WO2013133318A1 - Titanium melting device - Google Patents

Titanium melting device Download PDF

Info

Publication number
WO2013133318A1
WO2013133318A1 PCT/JP2013/056125 JP2013056125W WO2013133318A1 WO 2013133318 A1 WO2013133318 A1 WO 2013133318A1 JP 2013056125 W JP2013056125 W JP 2013056125W WO 2013133318 A1 WO2013133318 A1 WO 2013133318A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
raw material
hearth
titanium
melting
Prior art date
Application number
PCT/JP2013/056125
Other languages
French (fr)
Japanese (ja)
Inventor
瑛介 黒澤
中岡 威博
一之 堤
大山 英人
秀豪 金橋
石田 斉
大喜 高橋
大介 松若
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2013133318A1 publication Critical patent/WO2013133318A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/005Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like with heating or cooling means
    • B22D41/01Heating means
    • B22D41/015Heating means with external heating, i.e. the heat source not being a part of the ladle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/04Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of multiple-hearth type; of multiple-chamber type; Combinations of hearth-type furnaces
    • F27B3/045Multiple chambers, e.g. one of which is used for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material

Definitions

  • the present invention relates to a titanium melting apparatus provided in an apparatus for continuously producing an ingot of titanium or a titanium alloy.
  • Patent Document 1 As an apparatus for continuously producing an ingot of titanium, for example, an apparatus described in Patent Document 1 has been proposed.
  • the apparatus described in Patent Document 1 is configured to provide a solenoid coil at a position surrounding the plasma electron gun, the hearth, and the mold, and generate a magnetic field by the solenoid coil.
  • Patent Document 1 describes that by generating a magnetic field parallel to the plasma electron beam flow, the plasma electron beam can be focused, the beam density can be adjusted, and the molten state of the molten metal can be controlled. .
  • Patent Document 1 also describes that since the molten metal is magnetically stirred on the water-cooled copper hearth, complete melting and refining of the raw material can be performed by complete mixing.
  • the present inventors are working on development of an apparatus for continuously producing an ingot of titanium (pure titanium) or a titanium alloy.
  • there are two methods for dissolving the raw material solid titanium One is a method in which a raw material lump is molded into a rod material or a block material in advance, and this rod material or the like is directly melted.
  • the other is a method in which raw material lump (sponge titanium, remaining material, scrap, etc.) is put into a hearth (holding container), and these are melted with hearth.
  • the method of directly dissolving the rod material or the like is costly for the molding of the raw material, and the dissolution rate is slow. Therefore, the method of charging the raw material into the hearth and dissolving it with hearth is more effective.
  • the apparatus described in Patent Document 1 also employs a method in which the raw material charged into the hearth is dissolved by the hearth.
  • a solenoid coil is provided at a position surrounding all devices such as a plasma electron gun, a hearth, and a mold.
  • This solenoid coil adjusts the beam density of the plasma electron beam.
  • the magnetic stirring of the molten metal on water-cooled copper hearth is performed by this solenoid coil. That is, the solenoid coil described in Patent Document 1 focuses on the adjustment of the plasma electron beam, and there is a concern that the molten metal may not be sufficiently stirred in the hearth. As a result, there is a possibility that an operation trouble such as the unmelted raw material flows into the mold, or the unmelted raw material settles on the bottom of the hearth or adheres to the inner wall of the hearth.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a titanium melting apparatus having a structure capable of sufficiently stirring the molten metal in the hearth as compared with the prior art.
  • the present invention is provided in an apparatus for continuously producing an ingot of titanium or titanium alloy, and melts solid titanium or titanium alloy, which is a raw material, by plasma heating to form a molten metal, and then flows the molten metal down into a mold.
  • This is a titanium melting apparatus.
  • This titanium melting apparatus is charged with raw material solid titanium or titanium alloy, and is disposed in proximity to the raw material melting hearth to be melted by melting the raw material by plasma heating, and the bottom surface of the raw material melting hearth, An electromagnetic stirrer that stirs the molten metal by generating a swirling flow in the molten metal in the raw material melting hearth.
  • the molten metal can be sufficiently stirred in the hearth than in the past. As a result, it is possible to further prevent operational troubles such as the undissolved raw material flowing into the mold, or the undissolved raw material sinking to the bottom of the hearth or adhering to the inner wall of the hearth.
  • FIG. 4 is a cross-sectional view taken along line BB in FIG. It is a figure which shows the modification of the titanium melt
  • Fig.1 (a) is a top view of the principal part of a casting apparatus provided with the titanium melting
