JPH10249498A - Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part - Google Patents

Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part

Info

Publication number
JPH10249498A
JPH10249498A JP5137597A JP5137597A JPH10249498A JP H10249498 A JPH10249498 A JP H10249498A JP 5137597 A JP5137597 A JP 5137597A JP 5137597 A JP5137597 A JP 5137597A JP H10249498 A JPH10249498 A JP H10249498A
Authority
JP
Japan
Prior art keywords
tundish
weir
molten steel
immersion
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5137597A
Other languages
Japanese (ja)
Inventor
Toshiaki Okimura
利昭 沖村
Tadahiro Ushiro
忠博 後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP5137597A priority Critical patent/JPH10249498A/en
Publication of JPH10249498A publication Critical patent/JPH10249498A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently float up and separate inclusion by using a tundish excellent in workability to refractory. SOLUTION: This casting method uses the tundish 10 having the fixed weirs 20 closing the bottom parts and dips and immersion tube 30 surrounding a long nozzle 1 on the molten steel surface at the upper part of the center between the fixed weirs. At this time, the inner diameter D and the dipping depth (h) of the immersion tube are regulated to the condition satisfying the inequalities. 0.70×L<=D<=1.30×L, 0.10×H<=h<=0.30×H. In the inequalities, D is the inner diameter of the immersion tube (mm), (h) is the dipping depth of the immersion tube (mm), L is the horizontal distance between the fixed weirs (mm) and H is the height from the bottom wall of the tundish to the top surface of the fixed weir (mm).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐火物施工性に優れた
タンディッシュを用いて、介在物を効率良く浮上分離す
ることができる、高清浄度鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting high cleanliness steel, which can efficiently float and separate inclusions using a tundish excellent in refractory workability.

【0002】[0002]

【従来の技術】転炉、電気炉等の精錬炉で溶製された溶
鋼は、取鍋に受けられ、RH真空脱ガス等の二次精錬工
程を経由した後、タンディッシュを経て連続鋳造用鋳型
に送り込まれ、連鋳スラブに製造される。スラブの清浄
度を高めるため、精錬炉における操業条件や取鍋内での
精錬条件等に関し種々改良されてきている。清浄度が高
められた溶鋼は、タンディッシュを介して連続鋳造用鋳
型に注湯される。しかし、溶鋼は、タンディッシュを通
過する間に雰囲気ガスや耐火物ライニングと接触し、ガ
ス吸収やライニング材の溶出等によって汚染され易い。
また、取鍋からタンディッシュに供給された溶鋼には、
精錬反応によって生成したAl23 等の介在物が溶鋼
から除去されずに残留している。
2. Description of the Related Art Molten steel produced in a refining furnace such as a converter or an electric furnace is received in a ladle, passes through a secondary refining process such as RH vacuum degassing, etc., and then is passed through a tundish for continuous casting. It is fed into a mold and manufactured into a continuous cast slab. In order to increase the cleanliness of the slab, various improvements have been made regarding the operating conditions in the refining furnace, the refining conditions in the ladle, and the like. The molten steel whose purity is improved is poured into a continuous casting mold via a tundish. However, the molten steel comes into contact with the atmosphere gas and the refractory lining while passing through the tundish, and is easily contaminated by gas absorption, elution of the lining material, and the like.
In addition, to molten steel supplied to the tundish from the ladle,
Inclusions such as Al 2 O 3 generated by the refining reaction remain without being removed from the molten steel.

【0003】溶鋼に含まれている介在物は、連鋳時には
浸漬ノズル等を閉塞させる原因となり、鋳造条件を不安
定にする。介在物が連鋳スラブに持ち込まれると、後続
する圧延段階で疵発生原因となり、歩留まりを低下させ
る。タンディッシュ内の溶鋼に含まれている介在物を除
去するため、種々の提案がなされている。例えば、特開
昭63−72452号公報では、溶湯流通方向に関し上
向きに傾斜した孔を設けた固定堰が紹介されている。そ
の他にタンディッシュ本体と取鍋からの溶鋼注入部との
間にも固定堰が設置されている。また、特開平1−22
4152号公報では、下堰と上堰とで三重堰とし、さら
に、下堰下方に設けた通過孔からの溶鋼の流動方向を強
制的に変更させて上昇流を作り、溶鋼に含まれている介
在物の浮上分離を促進させるようにしたタンディッシュ
が紹介されている。
[0003] Inclusions contained in the molten steel cause blocking of an immersion nozzle and the like during continuous casting, and make casting conditions unstable. When the inclusions are brought into the continuous casting slab, they cause flaws in the subsequent rolling stage, and lower the yield. Various proposals have been made to remove inclusions contained in molten steel in a tundish. For example, Japanese Patent Application Laid-Open No. 63-72452 discloses a fixed weir provided with a hole that is inclined upward with respect to the flow direction of the molten metal. In addition, a fixed weir is installed between the tundish body and the molten steel injection part from the ladle. Also, Japanese Patent Application Laid-Open No. 1-22
In Japanese Patent No. 4152, a lower weir and an upper weir form a triple weir, and the flow direction of molten steel from a passage hole provided below the lower weir is forcibly changed to generate an upward flow, which is included in the molten steel. A tundish that promotes flotation of inclusions is introduced.

