JP2008100248A - Continuously casting tundish, and method of continuous casting - Google Patents

Continuously casting tundish, and method of continuous casting Download PDF

Info

Publication number
JP2008100248A
JP2008100248A JP2006283726A JP2006283726A JP2008100248A JP 2008100248 A JP2008100248 A JP 2008100248A JP 2006283726 A JP2006283726 A JP 2006283726A JP 2006283726 A JP2006283726 A JP 2006283726A JP 2008100248 A JP2008100248 A JP 2008100248A
Authority
JP
Japan
Prior art keywords
molten metal
tundish
continuous casting
reservoir
metal reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006283726A
Other languages
Japanese (ja)
Inventor
Takehiko Fuji
健彦 藤
Takayuki Shiragami
孝之 白神
Masamitsu Wakao
昌光 若生
Kiyoshi Shigematsu
清 重松
Katsuhiro Fuchigami
勝弘 淵上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006283726A priority Critical patent/JP2008100248A/en
Publication of JP2008100248A publication Critical patent/JP2008100248A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuously casting tundish, which can actively separate and remove enclosures by sufficiently uniformly mixing hot molten metal in the tundish, and has a molten metal heating device which requires no large scale facilities, and further to provide a method of continuous casting using the same tundish. <P>SOLUTION: The continuously casting tundish receives the molten metal poured from a ladle 1, and pours the received molten metal into a casting mold for continuous casting. The tundish has a molten metal reservoir 7 at a molten metal receiving portion 9 to which the molten metal is poured from the ladle 1. An induction heating coil 6 is arranged on the outer circumference of the molten metal reservoir 7 so as to surround the molten metal reservoir 7. AC current can be supplied to the induction heating coil 6. The height H from the bottom portion 11 of the molten metal reservoir 7 to its top portion 10 is equal to or larger than the diameter D of the equivalent circle of the molten metal reservoir 7. The method of continuous casting uses the tundish described above. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶融金属を加熱することのできる連続鋳造用タンディッシュ及びそれを用いた連続鋳造方法に関するものである。   The present invention relates to a continuous casting tundish capable of heating molten metal and a continuous casting method using the same.

溶融金属を連続鋳造するに際しては、溶湯を積載した取鍋から一旦連続鋳造用タンディッシュに溶湯を受け、その連続鋳造用タンディッシュの底部に配置した注湯ノズルを介して、連続鋳造用タンディッシュに受けた溶湯を連続鋳造鋳型内に注入する。連続鋳造用タンディッシュを用いることにより、取鍋からの溶湯流の安定化を図り、複数のストランドのそれぞれへ溶湯を分配する役割を果たし、さらに溶湯中に含まれる非金属介在物を分離除去する上でも重要な働きをする。   When continuously casting molten metal, the molten metal is once received by the continuous casting tundish from the ladle loaded with molten metal, and the continuous casting tundish is placed through the pouring nozzle disposed at the bottom of the continuous casting tundish. The molten metal received in is poured into a continuous casting mold. By using a tundish for continuous casting, the molten metal flow from the ladle is stabilized, the molten metal is distributed to each of the multiple strands, and nonmetallic inclusions contained in the molten metal are separated and removed. Also plays an important role in the above.

2ストランドスラブ連続鋳造機においては、横長のタンディッシュの両端底部に浸漬ノズルを設け、この浸漬ノズルを通じて2組の連続鋳造鋳型に溶湯を注入し、2ストランドの連続鋳造を実施する。タンディッシュの長手方向中央、2組の浸漬ノズルの中間位置の受湯部において、取鍋からタンディッシュに溶湯を受ける。取鍋底部に設けた溶湯注入口の下方にロングノズルを配置し、溶湯の酸化を防止しつつ溶湯注入口からの溶湯注入を行う。高品質要求の高まりから、タンディッシュ容量は大型化し、鋼のスラブ連続鋳造機では溶鋼量60〜70トンへ容量が拡大してきた。   In a two-strand slab continuous casting machine, immersion nozzles are provided at the bottoms of both ends of a horizontally long tundish, and the molten metal is injected into two sets of continuous casting molds through the immersion nozzles to carry out continuous casting of two strands. In the center of the tundish in the longitudinal direction, the tundish receives the molten metal from the ladle at the hot water receiving portion at the intermediate position between the two sets of immersion nozzles. A long nozzle is disposed below the molten metal inlet provided at the bottom of the ladle, and molten metal is injected from the molten metal inlet while preventing the molten metal from being oxidized. Due to the increasing demand for high quality, the tundish capacity has been increased, and the capacity has been increased to 60 to 70 tons of molten steel in the steel slab continuous casting machine.

鋳造される鋳片の中心偏析を低減し、良好な品質を保つためには、連続鋳造鋳型に注入される溶湯の温度をできるだけ低い温度とし、凝固温度に近い温度で注入すると好ましい。そのため、タンディッシュ内の溶湯温度を一定レベルに保持することが重要となる。もともと凝固温度に近い温度を目標としているので、溶湯温度が変動して目標温度より低い温度となると、ただちに鋳造上の問題が発生するからである。しかし、鋳造開始初期、末期及び取鍋交換時には、タンディッシュ内の溶湯量が少なくなるので、溶湯温度が低下する問題がある。   In order to reduce the center segregation of the cast slab and maintain good quality, it is preferable that the temperature of the molten metal injected into the continuous casting mold is as low as possible and injected at a temperature close to the solidification temperature. Therefore, it is important to maintain the molten metal temperature in the tundish at a certain level. This is because a temperature close to the solidification temperature is originally targeted, so that when the molten metal temperature fluctuates and becomes lower than the target temperature, a casting problem occurs immediately. However, since the amount of molten metal in the tundish is reduced at the beginning and end of casting and at the time of changing the ladle, there is a problem that the molten metal temperature decreases.

タンディッシュ内の溶湯温度を一定に保つため、タンディッシュ内溶湯加熱技術が開発され、本格的に使用されるようになった。   In order to keep the temperature of the molten metal in the tundish constant, a technique for heating the molten metal in the tundish was developed and used in earnest.

非特許文献1には、タンディッシュ内溶湯のプラズマ加熱方法が記載されている。プラズマ加熱はタンディッシュ内の形状が複雑でなく、3〜5MWの高出力化が可能であるため、大型のタンディッシュに用いられている。   Non-Patent Document 1 describes a plasma heating method for molten metal in a tundish. Plasma heating is used for large tundish because the shape in the tundish is not complicated and it is possible to increase the output of 3 to 5 MW.