  • 1B is a cross-sectional view taken along the line AA in FIG. 1A
  • FIG. 1C is a cross-sectional view taken along the line BB in FIG.
  • the titanium melting apparatus of the present invention is provided in a casting apparatus that continuously manufactures an ingot of titanium or a titanium alloy.
  • the titanium melting apparatus of the present invention works by melting solid titanium or a titanium alloy as a raw material by plasma heating to form a molten metal, and then pouring the molten metal into a mold.
  • the titanium melting apparatus 1 of the present embodiment includes a raw material melting hearth 2 and an intermediate hearth 3.
  • the molten metal 53 in which the raw material 51 is melted by the plasma gas from the plasma torch 5 flows down from the raw material melting hearth 2 to the intermediate hearth 3 and flows from the intermediate hearth 3 into the mold 4.
  • porous sponge titanium pure titanium
  • hearths 2, 3 and the mold 4 are placed in a container called a chamber (not shown).
  • a chamber Around the hearths 2 and 3 and the mold 4 (inside the chamber) is an inert gas atmosphere filled with an inert gas such as argon gas or helium gas.
  • the raw material melting hearth 2 is a holding container having a bottom, and plays a role of melting the raw material 51 (sponge titanium) by plasma heating to form a molten metal 53.
  • the hearth 2 for melting the raw material is opened upward, and the inner peripheral wall and the outer peripheral wall are both square in plan view.
  • four corner portions (corner portions) of the inner peripheral wall of the raw material melting hearth 2 are chamfered in an arc shape.
  • the square shape includes not only a square (a quadrangle in which all the inner angles are right angles and all the sides are equal), but also a square in which corner portions (corner portions) are chamfered.
  • the inner peripheral wall and / or outer peripheral wall of the raw material melting hearth 2 may be rectangular.
  • the ratio of the long side length to the short side length is preferably 1.5 or less. That is, in FIG. 1A, the value of L1 / L2 or L2 / L1 is preferably 1 or more and 1.5 or less.
  • the square is a kind of rectangle.
  • the inner peripheral wall and / or outer peripheral wall of the hearth 2 for melting the raw material may be an ellipse or a circle.
  • the ratio of the length of the major axis to the length of the minor axis is preferably 1.5 or less. That is, the value of “major axis length” / “minor axis length” is preferably 1 or more and 1.5 or less.
  • a circle is a kind of ellipse.
  • the inner peripheral wall and / or outer peripheral wall of the hearth 2 for melting the raw material may be a polygon other than a rectangle.
  • An example of the polygon is an octagon.
  • the inner peripheral wall of the hearth 2 for melting the raw material is, for example, an octagon, it is preferably a shape close to a regular octagon (a small aspect ratio).
  • the hearth 2 for melting the raw material is made of copper and is cooled with water. The same applies to the intermediate hearth and the mold.
  • a raw material charging path 9 is provided on one side wall of the raw material melting hearth 2.
  • the raw material 51 is charged into the raw material melting hearth 2 from the raw material charging path 9.
  • a molten metal outlet channel 11 is provided in a side wall portion perpendicular to the one side wall provided with the raw material charging path 9.
  • a molten metal 53 formed by melting the raw material 51 flows from the raw material melting hearth 2 into the intermediate hearth 3 via the molten metal outlet channel 11.
  • the molten metal outlet channel 11 opens upward.
  • a plasma torch 5 (plasma heating device) is disposed above the raw material melting hearth 2.
  • the plasma torch 5 is attached to the ceiling wall of the chamber via a bearing (not shown) so as to be slidable in the axial direction (movable up and down) and to be able to swing in any direction of 360 °. That is, the plasma torch 5 is attached to the chamber so as to penetrate the chamber. Further, the plasma torch 5 is electrically driven or hydraulically driven and is moved with a movement pattern set in advance according to a signal from a control device (not shown). The plasma torch 5 can also be moved manually by switching to manual. This also applies to the plasma torch 5 disposed above the intermediate hearth 3 described later, the plasma torch 7 disposed above the mold 4, and the plasma torches 5 and 7 shown in FIGS.
  • These plasma torches are also attached to the ceiling wall of the chamber so as to penetrate the chamber in such a manner that the plasma torch can slide in the axial direction (movable up and down) and can swing in any direction of 360 °. Further, these plasma torches are also electrically driven or hydraulically driven, or can be moved manually by switching to manual operation.
  • a thick solid arrow in FIG. 1A moves (oscillates and / or slides) in the plasma injection part 5a (or the center of the plasma gas injected from the plasma injection part 5a) of the plasma torch 5.
  • the range (movement pattern) to be moved (up and down movement) is illustrated.
  • the plasma gas from the plasma torch 5 causes not only the molten metal surface of the molten metal 53 at the center of the raw material melting hearth 2 but also the raw material 51 (and the molten metal surface of the molten metal 53) of the raw material charging unit 2a, and the molten metal outlet.