【0004】[0004]

【発明が解決しようとする問題点】タンディッシュ内部
に堰を設けると、浮上分離効果によって溶鋼の清浄度は
確かに向上する。しかし、せっかく堰により介在物が溶
鋼湯面まで浮上しても、溶鋼湯面に留まらずに溶鋼流と
ともに再びタンディッシュ内部に引き込まれてしまう介
在物がかなり多く、分離効率の点で問題があった。精錬
段階で生じたスラグの内、取鍋内に残留したものの一部
が取鍋からの注湯終了期に溶鋼とともに流出し、スラグ
がタンディッシュ内で浮上分離されることなく鋳型内に
持ち来されると、溶鋼汚染、さらには連鋳スラブの品質
劣化につながるといった問題もあった。
When the weir is provided inside the tundish, the cleanliness of the molten steel is certainly improved by the flotation effect. However, even if the inclusions float up to the surface of the molten steel due to the weir, there are quite a lot of inclusions that do not stay at the surface of the molten steel but are drawn back into the tundish together with the molten steel flow, which is problematic in terms of separation efficiency. Was. Some of the slag generated in the refining stage, which remains in the ladle, flows out together with the molten steel at the end of pouring from the ladle, and the slag is brought into the mold without being floated and separated in the tundish. If so, there is a problem that it leads to contamination of molten steel and further deterioration of quality of the continuous cast slab.

【0005】また、上堰や下堰でタンディッシュの内部
空間を複雑に仕切ったものでは、保守管理が面倒であ
り、堰の取り替えに多大の手数が必要になる。また、下
堰のあるタンディッシュでは、注湯終了期の溶鋼をタン
ディッシュから排出するため、タンディッシュの底面と
堰の下部との間に通称「ねずみ通し」といわれる開口部
が設けられている。ねずみ通しを通過して短時間に排出
されてしまう介在物がかなり多く、堰の浮上分離効果を
著しく低下させる原因となっている。それだけでなく、
1キャスト終了後、ねずみ通しのため残塊が堰で分離さ
れることなく、巨大な、一連の残塊となる。その結果残
塊の排出及び廃棄処分に多大の手数と時間がかかる。
If the internal space of the tundish is partitioned in an intricate manner by an upper weir and a lower weir, maintenance and management are troublesome and replacement of the weir requires a great deal of trouble. In addition, in a tundish with a lower weir, an opening commonly called "mouse through" is provided between the bottom of the tundish and the lower part of the weir in order to discharge molten steel at the end of pouring from the tundish. . There are quite a lot of inclusions that pass through the rat and are discharged in a short period of time, causing a significant decrease in the floating separation effect of the weir. not only that,
After the end of one cast, the remaining lump is not separated by the weir due to the rat and becomes a huge series of lump. As a result, it takes a lot of trouble and time to discharge and dispose of the residual lump.

【0006】最近では、生産性を高め且つ耐火物コスト
の低減を図るため、タンディッシュを熱間のままで次の
キャストに使用することが検討されている。この場合、
タンディッシュ内に複数の堰があったり、複雑な形状の
堰である場合には、タンディッシュ内の修復に工数や時
間がかかり、熱間のままで次回の使用に可能な状態にす
ることが難しい。この点、堰は可能な限り簡単な構造を
もつことが要求される。しかし、取鍋から注湯された溶
鋼は、種々の介在物を多量に含み、特に取鍋からの注湯
終了期には取鍋内に浮遊するスラグの影響を受け、汚染
が著しい。汚染された溶鋼が連続鋳造用鋳型内に供給さ
れると、得られる連鋳スラブの品質を低下させる。タン
ディッシュから連続鋳造用鋳型に流出する汚染溶鋼を可
能な限り少なくする手段として固定堰はきわめて有効で
あり、固定堰の作用を確保した上で構造を簡単化したタ
ンディッシュが望まれている。
Recently, in order to increase productivity and reduce refractory costs, it has been studied to use a tundish in a hot state for the next casting. in this case,
If there is more than one weir in the tundish, or if the weir has a complex shape, it will take time and effort to repair the tundish, and it will be possible to use it while it is still hot and ready for the next use. difficult. In this regard, weirs are required to have as simple a structure as possible. However, molten steel poured from a ladle contains a large amount of various inclusions, and is particularly affected by slag floating in the ladle at the end of pouring from the ladle, and is significantly contaminated. When the contaminated molten steel is fed into the continuous casting mold, the quality of the resulting continuously cast slab is reduced. A fixed weir is extremely effective as a means of minimizing contaminated molten steel flowing out of the tundish into a continuous casting mold, and a tundish having a simplified structure while securing the function of the fixed weir is desired.