プラズマ加熱は、必要な加熱能力は有するものの、タンディッシュ内の湯面から加熱するために、加熱されて比重が小さくなった溶湯が上面に溜まり、低温の溶湯が下をすり抜ける「上熱」現象が発生する。これではタンディッシュ内の溶湯を均一に加熱することができない。この現象を避けるために、タンディッシュ内溶湯をガス攪拌したり、あるいは堰を設けて加熱部を攪拌する必要がある。しかし、湯面を攪拌すると浮上した非金属介在物を再度溶湯中に巻き込むことに繋がり、溶湯清浄化の観点からは非効率的となる。さらにプラズマ加熱は水冷した消耗型電極を使用し、その寿命は数十〜100時間程度であり、コストがかかるという問題がある。   Plasma heating has the necessary heating capacity, but because it is heated from the surface of the hot water in the tundish, the molten metal with a reduced specific gravity accumulates on the upper surface, and the low temperature molten metal passes through the bottom. Will occur. With this, the molten metal in the tundish cannot be heated uniformly. In order to avoid this phenomenon, it is necessary to gas stir the molten metal in the tundish or to provide a weir to stir the heating section. However, stirring the molten metal surface leads to reentry of the non-metallic inclusions that have floated into the molten metal, which is inefficient from the viewpoint of molten metal cleaning. Further, plasma heating uses a water-cooled consumable electrode, and its life is about several tens to 100 hours, and there is a problem that costs are increased.

タンディッシュ内溶湯の誘導加熱方法として、非特許文献2には溝型加熱方法が記載されている。タンディッシュの取鍋からの注入部と鋳型への注入部との間にダムを設け、このダムの溶湯浸漬部に2個の溶湯流路を開口する。次にロの字形の鉄芯の一部をダムに埋め込み、この鉄芯で2個の溶湯流路のうちの1個を取り囲むようにする。鉄芯のうちダムから露出している部分に一次コイルを巻いて一次コイルに交流電流を通電する。2個の溶湯流路とその両側の溶湯プールとが1ターンの二次コイルを形成し、溶湯に誘導電流が流れ、これによって溶湯の加熱を行うことができる。   As an induction heating method for the molten tundish, Non-Patent Document 2 describes a groove heating method. A dam is provided between the injection part from the tundish ladle and the injection part to the mold, and two molten metal flow paths are opened in the molten metal immersion part of the dam. Next, a part of the B-shaped iron core is embedded in the dam, and this iron core surrounds one of the two molten metal flow paths. A primary coil is wound around the portion of the iron core exposed from the dam, and an alternating current is passed through the primary coil. The two molten metal flow paths and the molten metal pools on both sides thereof form a one-turn secondary coil, and an induced current flows through the molten metal, whereby the molten metal can be heated.

溝型誘導加熱方法については、タンディッシュの耐火物構造が複雑になるという問題がある。また、出力が1.5MW程度に制限され、小型タンディッシュに使用することはできるが、高スループットの連続鋳造機においては加熱能力が不足する。さらに、原理上、ダムに開口する溶湯流路として10〜20cm直径のパイプ状の流路を使用する必要があり、加熱時に溶湯に作用するピンチ力の反作用で非金属介在物が流路の壁面に付着するため、流路が付着非金属介在物によって詰まってしまうという問題がある。このため、長時間の連続鋳造を実施する連続鋳造機の加熱方法には不向きである。   The grooved induction heating method has a problem that the tundish refractory structure becomes complicated. Moreover, although the output is limited to about 1.5 MW, it can be used for a small tundish, but a high throughput continuous casting machine has insufficient heating capability. Furthermore, in principle, it is necessary to use a pipe-shaped channel having a diameter of 10 to 20 cm as a molten metal channel opened to the dam, and the non-metallic inclusions are formed on the wall surface of the channel due to the reaction of the pinch force acting on the molten metal during heating. Therefore, there is a problem that the flow path is clogged with the adhering non-metallic inclusions. For this reason, it is unsuitable for the heating method of the continuous casting machine which implements continuous casting for a long time.

特許文献1に記載の連続鋳造用タンディッシュヒーターは、タンディッシュの側面に開口部を設け、この開口部に連通してるつぼ型の発熱室を有する。加熱コイルの内側にこの発熱室が形成されている。タンディッシュに溜められた金属溶湯は、発熱室で加熱コイルにより誘導加熱されて攪拌、対流して溶湯全体が加熱、昇温されるようになっている。しかし、タンディッシュの側方に設けた発熱室内の溶湯を加熱するのみでは、溶湯の流動効率が悪く、タンディッシュ内溶湯の均一加熱が困難であるという課題があった。   The tundish heater for continuous casting described in Patent Document 1 has an opening on the side surface of the tundish and has a crucible-shaped heat generation chamber communicating with the opening. This heat generating chamber is formed inside the heating coil. The molten metal stored in the tundish is induction-heated by a heating coil in a heat generating chamber and stirred and convected to heat and heat the entire molten metal. However, only heating the molten metal in the heat generating chamber provided on the side of the tundish has a problem that the flow efficiency of the molten metal is poor and it is difficult to uniformly heat the molten metal in the tundish.

特許文献2に記載のタンディッシュ誘導加熱装置は、タンディッシュを受湯室ブロックと給湯室ブロックに分離し、両ブロックの間に連通口を有するインダクタブロックを連接し、連通口を巻き回す加熱コイルと鉄芯により構成される。受湯室に注入された溶湯は、すべてインダクタブロック内の連通口を通過する過程において誘導加熱により加熱されて給湯室に至るため、確実な着熱と良好な加熱均熱性が得られるとしている。   The tundish induction heating device described in Patent Document 2 is a heating coil that separates a tundish into a hot water receiving room block and a hot water supply room block, connects an inductor block having a communication port between the blocks, and winds the communication port And iron core. All the molten metal injected into the hot water receiving chamber is heated by induction heating in the process of passing through the communication port in the inductor block and reaches the hot water supply chamber, so that reliable heat deposition and good heating uniformity are obtained.

非特許文献3には誘導加熱型溶解炉が記載されている。るつぼの周囲に誘導コイルを巻き回し、誘導コイルに交流電流を印加すると、るつぼ内の金属を加熱することができることと同時に、るつぼ内の溶融金属を攪拌する様子について記載されている。   Non-Patent Document 3 describes an induction heating melting furnace. It is described that when an induction coil is wound around a crucible and an alternating current is applied to the induction coil, the metal in the crucible can be heated and at the same time the molten metal in the crucible is agitated.

実開平1−139953号公報Japanese Utility Model Laid-Open No. 1-139953 特開平7−236951号公報Japanese Patent Laid-Open No. 7-236951 社団法人日本鉄鋼協会編、第129、130回西山記念技術講座「電磁気力を利用したマテリアルプロセシング」、平成4年4月28日、第247頁Edited by the Japan Iron and Steel Institute, 129, 130th Nishiyama Memorial Technology Course “Material Processing Using Electromagnetic Force”, April 28, 1992, p. 247 日本鉄鋼協会共同研究会、第107回製鋼部会、鋼107−自(1992)Japan Iron and Steel Institute Joint Study Group, 107th Steelmaking Subcommittee, Steel 107-O (1992) 日本鉄鋼協会編「第3版鉄鋼便覧 II 製銑・製鋼」第562頁Japan Iron and Steel Institute, 3rd edition Steel Handbook II Steelmaking and Steelmaking, page 562