  • the molten metal surface of the molten metal 53 in the channel 11 can be plasma-heated with priority depending on the situation.
  • the plasma torch 5 disposed above the intermediate hearth 3 and on the left side of the center of the intermediate hearth 3 is disposed on the right side of the center of the intermediate hearth 3, for example, the plasma With the torch 5, the molten metal surface of the molten metal 53 in the molten metal outlet channel 11 can be plasma heated. That is, it is possible to simultaneously plasma-heat the molten metal surface of the raw material charging part 2a and the molten metal outlet channel 11.
  • An electromagnetic stirrer 6 is disposed under the raw material melting hearth 2. More specifically, the electromagnetic stirring device 6 is disposed close to the raw material melting hearth 2 at a predetermined interval with respect to the bottom surface of the raw material melting hearth 2.
  • the electromagnetic stirring device 6 is a device for stirring the molten metal 53 by generating a horizontal swirling flow in the molten metal 53 in the raw material melting hearth 2.
  • the electromagnetic stirring device 6 may be an EMS (Electro-Magnetic Stirrer) that energizes an alternating current, or may be a mechanical rotary type. Since the dissolution rate of titanium is slow, the flow rate in the raw material melting hearth 2 when only the dissolution of the titanium raw material is used without installing the electromagnetic stirring device 6 is about 1 cm / second at the maximum.
  • the stirring direction of the molten metal 53 by the electromagnetic stirring device 6 is, among the two stirring directions from the raw material charging unit 2a to the molten metal outlet channel 11, It is preferable that the longer stirring direction is selected (the clockwise direction in FIG. 1A).
  • the intermediate hearth 3 is a holding container having a bottom, and plays a role such as equalizing the temperature of the molten metal 53, settling and separating the inclusions, and reducing changes in the amount of molten metal flowing into the mold 4 due to fluctuations in the molten amount.
  • the intermediate hearth 3 is opened upward, and the inner peripheral wall and the outer peripheral wall thereof have a rectangular shape in plan view.
  • the raw material melting hearth 2 is disposed at one end of the long side of the four sides around the intermediate hearth 3, and the mold 4 is disposed at the other end of the long side. That is, the raw material melting hearth 2 and the intermediate hearth 3 are arranged in an L shape, and when the mold 4 is included, the whole is arranged in a U shape with a corner.
  • a molten metal injection channel 12 to the mold 4 is provided at the end of the long side wall of the intermediate hearth 3.
  • the molten metal 53 that has flowed into the intermediate hearth 3 from the raw material melting hearth 2 flows down into the intermediate hearth 3 and then flows into the mold 4 via the molten metal injection channel 12.
  • the molten metal injection channel 12 opens upward.
  • the surface of the molten metal 53 flowing down in the intermediate hearth 3 is heated by plasma by a plasma torch 5 disposed above the intermediate hearth 3. Thereby, solidification of the molten metal 53 is prevented.
  • positioned above the intermediate hearth 3 is a thick solid line arrow in Fig.1 (a). It is illustrated by.
  • the mold 4 is a mold having no bottom portion for solidifying the molten (injected) molten metal 53 into an ingot 55. Since the mold 4 has a rectangular cross section, a slab-shaped (cuboid) ingot 55 is obtained.
  • the drawing device 13 is disposed under the mold 4, and the ingot 55 in which the molten metal 53 is solidified is cast while being drawn downward by the drawing device 13.
  • symbol 54 in FIG.1 (c) has shown the solidification part.
  • a plasma torch 7 is disposed above the mold 4. The surface of the molten metal 53 that has flowed into the mold 4 is plasma heated by the plasma torch 7.
  • the range in which the plasma injection part (or the center of the plasma gas injected from the plasma injection part) of the plasma torch 7 is moved is illustrated by a thick solid arrow in FIG. Since the plasma torch 7 is movable in such a range, both the molten metal surface of the molten metal 53 of the mold 4 and the molten metal surface of the molten metal injection channel 12 can be heated by the plasma gas from the plasma torch 7. .
  • the molten metal 53 of the molten metal 53 in the molten metal injection channel 12 is caused by the plasma gas from the plasma torch 5. Heating is also possible.
  • the electromagnetic stirrer 6 is disposed close to the bottom surface of the raw material melting hearth 2, and the electromagnetic stirrer 6 generates a swirling flow in the molten metal 53 in the raw material melting hearth 2 to stir the molten metal 53.
  • the electromagnetic stirring energy of the electromagnetic stirring device 6 can be used for stirring the molten metal 53 in the raw material melting hearth 2, and the molten metal 53 is sufficiently stirred in the raw material melting hearth 2.
  • dissolution efficiency improves. That is, the contact heat transfer rate from the molten metal 53 to the raw material 51 can be increased by increasing the contact speed between the raw material 51 and the molten metal 53.
  • FIG. 4 is a view showing a raw material melting hearth 62 according to a comparative example. As shown in FIG.