【0007】本発明はこのような要求に答えるべく案出
されたものであり、介在物及びスラグを効率良く浮上分
離させる固定堰の作用を確保しながら、タンディッシュ
の内部構造を簡単にし、保守管理を容易にすると共に、
タンディッシュの熱間再使用を可能にすることを目的と
する。
[0007] The present invention has been devised in order to meet such a demand. The present invention simplifies the internal structure of a tundish while maintaining the function of a fixed weir for efficiently floating and separating inclusions and slag. To make management easier,
The purpose is to enable hot reuse of the tundish.

【0008】[0008]

【問題点を解決するための手段】本発明は、その目的を
達成するため、底部を密閉した固定堰を有するタンディ
ッシュを用いた連続鋳造方法であって、前記固定堰の上
方湯面にロングノズルを囲むように浸漬管を浸漬するこ
とにより、浮上した介在物を効率良く溶鋼から分離し、
かつ、取鍋から持ち来されたスラグの鋳型への混入を回
避することを特徴とする。さらに望ましくは前記浸漬管
の浸漬深さ及び内径を、式(1)及び式(2)を満足す
る条件に規制することを特徴とする。 0.70×L≦D≦1.30×L ・・・(1) 0.10×H≦h≦0.30×H ・・・(2) ただし、 D:浸漬管の内径(mm) h:浸漬管の浸漬深さ(mm) L:固定堰間の水平距離(mm) H:タンディッシュ底壁から固定堰頂面までの高さ(m
m)
SUMMARY OF THE INVENTION In order to achieve the object, the present invention provides a continuous casting method using a tundish having a fixed weir with a closed bottom, and a long casting surface above the fixed weir. By immersing the dip tube so as to surround the nozzle, the floating inclusions are efficiently separated from the molten steel,
In addition, it is characterized in that slag brought from the ladle is prevented from being mixed into the mold. More desirably, the immersion depth and the inner diameter of the immersion tube are regulated to conditions satisfying the equations (1) and (2). 0.70 × L ≦ D ≦ 1.30 × L (1) 0.10 × H ≦ h ≦ 0.30 × H (2) where D: inner diameter of immersion tube (mm) h : Immersion depth of the dip tube (mm) L: Horizontal distance between fixed weirs (mm) H: Height from tundish bottom wall to fixed weir top surface (m)
m)

【0009】[0009]

【作用】以下、図面を参照しながら、本発明をその作用
と共に具体的に説明する。本発明で使用するタンディッ
シュは、図1に示すように、上広がりのタンディッシュ
本体10に固定堰20を固定し、この固定堰20でタン
ディッシュ底部を密閉している。タンディッシュ本体1
0は、耐火レンガを施工した炉壁11に耐火物ライニン
グ12を施しており、上広がりの台形状断面をもってい
る。また、図2に本発明で使用するタンディッシュの概
要を示す。タンディッシュ本体10に設けた固定堰2
0、20のほぼ中央に、図示しない取鍋からロングノズ
ル1を介して溶鋼2を注湯する。ロングノズル1を中央
に取り囲むように周囲には浸漬管30を浸漬させる。浸
漬管30は円筒状でも角筒状でもよい。溶鋼表面にはフ
ラックス層6を浮遊させておく。溶鋼2は、ストッパー
4及び図示しないスライディングノズルで調節されなが
ら浸漬ノズル3から連続鋳造鋳型に注入される。
The present invention will be described below in detail with reference to the drawings. In the tundish used in the present invention, as shown in FIG. 1, a fixed weir 20 is fixed to a tundish main body 10 spreading upward, and the bottom of the tundish is sealed by the fixed weir 20. Tundish body 1
Numeral 0 indicates that the refractory lining 12 is provided on the furnace wall 11 on which the refractory bricks have been constructed, and has a trapezoidal cross section that expands upward. FIG. 2 shows an outline of a tundish used in the present invention. Fixed weir 2 provided on tundish body 10
Molten steel 2 is poured from a ladle (not shown) through a long nozzle 1 at substantially the center of 0 and 20. An immersion tube 30 is immersed in the periphery so as to surround the long nozzle 1 at the center. The immersion tube 30 may be cylindrical or rectangular. The flux layer 6 is suspended on the molten steel surface. The molten steel 2 is injected into the continuous casting mold from the immersion nozzle 3 while being adjusted by the stopper 4 and a sliding nozzle (not shown).