特許文献2に記載のタンディッシュ誘導加熱装置については、タンディッシュの受湯室ブロックと給湯室ブロックとをつなぐ連通口を通過する溶湯を誘導加熱するため、非特許文献2に記載の溝型誘導加熱と同様、連通口内を通過する溶湯に働くピンチ力の反作用で非金属介在物が連通口の壁面に付着し、連通口が詰まってしまうという課題がある。また、スラブ連続鋳造装置のタンディッシュのように、複数ストランドへの浸漬ノズルと取鍋からの受湯部とが横一線に配置されたタンディッシュにおいては、特許文献2に記載のように受湯室ブロックと給湯室ブロックとを配置しようとすると、ストランド毎に給湯室ブロックと加熱装置を配置することが必要となり、きわめて大がかりな装置とならざるを得ない。   Regarding the tundish induction heating device described in Patent Document 2, in order to induction-heat the molten metal passing through the communication port connecting the tundish hot water receiving room block and the hot water supply room block, the groove type induction described in Non-Patent Document 2 is used. Similar to heating, there is a problem that the non-metallic inclusions adhere to the wall surface of the communication port due to the reaction of the pinch force acting on the molten metal passing through the communication port, and the communication port is clogged. Moreover, in the tundish in which the immersion nozzles for a plurality of strands and the hot water receiving part from the ladle are arranged in a horizontal line like the tundish of the slab continuous casting apparatus, the hot water receiving as described in Patent Document 2 If it is going to arrange | position a room block and a hot-water supply room block, it will be necessary to arrange | position a hot-water supply room block and a heating apparatus for every strand, and it must be an extremely large apparatus.

本発明は、プラズマ加熱のように上熱現象で溶湯均一加熱が困難であるという課題を解消し、溝型誘導加熱や特許文献2に記載の誘導加熱のように溶湯流路に非金属介在物が付着して流路が詰まるという問題を解消し、加熱した溶湯をタンディッシュ内において十分に均一混合し、介在物分離除去を積極的に行うことができ、大がかりな設備を必要としない溶湯加熱装置を有する連続鋳造用タンディッシュ及びそれを用いた連続鋳造方法を提供することを目的とする。   The present invention eliminates the problem that uniform heating of the molten metal is difficult due to an overheating phenomenon such as plasma heating, and non-metallic inclusions in the molten metal flow path as in groove-type induction heating or induction heating described in Patent Document 2. The problem of clogging due to adhesion is solved, the heated molten metal is sufficiently uniformly mixed in the tundish, and inclusion separation and removal can be actively performed, and the molten metal heating does not require large-scale equipment It aims at providing the tundish for continuous casting which has an apparatus, and the continuous casting method using the same.

即ち、本発明の要旨とするところは以下のとおりである。
(1)取鍋1から注入される溶湯を受け、受けた溶湯を連続鋳造鋳型内に注入する連続鋳造用タンディッシュであって、取鍋1から溶湯が注入される受湯部9には溶湯溜まり部7を有し、溶湯溜まり部7の外周には溶湯溜まり部7を取り囲むように誘導加熱コイル6が配設され、誘導加熱コイル6には交流電流を流すことができ、溶湯溜まり部7の底部11から頂部10までの高さHは、溶湯溜まり部7の円相当直径Dと同等あるいはそれ以上であることを特徴とする連続鋳造用タンディッシュ。
(2)溶湯溜まり部7の頂部10は、溶湯を連続鋳造鋳型に注入する部位におけるタンディッシュ底部12よりも高い位置にあることを特徴とする上記(1)に記載の連続鋳造用タンディッシュ。
(3)上記(1)又は(2)に記載の連続鋳造用タンディッシュを用い、溶湯を連続鋳造することを特徴とする連続鋳造方法。
That is, the gist of the present invention is as follows.
(1) A continuous casting tundish that receives molten metal injected from the ladle 1 and injects the received molten metal into a continuous casting mold. An induction heating coil 6 is provided on the outer periphery of the molten metal reservoir 7 so as to surround the molten metal reservoir 7, and an alternating current can be passed through the induction heating coil 6, so that the molten metal reservoir 7 The continuous casting tundish characterized in that the height H from the bottom 11 to the top 10 is equal to or greater than the equivalent circle diameter D of the molten metal reservoir 7.
(2) The continuous casting tundish according to (1) above, wherein the top portion 10 of the molten metal reservoir portion 7 is located at a position higher than the tundish bottom portion 12 at a portion where the molten metal is poured into the continuous casting mold.
(3) A continuous casting method, wherein the molten metal is continuously cast using the tundish for continuous casting described in (1) or (2) above.

本発明の連続鋳造用タンディッシュ3は、取鍋からの溶湯を受ける受湯部9に、外周を誘導加熱コイル6が取り囲む溶湯溜まり部7を有するので、誘導加熱コイル6に交流電流を流すことにより、溶湯溜まり部7にたまった溶湯を誘導加熱することができる。溶湯を加熱する溶湯溜まり部7を取鍋からの受湯部9に配置したので、複数ストランドを有する連続鋳造用タンディッシュにおいても、ストランド毎に加熱装置を配置する必要がない。取鍋からの溶湯注入流23が溶湯溜まり部7を通過してタンディッシュ内に流れるので、加熱した溶湯がタンディッシュ内で均一に混合される。溶湯溜まり部内において、誘導攪拌に伴う非金属介在物の凝集及び浮上分離効果が促進される。ピンチ力の反作用で非金属介在物を溶湯溜まり部の側壁に積極的に吸着させ、さらなる清浄化作用を得ることができる。溶湯溜まり部の内径を大きくできるので、溝型加熱装置あるいは特許文献2に記載の誘導加熱装置と異なり、加熱部の溶湯流路に介在物が詰まって流路を閉鎖することがない。溶湯溜まり部の底部から頂部までの高さHを溶湯溜まり部の円相当直径Dと同等あるいはそれ以上とすることにより、溶湯溜まり部における攪拌流を溶湯溜まり部内におさめることができ、タンディッシュ湯面攪乱による介在物再巻き込みの発生を防止することができる。   The tundish 3 for continuous casting according to the present invention has a molten metal reservoir portion 7 whose outer periphery is surrounded by the induction heating coil 6 in the hot water receiving portion 9 that receives the molten metal from the ladle, so that an alternating current flows through the induction heating coil 6. Thus, the molten metal accumulated in the molten metal reservoir 7 can be induction-heated. Since the molten metal reservoir portion 7 for heating the molten metal is disposed in the hot water receiving portion 9 from the ladle, it is not necessary to dispose a heating device for each strand even in a continuous casting tundish having a plurality of strands. Since the molten metal injection flow 23 from the ladle passes through the molten metal reservoir 7 and flows into the tundish, the heated molten metal is uniformly mixed in the tundish. In the molten metal pool portion, the aggregation of non-metallic inclusions and the floating separation effect accompanying induction stirring are promoted. By the reaction of the pinch force, non-metallic inclusions can be positively adsorbed on the side wall of the molten metal reservoir, and a further cleaning action can be obtained. Since the inner diameter of the molten metal reservoir can be increased, unlike the groove-type heating device or the induction heating device described in Patent Document 2, inclusions are not clogged with the inclusion in the molten metal flow path of the heating section, and the flow path is not closed. By making the height H from the bottom to the top of the molten metal reservoir equal to or greater than the equivalent circle diameter D of the molten metal reservoir, the stirring flow in the molten metal reservoir can be contained in the molten metal reservoir, and tundish hot water. Occurrence of inclusion re-entrainment due to surface disturbance can be prevented.

