げる。底の一部が多孔性煉瓦よりなる容
器内を溶融状態の鉛・すず系合金で満たし、底部
の多孔性煉瓦を通じ溶融金属中に窒素ガスを吹き
込んだところ、窒素ガスは5〜10mm直径の気泡と
なり浮上することが観察された。この状態で多孔
性煉瓦表面上の磁界ベクトル方向がおおむね水平
方向で、その強さが1.2Tであるような直流磁界
を電磁石装置により発生させかつ同時に溶融金属
中に、周波数が50Hzで磁界および気泡浮上方向の
いづれにも直交し、その密度が5A/cm2程度の交
流電流を通じたところ、浮上する窒素ガスの気泡
径は2〜4mmになつた。
Next, an example of the miniaturization of blown bubbles by the method of the present invention will be given. When a container with a part of the bottom made of porous bricks was filled with molten lead-tin alloy and nitrogen gas was blown into the molten metal through the porous bricks at the bottom, the nitrogen gas created bubbles with a diameter of 5 to 10 mm. It was observed that it floated to the surface. In this state, an electromagnetic device generates a DC magnetic field with a magnetic field vector direction approximately horizontal on the surface of the porous brick and a strength of 1.2T, and at the same time generates a magnetic field and bubbles in the molten metal at a frequency of 50Hz. When an alternating current with a density of about 5 A/cm 2 was passed perpendicular to either direction of levitation, the diameter of the floating nitrogen gas bubbles was 2 to 4 mm.

以上説明したように本発明によれば比較的簡単
な手段により溶鋼つまり溶融金属中に作る気泡の
径を調整することができ、甚だ有効である。
As explained above, according to the present invention, the diameter of bubbles formed in molten steel, that is, molten metal, can be adjusted by relatively simple means, and is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す説明図、第2図
は見かけ圧の変動を説明する図である。 図面で、10は容器、12は溶融金属、14は
多孔性体、Gはガス、18は気泡、20,22,
24,26は電磁力発生手段である。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, and FIG. 2 is a diagram explaining changes in apparent pressure. In the drawing, 10 is a container, 12 is a molten metal, 14 is a porous body, G is a gas, 18 is a bubble, 20, 22,
24 and 26 are electromagnetic force generating means.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属を収容する容器の下部から多孔性体
を通してガスを吹込み、該溶融金属中に気泡を発
生させる方法において、該容器中の溶融金属に変
動する電磁力を発生させて該多孔性体の表面に作
用する見掛け圧を変動させ、該多孔性体の表面よ
り浮上する気泡の径を所望値に制御することを特
徴とする気泡発生方法。
1 A method of blowing gas through a porous body from the lower part of a container containing molten metal to generate bubbles in the molten metal, in which a fluctuating electromagnetic force is generated in the molten metal in the container to blow gas through a porous body. A method for generating bubbles, which comprises varying the apparent pressure acting on the surface of the porous body to control the diameter of bubbles floating from the surface of the porous body to a desired value.
JP7646783A 1983-04-30 1983-04-30 Foam generating method Granted JPS59202138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7646783A JPS59202138A (en) 1983-04-30 1983-04-30 Foam generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7646783A JPS59202138A (en) 1983-04-30 1983-04-30 Foam generating method

Publications (2)

Publication Number Publication Date
JPS59202138A JPS59202138A (en) 1984-11-15
JPH0330456B2 true JPH0330456B2 (en) 1991-04-30

Family

ID=13605967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7646783A Granted JPS59202138A (en) 1983-04-30 1983-04-30 Foam generating method

Country Status (1)

Country Link
JP (1) JPS59202138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141699A (en) * 2012-01-12 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for generating bubble in molten steel
JP2016090468A (en) * 2014-11-07 2016-05-23 株式会社豊田自動織機 Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW593705B (en) * 2002-02-22 2004-06-21 Hideo Nakajima Process for the production of a porous metal body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141699A (en) * 2012-01-12 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for generating bubble in molten steel
JP2016090468A (en) * 2014-11-07 2016-05-23 株式会社豊田自動織機 Ultrasonic flaw detection inspection method and ultrasonic flaw detection inspection device

Also Published As

Publication number Publication date
JPS59202138A (en) 1984-11-15

Similar Documents

Publication Publication Date Title
US3547622A (en) D.c. powered plasma arc method and apparatus for refining molten metal
US3246373A (en) Magnetic stirring device and method
Campbell Fluid flow and droplet formation in the electroslag remelting process
JP6798575B2 (en) Desulfurization method of molten metal
JPH0330456B2 (en)
GB1510485A (en) Electro-slag remelting method and plant
Furui et al. Fabrication of small aluminum ingot by electromagnetic casting
JPH06128660A (en) Method for producing bubble in molten metal
CN117545861A (en) Refining method of molten steel
JPS62252659A (en) Additionof metal element to molten metal for casting
KR101526454B1 (en) Apparatus and method for electromagnetic stirring
JPH05185182A (en) Method for developing bubbles in molten metal
JPH06172880A (en) Method for generating bubbles in molten metal
Garnier The Clifford Paterson Lecture, 1992 Magentohydrodynamics in material processing
JPH07238327A (en) Vacuum electroslag remelting furnace
JPH05306418A (en) Method for producing gas bubbles in molten metal
US5974075A (en) Method of Magnetically-controllable, electroslag melting of titanium and titanium-based alloys and apparatus for carrying out same
JP2834657B2 (en) Tundish device capable of controlling molten metal flow
US4452297A (en) Process and apparatus for selecting the drive frequencies for individual electromagnetic containment inductors
JPH0428460A (en) Apparatus and method for preventing molten metal vortex flow
JPH01150450A (en) Method and device for treating non-solidifying section of casting strand
JP3153048B2 (en) Melting method of low nitrogen steel by low vacuum refining
SU865945A1 (en) Method of producing porous material
US6349107B1 (en) Method of magnetically-controllable, electroslag melting of titanium and titanium-based alloys, and apparatus for carrying out same
JPH08281392A (en) Method for cleaning molten steel