【0010】溶鋼2をタンディッシュに供給するに際し
ては、取鍋からの注湯開始時は送り込まれた溶鋼2が固
定堰20の内側に溜まる。その後、溶鋼2の湯面が固定
堰20の頂面に達すると、固定堰20の外側に流出して
いく。この状態で、タンディッシュの内部が固定堰20
によって上流域と下流域に区分される。ロングノズル1
から供給された溶鋼2は図2に矢印で示すように、上流
域で固定堰20に沿った上昇流5となって湯面近傍まで
流動する。上昇の過程で、溶鋼2に含まれている介在物
は、比重差によって溶鋼2から浮上分離する。また取鍋
から持ち来されるスラグも溶鋼に比べ比重が小さいた
め、いち早く浮上し浸漬管の内側に浮遊分離される。こ
のとき、固定堰20の一部をポーラスレンガとし、ポー
ラスレンガからArガスを導入すると、ガス気泡に介在
物が確実に捕捉されると共に、ガス気泡の浮上駆動力が
加わりさらに浮上分離が促進される。また、湯面にフラ
ックス層6を浮遊させておくとき、浮上した介在物及び
スラグがフラックス層6に効率良く吸収される。介在物
及びスラグが分離された溶鋼2は高い清浄度を維持しな
がら下降流7となって下流域に流入し、浸漬ノズル3を
経て連続鋳造用鋳型に供給される。取鍋からの注湯終了
期には、取鍋から供給される溶鋼2は、スラグ等の影響
を受けて汚染が著しい。しかし、汚染された溶鋼2は、
浸漬管30の内側に溜まり、連続鋳造用鋳型に持ち込ま
れることがないので、得られる連鋳スラブの品質を低下
させない。
When the molten steel 2 is supplied to the tundish, at the start of pouring from the ladle, the fed molten steel 2 accumulates inside the fixed weir 20. Then, when the molten metal surface of the molten steel 2 reaches the top surface of the fixed weir 20, it flows out of the fixed weir 20. In this state, the inside of the tundish is
Is divided into an upstream area and a downstream area. Long nozzle 1
As shown by the arrows in FIG. 2, the molten steel 2 supplied from the upstream becomes a rising flow 5 along the fixed weir 20 in the upstream region and flows to the vicinity of the molten metal surface. In the process of ascent, the inclusions contained in the molten steel 2 float and separate from the molten steel 2 due to the specific gravity difference. In addition, the slag brought from the ladle also has a lower specific gravity than molten steel, so it quickly floats and floats and separates inside the immersion pipe. At this time, when a part of the fixed weir 20 is made of porous brick and Ar gas is introduced from the porous brick, inclusions are surely captured by the gas bubbles, and the levitation driving force of the gas bubbles is applied to further promote the levitation separation. You. Moreover, when the flux layer 6 is floated on the surface of the molten metal, the floating inclusions and slag are efficiently absorbed by the flux layer 6. The molten steel 2 from which inclusions and slag have been separated flows downflow 7 while maintaining high cleanliness, flows into the downstream region, and is supplied to the continuous casting mold via the immersion nozzle 3. At the end of pouring from the ladle, the molten steel 2 supplied from the ladle is significantly contaminated by the influence of slag and the like. However, the contaminated molten steel 2
Since it does not accumulate inside the immersion tube 30 and is not brought into the continuous casting mold, the quality of the continuous cast slab obtained is not reduced.

【0011】1キャスト分の連鋳作業を終了し、次のキ
ャストに備えるときには、タンディッシュ内の残塊を取
り出し、耐火物を補修する。このとき、ねずみ通しを形
成した固定堰で発生するようなタンディッシュ底部全面
にわたって繋がっている巨大な残塊が発生することがな
いので、残塊の処理が極めて容易になる。また、固定堰
の枚数もストランド当たり1枚と必要最小限であり、か
つねずみ通しがない等シンプルな構造であるため、耐火
物の施工作業も極めて簡単になる。また、浸漬管はタン
ディッシュから独立しているため、タンディッシュとは
別個に点検・補修等ができる。変形・損耗の程度が軽微
であれば、付着物を除去した後、再使用することもでき
る。
When the continuous casting operation for one cast is completed and the next cast is prepared, the remaining mass in the tundish is taken out and the refractory is repaired. At this time, since there is no generation of a huge residual mass connected over the entire surface of the tundish bottom which is generated by a fixed weir having a ratchet formed therein, the treatment of the residual mass becomes extremely easy. In addition, the number of fixed weirs is as small as necessary, one per strand, and has a simple structure such as no mouse penetration, so that refractory construction work is extremely simple. Also, since the dip tube is independent of the tundish, inspection and repair can be performed separately from the tundish. If the degree of deformation and wear is slight, it can be reused after removing the deposits.