図1〜4を用いて本発明を説明する。   The present invention will be described with reference to FIGS.

本発明の連続鋳造用タンディッシュ3は、受湯部9において取鍋1から注入される溶湯を受け、受けた溶湯を連続鋳造鋳型内に注入する。2ストランドのスラブ連続鋳造装置においては、横長のタンディッシュ3の両端底部に浸漬ノズル4を設け、この浸漬ノズル4を通じて2組の連続鋳造鋳型に溶湯を注入し、2ストランドの連続鋳造を実施する。タンディッシュ3の長手方向中央、2組の浸漬ノズルの中間位置の受湯部9において、取鍋1からロングノズル2を経由してタンディッシュに溶湯を受ける。   The continuous casting tundish 3 of the present invention receives the molten metal poured from the ladle 1 in the hot water receiving portion 9 and injects the received molten metal into the continuous casting mold. In the two-strand continuous slab casting apparatus, immersion nozzles 4 are provided at the bottoms of both ends of the horizontally long tundish 3, and molten metal is injected into two sets of continuous casting molds through the immersion nozzle 4 to perform continuous casting of two strands. . In the hot water receiving portion 9 at the center of the tundish 3 in the longitudinal direction and between the two sets of immersion nozzles, the tundish receives the molten metal from the ladle 1 via the long nozzle 2.

本発明の溶湯溜まり部7は、取鍋から溶湯が注入される受湯部9に配置する。溶湯溜まり部7は、タンディッシュ3において下方に向けて配置される。取鍋1からロングノズル2を介して注入された溶湯は、図4に示すように注入流23を形成し、溶湯溜まり部7を経由してタンディッシュ内に供給される。溶湯溜まり部7の側面は側壁13で囲まれ、側壁13の外側には溶湯溜まり部7を取り囲むように誘導加熱コイル6を配設する。溶湯溜まり部7の形状は底部が閉塞された円筒状とすると好ましい。   The molten metal reservoir portion 7 of the present invention is disposed in a hot water receiving portion 9 into which molten metal is poured from a ladle. The molten metal reservoir portion 7 is disposed downward in the tundish 3. The molten metal injected from the ladle 1 through the long nozzle 2 forms an injection flow 23 as shown in FIG. 4 and is supplied into the tundish via the molten metal reservoir 7. The side surface of the molten metal reservoir 7 is surrounded by a side wall 13, and the induction heating coil 6 is disposed outside the side wall 13 so as to surround the molten metal reservoir 7. The shape of the molten metal reservoir 7 is preferably a cylindrical shape with a closed bottom.

図3(c)に示すように、タンディッシュの受湯部9における底部を開口し、その下方に溶湯溜まり部7を形成することとしても良い。円筒形の溶湯溜まり部7の外周に、容易に誘導加熱コイル6を配設することができる。ただし、連続鋳造中において、タンディッシュの下方には連続鋳造鋳型が配置された鋳床が存在する。タンディッシュ下端と連続鋳造鋳型との間のクリアランスは大きくないので、図3(c)に示すようにタンディッシュ3の底部にそのまま溶湯溜まり部7を設けたのでは、タンディッシュ底部と連続鋳造鋳型との間のクリアランスに収まらないことが多い。   As shown in FIG.3 (c), it is good also as opening the bottom part in the hot water receiving part 9 of a tundish, and forming the molten metal pool part 7 in the downward direction. The induction heating coil 6 can be easily disposed on the outer periphery of the cylindrical molten metal reservoir 7. However, during continuous casting, there is a cast floor in which a continuous casting mold is disposed below the tundish. Since the clearance between the lower end of the tundish and the continuous casting mold is not large, as shown in FIG. 3C, if the molten metal reservoir 7 is provided as it is at the bottom of the tundish 3, the bottom of the tundish and the continuous casting mold are provided. Often does not fit in the clearance.

本発明においては、図2に示すように、溶湯溜まり部7の頂部10が、溶湯を連続鋳造鋳型に注入する部位におけるタンディッシュ底部12よりも高い位置にあることとすると好ましい。これにより、タンディッシュ底部12から下方に向けた溶湯溜まり部7の突出量を少なくすることができる。この場合、溶湯溜まり部7の外周には溶湯溜まり部7を取り囲むように誘導加熱コイル6を配設する必要があるので、タンディッシュ底部には溶湯溜まり部7の外周に沿って切り込み部8を設け、この切り込み部8を含めて誘導加熱コイル6を配設することとすると良い。   In the present invention, as shown in FIG. 2, it is preferable that the top portion 10 of the molten metal reservoir portion 7 is located at a position higher than the tundish bottom portion 12 in the portion where the molten metal is poured into the continuous casting mold. Thereby, the protrusion amount of the molten metal reservoir 7 directed downward from the tundish bottom 12 can be reduced. In this case, since it is necessary to arrange the induction heating coil 6 on the outer periphery of the molten metal reservoir 7 so as to surround the molten metal reservoir 7, a notch 8 is provided along the outer periphery of the molten metal reservoir 7 at the bottom of the tundish. It is preferable to provide the induction heating coil 6 including the cut portion 8.

誘導加熱コイル6に交流電流を付加すると、溶湯溜まり部内の溶湯に誘導電流が流れ、溶湯溜まり部内の溶湯を加熱することができる。併せて、交流電流として低周波を用いると、溶湯溜まり部内の溶湯に対して溶湯溜まり部周囲から中心に向けたピンチ力が働き、溶湯に攪拌運動を起こさせることができる。溶湯溜まり部7内に発生する攪拌流22は、図4に示すように、誘導加熱コイル6の軸方向中央付近においては溶湯溜まり部の側壁13から中心に向けた流れが発生し、その流れが溶湯溜まり部中心付近で上方流れと下方流れに分流し、上方流れ、下方流れいずれも、閉じた流路を形成する。このような溶湯流れの発生により、溶湯溜まり部内で加熱された溶湯の均一混合が促進される。   When an alternating current is applied to the induction heating coil 6, an induction current flows through the molten metal in the molten metal reservoir, and the molten metal in the molten metal reservoir can be heated. In addition, when a low frequency is used as an alternating current, a pinch force from the periphery of the molten metal pool portion toward the center acts on the molten metal in the molten metal pool portion, and the molten metal can be agitated. As shown in FIG. 4, the stirring flow 22 generated in the molten metal reservoir 7 generates a flow from the side wall 13 of the molten metal reservoir toward the center in the vicinity of the axial center of the induction heating coil 6. Near the center of the molten metal reservoir, the flow is divided into an upward flow and a downward flow, and both the upward flow and the downward flow form a closed flow path. Generation of such a molten metal flow promotes uniform mixing of the molten metal heated in the molten metal reservoir.