  • the stirring direction of the molten metal 53 by the electromagnetic stirring device 6 is set to the stirring direction R having the longer distance among the two stirring directions from the raw material charging unit 2a to the molten metal outlet channel 11.
  • the molten metal 53 can be stirred in the intermediate hearth 3 by arranging the intermediate hearth 3 and flowing the molten metal 53 in the intermediate hearth 3.
  • an electromagnetic stirring device 6 may be disposed under the intermediate hearth 3. In this case, the strength of electromagnetic stirring is determined in consideration of the sedimentation efficiency of inclusions.
  • the molten metal outlet channel 11 and the molten metal injection channel 12 are portions where the molten metal 53 is easily solidified.
  • the surface of the molten metal 53 in the molten metal outlet channel 112 and the molten metal surface of the molten metal injection channel 12 plasma heated it is possible to effectively prevent the molten metal 53 from solidifying in the flow channel portions. Can do.
  • FIG. 2 is a view showing a modification of the titanium dissolving apparatus 1 shown in FIG.
  • a rod-shaped titanium alloy is used as the raw material 52 as an example.
  • symbol is attached
  • the residence time of the molten metal 53 in the hearth needs to be longer than when titanium (pure titanium) is used as a raw material.
  • the ingot (product) of the titanium alloy needs to have a lower inclusion content than the ingot (product) of titanium (pure titanium). Therefore, when using a titanium alloy as a raw material, it is necessary to more reliably remove inclusions from the molten metal 53 by sedimentation separation.
  • the square heart-shaped two hearths 81 and 82 are used, so that the capacity of the hearth is increased and the residence time of the molten metal 53 is lengthened.
  • a flow path 14 is provided between the intermediate hearth 81 and the intermediate hearth 82. Even if one large intermediate hearth is used, the residence time of the molten metal 53 can be lengthened, but by using a plurality of intermediate hearts 81 and 82, a short-circuit flow from the raw material melting hearth 2 to the mold 4 (direct flow) Can be further prevented. Thereby, it is possible to prevent the unmelted raw material 52 from flowing into the mold 10.
  • the components of the titanium alloy raw material 52 are not uniform, it is necessary to sufficiently stir the molten metal 53 in the hearth. Also from this viewpoint, it is preferable to stir the molten metal 53 by causing the molten metal 53 in the raw material melting hearth 2 to generate a swirling flow by placing the electromagnetic stirring device 6 close to the bottom surface of the raw material melting hearth 2.
  • the thick solid arrow in FIG. 2 moves in the plasma injection part (or the center of the plasma gas injected from the plasma injection part) of the plasma torch 5 (or 7) (as in FIG. 1A) (
  • An example of a range of rocking and / or sliding movement (up and down movement) is illustrated.
  • the molten metal surface of the molten metal 53 of each flow path 11, 12, 14 can be heated by plasma. This also applies to the titanium dissolving apparatus 103 shown in FIG. 3 described later.
  • the mold 10 is a bottomless mold having a circular cross section.
  • FIG. 3 is a view showing a modification of the titanium dissolving apparatus 1 shown in FIG.
  • symbol is attached
  • the difference between the titanium melting apparatus 1 shown in FIG. 1 and the titanium melting apparatus 103 of this modification is the shape of the intermediate hearth and the arrangement of the hearth mold.
  • the inner peripheral wall and the outer peripheral wall of the intermediate hearth 8 are formed in a square shape in the same manner as the raw material melting hearth 2. Note that the capacity in the intermediate hearth 8 and the capacity in the intermediate hearth 3 shown in FIG. 1 are substantially the same.
  • the raw material charging path 9, the raw material melting hearth 2, the intermediate hearth 8, and the mold 4 are arranged in a line in this order. Further, the molten metal 53 is injected into the mold 4 from the center of the long side wall of the mold 4. In the titanium melting apparatus 1 shown in FIG. 1, the molten metal 53 is poured into the mold 4 from the central portion of the side wall on the short side of the mold 4.
  • the raw material charging path 9, the molten metal outlet flow path 11, and the molten metal injection flow path 12 are shifted from each other so that adjacent ones are not arranged in a straight line. This prevents the occurrence of a short-circuit flow (direct flow) from the raw material melting hearth 2 (and the raw material charging portion 2a) to the mold 4.
  • the hearth is arranged in an L shape, and when a mold is included, the hearth is arranged in a U shape with a corner as a whole.
  • the titanium melting apparatuses 1 and 102 shown in FIGS. 1 and 2 by arranging the hearth and the mold in this way, it is possible to prevent the occurrence of a short circuit flow (direct flow) from the raw material melting hearth 2 to the mold 4. ing.
  • Titanium melting device 2 Raw material melting hearth 3: Intermediate hearth 4: Mold 6: Electromagnetic stirrer 11: Melt outlet channel 12: Molten injection channel 51: Raw material (sponge titanium) 52: Raw material (rod shape) 53: Molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Continuous Casting (AREA)
  • Furnace Details (AREA)