【0012】一般に、浸漬管のサイズ及び浸漬深さがタ
ンディッシュ内での介在物及びスラグの浮上分離性に及
ぼす影響は大きく、浸漬管のサイズ及び浸漬深さの適正
化を図ることが高清浄度鋼を得る上で非常に重要であ
る。そこで、本発明者らは、図2に示すようなロングノ
ズル1を用いたタンディッシュにおいて、介在物及びス
ラグが鋳型に流出する状況を把握するため、模型を使
い、ロングノズルから投入した模擬介在物及びタンディ
ッシュ内湯面に浮かべた模擬スラグで、水モデル実験を
行った。水モデル実験では、浸漬管の内径D及び浸漬管
の浸漬深さhを種々変化させ、模擬介在物及び模擬スラ
グの流出割合に及ぼす浸漬管の内径D及び浸漬深さhの
影響を調査した。
Generally, the influence of the size and immersion depth of the immersion tube on the floating separation of inclusions and slag in the tundish is great, and it is necessary to optimize the size and immersion depth of the immersion tube to achieve high cleanliness. It is very important in obtaining steel. Therefore, in order to grasp the situation in which inclusions and slag flow out into the mold in a tundish using the long nozzle 1 as shown in FIG. A water model experiment was performed with a simulated slag floating on an object and a tundish surface. In the water model experiment, the inner diameter D of the immersion tube and the immersion depth h of the immersion tube were variously changed, and the influence of the inner diameter D of the immersion tube and the immersion depth h on the outflow ratio of the simulated inclusion and the slag was investigated.

【0013】調査結果を図3に示す。図3では、浸漬管
の内径Dと固定堰間の水平距離Lとの比D/Lを横軸に
とり、浸漬管の浸漬深さhとタンディッシュ底壁から固
定堰頂面までの高さHとの比h/Hを縦軸にとった。そ
して、浸漬管を設けない場合の(介在物+スラグ)流出
量に対する浸漬管使用時の(介在物+スラグ)流出量の
割合(%)をD/L−h/Hの関係で整理し、(介在物
+スラグ)流出率ηの等高線で示した。図3から明らか
なようにD/L=0.70〜1.30及びh/H=0.
10〜0.30となる条件下で浸漬管を固定堰付きタン
ディッシュに使用した場合、浸漬管を設けない場合に比
較して模擬介在物及び模擬スラグの流出割合が70%以
下に抑えられていた。
FIG. 3 shows the results of the investigation. In FIG. 3, the horizontal axis represents the ratio D / L of the inner diameter D of the immersion tube to the horizontal distance L between the fixed weirs, and the immersion depth h of the immersion tube and the height H from the bottom wall of the tundish to the top surface of the fixed weir. The ratio h / H with respect to the vertical axis is plotted on the vertical axis. Then, the ratio (%) of the (inclusion + slag) outflow amount when using the immersion tube to the (inclusion + slag) outflow amount when the immersion tube is not provided is arranged in a relation of D / L−h / H, (Inclusion + slag) Shown by the contour line of the outflow rate η. As is clear from FIG. 3, D / L = 0.70 to 1.30 and h / H = 0.30.
When the immersion tube is used for a tundish with a fixed weir under the condition of 10 to 0.30, the outflow ratio of the simulated inclusions and the simulated slag is suppressed to 70% or less as compared with the case where the immersion tube is not provided. Was.

【0014】D/L、h/Hが前述した範囲を外れる
と、(介在物+スラグ)流出率が増加する。(介在物+
スラグ)流出率が増加する原因は、水モデル実験中の目
視観察の結果から次のように推察される。すなわち、浸
漬管の内径Dに関しては、D/Lが0.70に達しない
場合、固定堰によって上昇に転じた溶鋼流が浸漬管の外
側の湯面近傍に達し、湯面上のスラグや浮上した介在物
を再びタンディッシュ内深くに巻き込む。逆にD/Lが
1.30を越えると、浸漬管内の湯面を取鍋溶鋼注入流
のエネルギーを利用した上昇流が乱し、せっかく浸漬管
で内部に堰き止めた介在物やスラグを巻き込んで浸漬管
の外側に流出させてしまう。浸漬管の浸漬深さに関して
は、h/Hが0.10に満たないと、堰き止め効果が不
十分になり、浸漬管の外側に持ち来される介在物及びス
ラグの割合が増加する。逆にh/Hが0.30を越える
と、浸漬管と固定堰との間の溶鋼の流路が狭くなり、浸
漬管と固定堰との間を通過する溶鋼の流速が増大するた
め、溶鋼表面が逆に荒らされる結果、浮上した介在物が
再び溶鋼中に侵入したり、表面に浮遊しているスラグが
巻き込まれ、溶鋼を汚染する。このように、浸漬管の内
径Dと浸漬深さhを適正に調節することによって、タン
ディッシュ内での介在物浮上効果及びスラグ分離効果を
常に高位に維持することができる。
When D / L and h / H are out of the above-mentioned ranges, the (inclusion + slag) outflow rate increases. (Inclusion +
The cause of the increase in the slag flow rate is estimated as follows from the results of visual observation during the water model experiment. That is, regarding the inner diameter D of the immersion pipe, when the D / L does not reach 0.70, the molten steel flow turned upward by the fixed weir reaches the vicinity of the molten metal surface outside the immersion pipe, and slag and floating on the molten metal surface are raised. The entangled inclusion is wrapped deep inside the tundish again. Conversely, if the D / L exceeds 1.30, the upflow utilizing the energy of the ladle molten steel injection flow disturbs the molten metal surface in the immersion pipe, and involves inclusions and slag that have been dammed inside the immersion pipe. And it will flow out of the dip tube. Regarding the immersion depth of the immersion tube, if h / H is less than 0.10, the damming effect becomes insufficient, and the proportion of inclusions and slag brought outside the immersion tube increases. Conversely, if h / H exceeds 0.30, the flow path of the molten steel between the immersion pipe and the fixed weir becomes narrow, and the flow velocity of the molten steel passing between the immersion pipe and the fixed weir increases. As a result of the surface being roughened in the opposite direction, the floating inclusions enter the molten steel again, or the slag floating on the surface is involved and contaminates the molten steel. As described above, by appropriately adjusting the inner diameter D and the immersion depth h of the immersion tube, the inclusion floating effect and the slag separation effect in the tundish can always be maintained at a high level.