誘導加熱コイル6に付加する交流電流は、周波数を30〜1000Hzとすると良い。周波数が低すぎると攪拌は強くなるが、加熱効率が低下する。また周波数が高すぎると攪拌も加熱も効率が低下する。30〜1000Hzの範囲であれば、攪拌と加熱の両方を満足することが可能である。300Hz程度が好ましい。   The alternating current applied to the induction heating coil 6 may have a frequency of 30 to 1000 Hz. When the frequency is too low, the stirring becomes strong, but the heating efficiency is lowered. If the frequency is too high, the efficiency of both stirring and heating decreases. If it is the range of 30-1000 Hz, it is possible to satisfy both stirring and a heating. About 300 Hz is preferable.

溶湯溜まり部側壁13付近で溶湯に働くピンチ力は、その反作用として、溶湯内の非金属介在物を溶湯溜まり部の側壁13に向けて動かす力を発揮する。その結果、溶湯溜まり部内溶湯中の非金属介在物が溶湯溜まり部7の側壁部に集積し、付着堆積する現象が起こる。この現象により、溶湯溜まり部内において溶湯中の非金属介在物が分離除去され、清浄化するという大きな効果を発揮する。   As a reaction, the pinch force acting on the molten metal near the molten metal reservoir side wall 13 exerts a force that moves the nonmetallic inclusions in the molten metal toward the molten metal reservoir side wall 13. As a result, a phenomenon occurs in which nonmetallic inclusions in the molten metal in the molten metal pool accumulate and adhere to the side wall of the molten metal pool 7. Due to this phenomenon, the non-metallic inclusions in the molten metal are separated and removed in the molten metal reservoir, and a great effect of cleaning is exhibited.

溶湯溜まり部7は十分に大きな直径Dを持たせることができるので、溶湯溜まり部の側壁13に非金属介在物が堆積しても、必要な時間だけ連続鋳造を続けることができる。   Since the molten metal reservoir 7 can have a sufficiently large diameter D, continuous casting can be continued for a necessary time even if non-metallic inclusions accumulate on the side wall 13 of the molten metal reservoir.

溶湯溜まり部7を取鍋から溶湯が注入される受湯部9に配置しているので、取鍋から注入流23として注入される溶湯は下方に向けた慣性力により、まず溶湯溜まり部内に運ばれる。即ち、タンディッシュ内に供給された溶湯が最初に溶湯溜まり部内に運ばれる。溶湯溜まり部7を通過せずに連続鋳造鋳型に注入される溶湯の比率が少ない。そして溶湯溜まり部7において溶湯が加熱されると同時に非金属介在物が分離除去され、順次溶湯溜まり部から排出されてタンディッシュ内を移動し、最終的に浸漬ノズル4を経て連続鋳造鋳型に注入される。   Since the molten metal reservoir portion 7 is disposed in the hot water receiving portion 9 into which molten metal is injected from the ladle, the molten metal injected as the injection flow 23 from the ladle is first conveyed into the molten metal reservoir portion by the downward inertial force. It is. That is, the molten metal supplied into the tundish is first conveyed into the molten metal reservoir. The ratio of the molten metal injected into the continuous casting mold without passing through the molten metal reservoir 7 is small. Then, the molten metal is heated in the molten metal reservoir 7 and at the same time the nonmetallic inclusions are separated and removed, sequentially discharged from the molten metal reservoir, moved through the tundish, and finally injected into the continuous casting mold through the immersion nozzle 4. Is done.

これに対し、特許文献1に記載の連続鋳造用タンディッシュヒーターは、タンディッシュの側面に開口部を設け、この開口部に連通してるつぼ型の発熱室を有する。加熱コイルの内側にこの発熱室が形成されている。本願発明と異なり、タンディッシュに注入された溶湯が必ず発熱室に導入される作用が働かないので、発熱室を経由せずに鋳型に注入される溶湯の比率が高いものと推定される。発熱室を経由せずに鋳型に注入された溶湯は、発熱室内で非金属介在物が分離除去される機会がないため、本願発明のように介在物を十分に除去することができない。また、特許文献1に記載のものは、タンディッシュ内と発熱室内の溶湯の対流は熱対流のみを駆動力とするので、発熱室内で昇温した溶湯はタンディッシュ内溶湯の上部に溜まり、底部を加熱されていない溶湯が流れることから、実質的な熱効率が本発明に比較して低下する。発熱室内の誘導攪拌力によってタンディッシュ内と発熱室内の溶湯の入れ替えを起こそうとすると、攪拌力によってタンディッシュ湯面の攪乱が発生し、かえってタンディッシュ内溶湯の汚染を増大させるという問題が起きることとなる。   On the other hand, the tundish heater for continuous casting described in Patent Document 1 has an opening on the side surface of the tundish and has a crucible-type heat generating chamber communicating with the opening. This heat generating chamber is formed inside the heating coil. Unlike the present invention, since the molten metal injected into the tundish is not necessarily introduced into the heat generating chamber, the ratio of the molten metal injected into the mold without passing through the heat generating chamber is estimated to be high. Since the molten metal injected into the mold without passing through the heat generating chamber has no opportunity to separate and remove non-metallic inclusions in the heat generating chamber, the inclusions cannot be sufficiently removed as in the present invention. Moreover, since the convection of the molten metal in the tundish and the heat generating chamber uses only the thermal convection as the driving force, the molten metal heated in the heat generating chamber accumulates in the upper part of the molten metal in the tundish, Since the unheated molten metal flows, the substantial thermal efficiency is reduced as compared with the present invention. If an attempt is made to replace the melt in the tundish with the heat generated in the heat generating chamber by the induced stirring force in the heat generating chamber, the tundish water surface will be disturbed by the stirring force, which in turn increases the contamination of the melt in the tundish. It will be.

溶湯溜まり部内の溶湯は、上述のとおり誘導電流によって攪拌運動を行っている。この攪拌運動が溶湯溜まり部7の頂部10より上側の溶湯にまで達すると、タンディッシュ内の溶湯湯面21に攪乱を及ぼすこととなる。溶湯湯面21は浮上分離した非金属介在物、湯面保護のためのフラックスによって覆われているので、溶湯湯面を攪乱してこれら湯面21の非金属介在物やフラックスが溶湯中に混入すると、溶湯の清浄性を損なうこととなる。溶湯溜まり部7の底部11から頂部10までの高さHが、溶湯溜まり部の内部断面積に対比して低すぎると、溶湯溜まり部内の溶湯攪拌流22が溶湯溜まり部の頂部10を超えてタンディッシュ湯面に攪乱を及ぼす可能性が出てくる。   As described above, the molten metal in the molten metal reservoir is agitated by the induced current. When this stirring motion reaches the molten metal above the top 10 of the molten metal reservoir 7, the molten metal surface 21 in the tundish is disturbed. The molten metal surface 21 is covered with non-metallic inclusions floating and separated, and a flux for protecting the molten metal surface. Therefore, the molten metal surface is disturbed, and the non-metallic inclusions and flux on the molten metal surface 21 are mixed into the molten metal. Then, the cleanliness of the molten metal is impaired. If the height H from the bottom 11 to the top 10 of the molten metal reservoir 7 is too low compared to the internal cross-sectional area of the molten metal reservoir 7, the molten metal stirring flow 22 in the molten metal reservoir will exceed the top 10 of the molten metal reservoir. There is a possibility of disturbing the tundish water surface.

本発明においては、溶湯溜まり部7の底部11から頂部10までの高さHを、溶湯溜まり部の円相当直径Dと同等あるいはそれ以上とすることにより、溶湯溜まり部内の溶湯攪拌を溶湯溜まり部内にのみ閉じこめることができる。円相当直径とは、湯溜り部の水平断面の断面積と同じ面積を有する円の直径を意味する。その結果、溶湯溜まり部内においては溶湯を十分に攪拌して加熱溶湯を均一混合し、併せて非金属介在物を溶湯溜まり部側壁13に付着分離させることができるとともに、タンディッシュ内の湯面21には攪乱を及ぼすことがなく、溶湯の清浄性を高く保持することが可能となる。本発明では、溶湯溜まり部7の頂部10をタンディッシュ内湯面からある程度の深さの位置に配置することができるので、溶湯溜まり部内の攪拌が湯面に及ぼす影響をより一層少なくすることができる。   In the present invention, the height H from the bottom portion 11 to the top portion 10 of the molten metal reservoir portion 7 is equal to or greater than the equivalent circle diameter D of the molten metal reservoir portion, so that the molten metal stirring in the molten metal reservoir portion is performed in the molten metal reservoir portion. It can be confined only to. The equivalent circle diameter means the diameter of a circle having the same area as the cross-sectional area of the horizontal section of the hot water pool. As a result, in the molten metal reservoir, the molten metal is sufficiently agitated to uniformly mix the heated molten metal, and non-metallic inclusions can be adhered to and separated from the molten metal reservoir side wall 13 and the molten metal surface 21 in the tundish. Therefore, it is possible to maintain high cleanliness of the molten metal without causing disturbance. In the present invention, since the top portion 10 of the molten metal reservoir 7 can be disposed at a certain depth from the tundish molten metal surface, the influence of stirring in the molten metal reservoir on the molten metal surface can be further reduced. .

溶湯溜まり部7の好適な大きさは、60トン規模の通常のタンディッシュにおいては、溶湯溜まり部7の容量をタンディッシュ容量の10%から15%程度とする。溶湯溜まり部の内径は1〜1.2m、高さHは1〜1.2m程度が好ましい。   The preferred size of the molten metal reservoir 7 is such that the capacity of the molten metal reservoir 7 is about 10% to 15% of the tundish capacity in a normal tundish of 60 tons. The inner diameter of the molten metal reservoir is preferably about 1 to 1.2 m and the height H is preferably about 1 to 1.2 m.

本発明においては、溶湯溜まり部7の高さHを確保するために、図3(a)に示すように、溶湯溜まり部7の頂部10に突き出し部15を設けても良い。   In the present invention, in order to ensure the height H of the molten metal reservoir portion 7, a protruding portion 15 may be provided at the top portion 10 of the molten metal reservoir portion 7 as shown in FIG.

本発明はさらに、タンディッシュ内に各種の堰を設けることができる。図3(b)に示す例では、スリット堰16、外堰17を設けている。   The present invention can further provide various types of weirs in the tundish. In the example shown in FIG. 3B, a slit weir 16 and an outer weir 17 are provided.

連続鋳造でひとつのタンディッシュの使用が終了し、別のタンディッシュに交換するに際しては、タンディッシュ内の溶湯残留量をできるかぎり少なくしてタンディッシュを交換する。タンディッシュ内に残留した溶湯は歩留ロスの原因となるからである。本発明のようにタンディッシュ底部に溶湯溜まり部を有する場合、溶湯溜まり部内の溶湯を鋳型に注入することはできず、この溶湯はタンディッシュ内に残留してしまい、歩留ロスの原因となる。従来、タンディッシュ底部に誘導加熱用の溶湯溜まり部を設ける発想が生まれなかったのは、このような溶湯残留ロスを懸念するためであったと考えられる。ところが、本発明のように取鍋からの受湯部のタンディッシュ底部に溶湯溜まり部を設けて誘導加熱を行うことにより、大型連続鋳造機でも十分な大容量の加熱を均一に行うことができ、非金属介在物の分離除去という大きな効果を発揮でき、従来の連続鋳造機を大幅改造することなく設置することが可能となるという大きな効果を発揮することが明らかになった。   When the use of one tundish is completed in continuous casting and the tundish is replaced with another tundish, the remaining amount of molten metal in the tundish is reduced as much as possible to replace the tundish. This is because the molten metal remaining in the tundish causes a yield loss. When the tundish bottom portion has a molten metal reservoir as in the present invention, the molten metal in the molten metal reservoir cannot be poured into the mold, and this molten metal remains in the tundish, causing yield loss. . Conventionally, the idea of providing a molten metal reservoir for induction heating at the bottom of the tundish has not been born. However, as in the present invention, by providing the molten metal pool portion at the bottom of the tundish of the hot water receiving portion from the ladle and performing induction heating, sufficient large capacity heating can be uniformly performed even in a large continuous casting machine. It has been clarified that a great effect of separating and removing non-metallic inclusions can be exhibited, and that a conventional continuous casting machine can be installed without significant modification.

本発明の連続鋳造方法は、上記本発明の連続鋳造用タンディッシュを用い、溶湯を連続鋳造することを特徴とする。本発明はこれにより、大容量の高速連続鋳造であっても十分な加熱容量を確保し、均一加熱を行うことができる。このため、連続鋳造用鋳型に注入する溶湯の温度を一定に保持することができるので、溶湯過熱度の低い低温鋳造であっても、何ら鋳造トラブルを発生させることなく鋳造を完了することができ、中心偏析の少ない良好な品質の鋳片を製造することができる。また、溶湯溜まり部において介在物を分離除去できるので、介在物の少ない良好な品質の鋳片を製造することができる。   The continuous casting method of the present invention is characterized in that the molten metal is continuously cast using the above-described continuous casting tundish of the present invention. Accordingly, the present invention can ensure a sufficient heating capacity and perform uniform heating even in high-capacity high-speed continuous casting. For this reason, the temperature of the molten metal poured into the casting mold for continuous casting can be kept constant, so that casting can be completed without causing any casting trouble even in low temperature casting with a low molten metal superheat. It is possible to produce a slab of good quality with little center segregation. Moreover, since inclusions can be separated and removed in the molten metal reservoir, a slab of good quality with few inclusions can be manufactured.

鋼を鋳造する2ストランドのスラブ連続鋳造機において本発明を適用した。取鍋の溶鋼量は300トン、鋳造速度は両ストランド合計で10トン/分である。図1、2に示すタンディッシュ3を用いた。タンディッシュ3の容量は60トン程度で、タンディッシュ形状は長さ7m、上端幅1.3m、下端幅0.7m、湯面21からタンディッシュ底部12までの深さ1.3mである。タンディッシュ3の両端底部に浸漬ノズル4が配設されている。   The present invention was applied in a two-strand continuous slab caster for casting steel. The amount of molten steel in the ladle is 300 tons, and the casting speed is 10 tons / min in total for both strands. The tundish 3 shown in FIGS. The tundish 3 has a capacity of about 60 tons, a tundish shape having a length of 7 m, an upper end width of 1.3 m, a lower end width of 0.7 m, and a depth of 1.3 m from the molten metal surface 21 to the tundish bottom 12. An immersion nozzle 4 is disposed at the bottom of both ends of the tundish 3.