【0015】[0015]

【実施例】次に、実際に溶鋼を連続鋳造した実施例を示
す。図2に示すタンディッシュを使用して、転炉−RH
真空脱ガス工程で溶製した低炭素Alキルド鋼を連続鋳
造した。鋳型幅は1200mm、鋳片厚は250mm、
鋳造速度は1.4m/minとした。タンディッシュは
定常状態で浴深1200mm、内包する溶鋼量約65ト
ンである。固定堰はロングノズルの中心から下流側に水
平距離300mmの位置に設置した。すなわち固定堰間
の水平距離は600mmである。タンディッシュ底壁か
ら固定堰頂面までの高さは600mmとした。一方、浸
漬管については、内径を600mm、浸漬深さを120
mmとして固定堰間中央上方に配置した。この条件下で
は、D/L=1.00、h/H=0.20となる。比較
例1〜4として、同一のタンディッシュを使用して、浸
漬管の内径D及び浸漬深さhを表1に示すように変化さ
せ、同様な条件下で連続鋳造した。
Next, an embodiment in which molten steel is continuously cast will be described. Using the tundish shown in FIG.
The low carbon Al killed steel melted in the vacuum degassing process was continuously cast. Mold width is 1200mm, slab thickness is 250mm,
The casting speed was 1.4 m / min. The tundish has a bath depth of 1200 mm in a steady state and contains about 65 tons of molten steel. The fixed weir was installed at a horizontal distance of 300 mm downstream from the center of the long nozzle. That is, the horizontal distance between the fixed weirs is 600 mm. The height from the tundish bottom wall to the fixed weir top surface was 600 mm. On the other hand, for the immersion tube, the inner diameter was 600 mm and the immersion depth was 120 mm.
mm and arranged above the center between the fixed weirs. Under these conditions, D / L = 1.00 and h / H = 0.20. As Comparative Examples 1 to 4, using the same tundish, the inner diameter D of the immersion tube and the immersion depth h were changed as shown in Table 1, and continuous casting was performed under the same conditions.

【0016】 [0016]

【0017】また、比較例5として、図4に示すよう
な、上流側から下流側に向かって中央下堰41、上堰4
2及び外下堰43の順に配置され、中央下堰41及び外
下堰43にねずみ通し44を設けた三重堰40を設置し
た同容量のタンディッシュを用い、実施例と同様に溶製
した低炭素Alキルド鋼を連続鋳造した。定常時及び取
鍋交換時においてタンディッシュ出口で溶鋼をサンプリ
ングし、分析して求めた溶鋼中全酸素量T.[O]TD
RH真空脱ガス処理後の溶鋼中全酸素量T.[O]RH
の比を(介在物+スラグ)流出率ηとして算出した。実
施例と比較例とでは、図5に比較して示すように(介在
物+スラグ)流出率ηに大きな差が見られた。すなわ
ち、実施例の定常時では、(介在物+スラグ)流出率η
=0.2弱が得られ、三重堰を使用した比較例5の定常
時のη=0.3強に比べて、鋳型への(介在物+スラ
グ)流出量が2/3に低減していることがわかった。ま
た、比較例5の取鍋交換時ではη=0.4と定常時より
も清浄度が劣っていたが、実施例の取鍋交換時では、定
常時とほぼ同様にη=0.2と低位で安定していた。ま
た、浸漬管の内径や浸漬深さを変化させた比較例1〜4
では、η=0.3〜0.6と、三重堰と同等、あるいは
若干劣る結果となった。以上の結果を総合すると、浸漬
管の設置条件を適正範囲に設定することにより、三重堰
よりもシンプルな構造をもつタンディッシュを使用し、
しかも三重堰を凌駕する介在物&スラグ分離効果が奏せ
られ、清浄度の高い鋳片が製造されることがわかる。
As a comparative example 5, a central lower weir 41 and an upper weir 4 from the upstream side to the downstream side as shown in FIG.
2 and an outer lower weir 43 in this order, using a tundish of the same capacity in which a triple weir 40 in which a ratchet 44 is provided in the central lower weir 41 and the outer lower weir 43 is used. A carbon Al killed steel was continuously cast. At regular times and when the ladle is replaced, the molten steel is sampled at the outlet of the tundish, and the total oxygen content T. [O] TD and RH Total oxygen content in molten steel after vacuum degassing. [O] The ratio to RH was calculated as the (inclusion + slag) outflow rate η. A large difference was found between the example and the comparative example in the outflow rate η (inclusion + slag) as shown in FIG. That is, in the steady state of the embodiment, the (inclusion + slag) outflow rate η
= 0.2 or less, and the amount of (inclusions + slag) flowing out to the mold was reduced to 2/3 as compared with η = 0.3 or more in the steady state of Comparative Example 5 using the triple weir. I knew it was there. In addition, when the ladle was replaced in Comparative Example 5, the cleanliness was η = 0.4, which was lower than that in the steady state. It was low and stable. Comparative Examples 1-4 in which the inner diameter and the immersion depth of the immersion tube were changed.
In this case, η was 0.3 to 0.6, which was equivalent to or slightly inferior to that of the triple weir. Summarizing the above results, by setting the installation conditions of the immersion pipe in the appropriate range, using a tundish with a simpler structure than the triple weir,
Moreover, it can be seen that the effect of separating inclusions and slag surpasses that of the triple weir and that a slab with high cleanliness is manufactured.