取鍋からロングノズル2を経由して溶鋼が注入される受湯部9に、内径1mの円筒状の溶湯溜まり部7を設けた。湯面から溶湯溜まり部底部11までの距離を1.5mとし、溶湯溜まり部7の底部11から頂部10までの高さHを0.9〜1.2mの範囲で変更して4種類のタンディッシュを築造した。タンディッシュ底部には溶湯溜まり部7の外周に沿って切り込み部8を設け、この切り込み部8を含む溶湯溜まり部7の外周に誘導加熱コイル6を巻き回して配設した。誘導加熱入力は3MW(1.5MW/ストランド)とした。比較例として、溶湯溜まり部を有しないタンディッシュも用いた。   A cylindrical molten metal reservoir portion 7 having an inner diameter of 1 m was provided in a hot water receiving portion 9 into which molten steel was poured from the ladle via the long nozzle 2. The distance from the molten metal surface to the bottom 11 of the molten metal reservoir is set to 1.5 m, and the height H from the bottom 11 to the top 10 of the molten metal reservoir 7 is changed in the range of 0.9 to 1.2 m, and four types of tongues are changed. Dish was built. A cut portion 8 was provided along the outer periphery of the molten metal reservoir 7 at the bottom of the tundish, and the induction heating coil 6 was wound around the outer periphery of the molten metal reservoir 7 including the cut portion 8. The induction heating input was 3 MW (1.5 MW / strand). As a comparative example, a tundish having no molten metal reservoir was also used.

溶鋼中に含まれる非金属介在物を、アルミナ系とスラグ系とに分類する。アルミナ系とは、脱酸により発生するアルミナ介在物である。スラグ系とは、製錬工程で発生し、比重が3程度で溶鋼に対して軽いために取鍋あるいはタンディッシュ上部に浮遊しているスラグが巻き込まれて発生する介在物であり、石灰・石英・アルミナ等の複合酸化物である。   Nonmetallic inclusions contained in molten steel are classified into alumina and slag. An alumina system is an alumina inclusion generated by deoxidation. The slag system is an inclusion that is generated by the smelting process and is generated by the slag floating in the ladle or the upper part of the tundish because the specific gravity is about 3 and light against molten steel. -A composite oxide such as alumina.

タンディッシュ内の受湯部9と浸漬ノズル4設置部の2箇所において溶鋼温度を測定し、両者の温度差を溶鋼温度差とした。また、タンディッシュ内の受湯部9と浸漬ノズル4設置部の2箇所においてタンディッシュ内から溶鋼サンプル500gを採取し、電解抽出法(電解液中で鋼サンプルを電気分解し、非金属介在物のみを抽出し、フィルタリング後に分級する介在物評価方法)により介在物分析を行った。サンプル内で観察される非金属介在物から、直径50μm以上の不定形のアルミナ系介在物と、カルシア・アルミナを主体とし溶鋼中では液体であるため球状になっており識別しやすいスラグ系介在物とを抽出し、それぞれの存在量を定量化した。受湯部で採取したサンプルの介在物量と、浸漬ノズル設置部で採取したサンプルの介在物量との比をとり、介在物減少率とした。なお、直径50μm以上の介在物を対象としたのは、このサイズの介在物が鋼材の内部欠陥の原因となるためである。   The molten steel temperature was measured at two locations of the hot water receiving portion 9 and the immersion nozzle 4 installation portion in the tundish, and the temperature difference between them was taken as the molten steel temperature difference. In addition, 500 g of molten steel sample is collected from the tundish at two locations, the hot water receiving part 9 and the submerged nozzle 4 installation part in the tundish, and the electrolytic extraction method (the steel sample is electrolyzed in the electrolytic solution to obtain non-metallic inclusions The inclusions were analyzed by an inclusion evaluation method in which only the sample was extracted and classified after filtering. From non-metallic inclusions observed in the sample, amorphous alumina inclusions with a diameter of 50 μm or more, and slag inclusions that are spherical and easy to distinguish because they are liquid in molten steel, mainly calcia alumina. And the abundance of each was quantified. The ratio of the amount of inclusions in the sample collected at the hot water receiving part to the amount of inclusions in the sample collected at the immersion nozzle installation part was taken as the inclusion reduction rate. The reason why inclusions with a diameter of 50 μm or more were used is because inclusions of this size cause internal defects in the steel material.

Figure 2008100248
Figure 2008100248

結果を表1に示す。   The results are shown in Table 1.

溶湯溜まり部を持たず、誘導加熱を行っていない比較例1に対し、溶湯溜まり部で誘導加熱を行った水準は、いずれも溶鋼温度差が少なく、加熱効果が得られていると同時に、アルミナ系介在物減少率が良好であり、介在物除去効果が明らかである。スラグ系介在物減少率に着目すると、溶湯溜まり部の高さHが直径D未満である比較例2は、タンディッシュ湯面に浮いているスラグを捲き込み、スラグ系介在物の減少率が比較例1よりも悪い結果となっているが、溶鋼溜まり部の高さHが直径Dと同等あるいはそれ以上である本発明例は、いずれもスラグ系介在物減少率が比較例1と対比して改善していることが明らかである。   Compared to Comparative Example 1 which does not have a molten metal reservoir and does not perform induction heating, the levels of induction heating in the molten metal reservoir are all small in the molten steel temperature difference, and at the same time, the heating effect is obtained. The system inclusion reduction rate is good, and the inclusion removal effect is clear. Focusing on the slag inclusion reduction rate, Comparative Example 2 in which the height H of the molten metal reservoir is less than the diameter D swallows the slag floating on the tundish hot water surface, and the reduction rate of the slag inclusions is compared. Although the results are worse than Example 1, the examples of the present invention in which the height H of the molten steel pool portion is equal to or greater than the diameter D are all in contrast to Comparative Example 1 in the slag inclusion reduction rate. It is clear that there is an improvement.

本発明の連続鋳造用タンディッシュを示す斜視部分断面図である。It is a perspective fragmentary sectional view which shows the tundish for continuous casting of this invention. 本発明の連続鋳造用タンディッシュを示す図であり、(a)は平面図、(b)はB−B矢視断面図、(c)はC−C矢視断面図、(d)はD−D矢視断面図である。It is a figure which shows the tundish for continuous casting of this invention, (a) is a top view, (b) is BB arrow sectional drawing, (c) is CC arrow sectional drawing, (d) is D It is -D arrow sectional drawing. 本発明の連続鋳造用タンディッシュを示す断面図である。It is sectional drawing which shows the tundish for continuous casting of this invention. 本発明の溶湯溜まり部内で発生する攪拌流の状況を示す部分断面図である。It is a fragmentary sectional view which shows the condition of the stirring flow generated in the molten metal pool part of this invention.

符号の説明Explanation of symbols

1 取鍋
2 ロングノズル
3 タンディッシュ
4 浸漬ノズル
6 加熱コイル
7 溶湯溜まり部
8 切り欠き部
9 受湯部
10 頂部
11 底部
12 タンディッシュ底部
13 側壁
15 突き出し部
16 スリット堰
17 外堰
21 湯面
22 攪拌流
23 注入流
DESCRIPTION OF SYMBOLS 1 Ladle 2 Long nozzle 3 Tundish 4 Immersion nozzle 6 Heating coil 7 Molten pool part 8 Notch part 9 Hot water receiving part 10 Top part 11 Bottom part 12 Tundish bottom part 13 Side wall 15 Protrusion part 16 Slit weir 17 Outer weir 21 Hot water surface 22 Stir flow 23 Injection flow

Claims (3)

取鍋から注入される溶湯を受け、受けた溶湯を連続鋳造鋳型内に注入する連続鋳造用タンディッシュであって、
取鍋から溶湯が注入される受湯部には溶湯溜まり部を有し、該溶湯溜まり部の外周には溶湯溜まり部を取り囲むように誘導加熱コイルが配設され、該誘導加熱コイルには交流電流を流すことができ、前記溶湯溜まり部の底部から頂部までの高さは、溶湯溜まり部の円相当直径と同等あるいはそれ以上であることを特徴とする連続鋳造用タンディッシュ。
A continuous casting tundish that receives molten metal injected from a ladle and injects the received molten metal into a continuous casting mold,
The hot water receiving portion into which the molten metal is poured from the ladle has a molten metal reservoir portion, and an induction heating coil is disposed around the molten metal reservoir portion so as to surround the molten metal reservoir portion. A continuous casting tundish characterized in that an electric current can flow and the height from the bottom to the top of the molten metal reservoir is equal to or greater than the equivalent circle diameter of the molten metal reservoir.
前記溶湯溜まり部の頂部は、溶湯を連続鋳造鋳型に注入する部位におけるタンディッシュ底部よりも高い位置にあることを特徴とする請求項1に記載の連続鋳造用タンディッシュ。   2. The tundish for continuous casting according to claim 1, wherein a top portion of the molten metal reservoir portion is located at a position higher than a tundish bottom portion at a portion where the molten metal is poured into a continuous casting mold. 請求項1又は2に記載の連続鋳造用タンディッシュを用い、溶湯を連続鋳造することを特徴とする連続鋳造方法。   A continuous casting method, wherein the molten metal is continuously cast using the tundish for continuous casting according to claim 1.
JP2006283726A 2006-10-18 2006-10-18 Continuously casting tundish, and method of continuous casting Pending JP2008100248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283726A JP2008100248A (en) 2006-10-18 2006-10-18 Continuously casting tundish, and method of continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283726A JP2008100248A (en) 2006-10-18 2006-10-18 Continuously casting tundish, and method of continuous casting

Publications (1)

Publication Number Publication Date
JP2008100248A true JP2008100248A (en) 2008-05-01

Family

ID=39434964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283726A Pending JP2008100248A (en) 2006-10-18 2006-10-18 Continuously casting tundish, and method of continuous casting

Country Status (1)

Country Link
JP (1) JP2008100248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480832A (en) * 2013-10-14 2014-01-01 刘凌峰 Tundish induction heating device
CN104525928A (en) * 2015-01-22 2015-04-22 无锡巨力重工股份有限公司 Double-nozzle external heating type intermediate tank
KR20190036886A (en) * 2017-09-28 2019-04-05 주식회사 포스코 Apparatus for treating molten metal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954145U (en) * 1982-09-30 1984-04-09 新日本製鐵株式会社 Constant temperature casting tandate
JPS6112557U (en) * 1984-06-26 1986-01-24 川崎製鉄株式会社 Attachment/detachment device for tundish molten steel heating device
JPS6440155A (en) * 1987-08-04 1989-02-10 Kawasaki Steel Co Metallurgical treating apparatus in tundish for continuous casting
JPS6453743A (en) * 1987-08-20 1989-03-01 Kawasaki Steel Co Metallurgical treatment device for tundish for continuous casting
JPH0459156A (en) * 1990-06-27 1992-02-26 Kawasaki Steel Corp Channel type induction heating apparatus and method for operating this
JPH0852546A (en) * 1994-08-15 1996-02-27 Asaba:Kk High frequency heating coil for horizontal type continuous casting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5954145U (en) * 1982-09-30 1984-04-09 新日本製鐵株式会社 Constant temperature casting tandate
JPS6112557U (en) * 1984-06-26 1986-01-24 川崎製鉄株式会社 Attachment/detachment device for tundish molten steel heating device
JPS6440155A (en) * 1987-08-04 1989-02-10 Kawasaki Steel Co Metallurgical treating apparatus in tundish for continuous casting
JPS6453743A (en) * 1987-08-20 1989-03-01 Kawasaki Steel Co Metallurgical treatment device for tundish for continuous casting
JPH0459156A (en) * 1990-06-27 1992-02-26 Kawasaki Steel Corp Channel type induction heating apparatus and method for operating this
JPH0852546A (en) * 1994-08-15 1996-02-27 Asaba:Kk High frequency heating coil for horizontal type continuous casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480832A (en) * 2013-10-14 2014-01-01 刘凌峰 Tundish induction heating device
CN104525928A (en) * 2015-01-22 2015-04-22 无锡巨力重工股份有限公司 Double-nozzle external heating type intermediate tank
KR20190036886A (en) * 2017-09-28 2019-04-05 주식회사 포스코 Apparatus for treating molten metal
KR101969113B1 (en) * 2017-09-28 2019-04-15 주식회사 포스코 Apparatus for treating molten metal

Similar Documents

Publication Publication Date Title
CN106029254A (en) Method and plant for the production of long ingots having a large cross-section
KR100654738B1 (en) Method for producing ultra low carbon steel slab
WO2013133318A1 (en) Titanium melting device
US4372542A (en) Copper slag trap
CN101259523B (en) Electro-magnetic braking device for controlling molten metal flow in continuous cast crystallizer
JP2008100248A (en) Continuously casting tundish, and method of continuous casting
JP4411945B2 (en) Slab continuous casting method for ultra-low carbon steel
JP5712574B2 (en) Continuous casting method of high cleanliness steel
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP5267315B2 (en) Tundish for continuous casting and continuous casting method
JP6135462B2 (en) Method for preventing outflow of non-metallic inclusions in molten metal
JP6451466B2 (en) Capturing device and removal method for non-metallic inclusions in molten metal
JP4998705B2 (en) Steel continuous casting method
JP2004276039A (en) Electron beam melting method for high melting point metal
US10852064B2 (en) Channel type induction furnace
JP2011194420A (en) Method of producing high cleanliness steel
JP5621839B2 (en) Electromagnetic nozzle device for hot water of cold crucible melting furnace
JP2004009064A (en) Method for producing continuously cast slab
KR101356909B1 (en) Refining device of high purity molten steel and method thereof
JP2010089153A (en) Tundish for continuous casting and method for continuous casting
JP2005055017A (en) Molten metal tapping device
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JPH10249498A (en) Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part
JP2007326118A (en) Continuous casting method for high cleanliness steel
JP5092339B2 (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327