【0018】[0018]

【発明の効果】以上に説明したように、本発明は底部を
密閉した固定堰を有するタンディッシュを用いて、前記
固定堰の上方湯面に、ロングノズルを取り囲むように浸
漬管を浸漬することにより、浮上した介在物を効率良く
溶鋼から分離し、かつ、取鍋から持ち来されたスラグの
鋳型への混入を回避することができる。浸漬管の内径D
及び浸漬深さhを適正な条件に規制することによって介
在物及びスラグの鋳型への進入を低く抑えて、極めて清
浄度の高い連鋳スラブを製造することができる。本発明
により、定常状態ではもちろん、取鍋交換時等の非定常
状態においても、高位に安定した高清浄度鋼の連続鋳造
が可能となる。また、一連の鋳造終了後にタンディッシ
ュ内にある残塊を処理する際でも、固定堰によって小塊
に分割されるため、残塊の抜き取りが極めて簡単にな
る。さらに、ねずみ通しを持たない、また流通孔を持た
ないシンプルな構造の堰を必要最小限の枚数だけ施工す
れば良く、耐火物施工性の観点からも簡便となる。
As described above, the present invention uses a tundish having a fixed weir with a closed bottom, and immerses a dip tube in the upper surface of the fixed weir so as to surround the long nozzle. Thereby, the floating inclusions can be efficiently separated from the molten steel, and the slag brought from the ladle can be prevented from being mixed into the mold. Inner diameter D of immersion tube
By limiting the immersion depth h to an appropriate condition, the penetration of inclusions and slag into the mold can be suppressed low, and a continuously cast slab with extremely high cleanliness can be manufactured. According to the present invention, it is possible to continuously cast a highly clean steel with a high degree of stability, not only in a steady state but also in an unsteady state such as when a ladle is replaced. Further, even when the remaining lump in the tundish is processed after the end of a series of castings, the lump is divided into small lump by the fixed weir, so that the extraction of the remaining lump becomes extremely easy. Furthermore, it is only necessary to construct a minimum number of weirs having a simple structure without a ratchet and without a circulation hole, which is simple from the viewpoint of refractory workability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 底部を密閉する固定堰を備えたタンディッシ
Fig. 1 Tundish with a fixed weir that seals the bottom

【図2】 タンディッシュの概要[Figure 2] Outline of tundish

【図3】 介在物及びスラグの流出割合に及ぼす浸漬管
の内径及び浸漬深さの影響を示すグラフ
FIG. 3 is a graph showing the effect of the inner diameter of the immersion tube and the immersion depth on the outflow ratio of inclusions and slag.

【図4】 ねずみ通し付き三重堰を備えたタンディッシ
Fig. 4 Tundish with triple weir with mouse through

【図5】 実施例及び比較例における(介在物+スラ
グ)流出率ηを示すグラフ
FIG. 5 is a graph showing the (inclusion + slag) outflow rate η in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1:ロングノズル 2:溶鋼 3:浸漬ノズル
4:ストッパー 5:上昇流 6:フラックス層 7:下降流 10:タンディッシュ本体 11:炉壁 12:耐
火物ライニング 14:底壁 15:側壁 20:固定堰 30:浸漬管 40:三重堰 41:中央下堰 42:上堰
43:外下堰 44:ねずみ通し
1: Long nozzle 2: Molten steel 3: Immersion nozzle
4: Stopper 5: Upflow 6: Flux layer 7: Downflow 10: Tundish body 11: Furnace wall 12: Refractory lining 14: Bottom wall 15: Side wall 20: Fixed weir 30: Immersion pipe 40: Triple weir 41: Central lower weir 42: Upper weir
43: Outer lower weir 44: Mouse rattle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 底部を密閉した固定堰を有するタンディ
ッシュを用いた連続鋳造方法であって、前記固定堰の上
方湯面にロングノズルを囲むように浸漬管を浸漬する、
高清浄度鋼連続鋳造方法。
1. A continuous casting method using a tundish having a fixed weir with a closed bottom, wherein a dip tube is immersed in a molten metal above the fixed weir so as to surround a long nozzle.
High cleanliness steel continuous casting method.
【請求項2】 請求項1記載の浸漬管の内径及び浸漬深
さを、式(1)及び式(2)を満足する条件に規制する
ことを特徴とする、高清浄度鋼連続鋳造方法。 0.70×L≦D≦1.30×L ・・・(1) 0.10×H≦h≦0.30×H ・・・(2) ただし、 D:浸漬管の内径(mm) h:浸漬管の浸漬深さ(mm) L:固定堰間の水平距離(mm) H:タンディッシュ底壁から固定堰頂面までの高さ(m
m)
2. A method for continuously casting high cleanliness steel, wherein the inner diameter and the immersion depth of the immersion tube according to claim 1 are regulated to conditions satisfying the formulas (1) and (2). 0.70 × L ≦ D ≦ 1.30 × L (1) 0.10 × H ≦ h ≦ 0.30 × H (2) where D: inner diameter of immersion tube (mm) h : Immersion depth of the dip tube (mm) L: Horizontal distance between fixed weirs (mm) H: Height from tundish bottom wall to fixed weir top surface (m)
m)
JP5137597A 1997-03-06 1997-03-06 Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part Withdrawn JPH10249498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5137597A JPH10249498A (en) 1997-03-06 1997-03-06 Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5137597A JPH10249498A (en) 1997-03-06 1997-03-06 Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part

Publications (1)

Publication Number Publication Date
JPH10249498A true JPH10249498A (en) 1998-09-22

Family

ID=12885210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5137597A Withdrawn JPH10249498A (en) 1997-03-06 1997-03-06 Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part

Country Status (1)

Country Link
JP (1) JPH10249498A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152795A (en) * 2011-01-27 2012-08-16 Nisshin Steel Co Ltd Tundish weir for single strand continuous casting machine
KR101330282B1 (en) * 2011-11-07 2013-11-15 조선내화 주식회사 Apparatus for preventing preventing adhesion of slag on stoper
CN104907540A (en) * 2015-06-15 2015-09-16 江苏大学 Method for electro slag liquid state pouring continuous casting billet with molten steel flow divider
CN110842163A (en) * 2019-09-30 2020-02-28 鞍钢股份有限公司 Wire feeding method and device for reducing oxygen content of rare earth wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152795A (en) * 2011-01-27 2012-08-16 Nisshin Steel Co Ltd Tundish weir for single strand continuous casting machine
KR101330282B1 (en) * 2011-11-07 2013-11-15 조선내화 주식회사 Apparatus for preventing preventing adhesion of slag on stoper
CN104907540A (en) * 2015-06-15 2015-09-16 江苏大学 Method for electro slag liquid state pouring continuous casting billet with molten steel flow divider
CN110842163A (en) * 2019-09-30 2020-02-28 鞍钢股份有限公司 Wire feeding method and device for reducing oxygen content of rare earth wire

Similar Documents

Publication Publication Date Title
EP3470149A1 (en) Melt treating apparatus and melt treating method
US4619443A (en) Gas distributing tundish barrier
JPH10249498A (en) Method for continuously casting high cleanliness steel with tundish providing field weir closing bottom part
US1690750A (en) Method of pouring steel
JP5831163B2 (en) Manufacturing method of high cleanliness steel
JP3464856B2 (en) Tundish for continuous casting of high cleanliness steel
JP3558815B2 (en) High cleanliness steel continuous casting method with tundish equipped with fixed weir with closed bottom
JP2006231397A (en) Continuous casting method for aluminum-killed steel
CN112584947B (en) Method for starting continuous casting of steel
JPH1043842A (en) Tundish for continuously casting steel
JPH09122852A (en) Continuous casting method for high cleanness steel with using tundish arranged with gate capable of opening/ closing
CN111195722A (en) Device for discharging drainage sand by utilizing electromagnetism and drainage sand discharging method thereof
JP2019155396A (en) Slab casting device and slab casting method
JP7200811B2 (en) Steel continuous casting method
JP7389335B2 (en) Method for producing thin slabs
CN108994270B (en) Method for purifying molten steel at tail stage of ladle in continuous casting process
SU1115845A1 (en) Method of semicontinuous casting of metal
JP4474948B2 (en) Steel continuous casting method
JP2011194420A (en) Method of producing high cleanliness steel
JPS6264461A (en) Device for accelerating flotation of inclusion in molten steel
JPH08267199A (en) Method for continuous casting of high cleanliness steel using tundish provided with openable/closable weir
JP4884261B2 (en) Injection tube for sub-ingot casting
JP2005028376A (en) Tundish for continuously casting steel
JP3787974B2 (en) Method for continuous casting of molten metal
JPS6332539B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511