Abstract

 The titanium melting device (1) according to the present invention is provided to a device for continuously manufacturing titanium ingots (55), and causes molten metal (53) obtained from a starting-material (51) (titanium sponge) to flow downward and pour into a mold (4). The titanium melting device (1) is provided with: a starting-material melting hearth (2), which melts an inputted starting-material (51) by means of plasma heating, forming a molten metal; and an electromagnetic stirrer (6), which is arranged close to the bottom surface of the starting-material melting hearth (2), and which stirs the molten metal (53) by generating a swirl flow in the molten metal (53) inside the starting-material melting hearth (2).

Description

チタン溶解装置Titanium melting equipment
 本発明は、チタンまたはチタン合金の鋳塊を連続的に製造する装置に設けられるチタン溶解装置に関する。 The present invention relates to a titanium melting apparatus provided in an apparatus for continuously producing an ingot of titanium or a titanium alloy.
 チタンの鋳塊を連続的に製造する装置としては、例えば特許文献1に記載されたものが提案されている。特許文献1に記載の装置は、プラズマ電子銃、ハース、および鋳型を囲む位置にソレノイドコイルを設け、当該ソレノイドコイルにより磁場を発生させるよう構成されている。プラズマ電子ビーム流に対して平行な磁界を生成することで、プラズマ電子ビームを集束し、ビーム密度を調節し、溶湯の溶融状態を制御することができる、と特許文献1には記載されている。また、水冷銅ハース上では溶湯の磁気攪拌が行われるので、投入原料の完全な融解と精錬が完全な混合によって行うことができる、とも特許文献1には記載されている。 As an apparatus for continuously producing an ingot of titanium, for example, an apparatus described in Patent Document 1 has been proposed. The apparatus described in Patent Document 1 is configured to provide a solenoid coil at a position surrounding the plasma electron gun, the hearth, and the mold, and generate a magnetic field by the solenoid coil. Patent Document 1 describes that by generating a magnetic field parallel to the plasma electron beam flow, the plasma electron beam can be focused, the beam density can be adjusted, and the molten state of the molten metal can be controlled. . Patent Document 1 also describes that since the molten metal is magnetically stirred on the water-cooled copper hearth, complete melting and refining of the raw material can be performed by complete mixing.
日本国特開昭48-51835号公報Japanese Unexamined Patent Publication No. 48-51835
 本発明者らは、チタン(純チタン)やチタン合金の鋳塊を連続的に製造する装置の開発に取り組んでいる。ここで、原料である固体のチタンの溶解方法としては、例えば2つの方法がある。1つは、原料塊を事前にロッド材やブロック材に成型し、このロッド材などを直接溶解する方法である。もう1つは、原料塊(スポンジチタン、残材、スクラップなど)をハース(保持容器)内に投入し、これらをハースで溶解する方法である。ロッド材などを直接溶解する方法は、原料の成型にコストが発生し、また溶解速度も遅いため、ハース内に原料を投入してハースで溶解する方法の方が有効である。特許文献1に記載の装置においても、ハース内に投入された原料をハースで溶解する方法が採られている。 The present inventors are working on development of an apparatus for continuously producing an ingot of titanium (pure titanium) or a titanium alloy. Here, for example, there are two methods for dissolving the raw material solid titanium. One is a method in which a raw material lump is molded into a rod material or a block material in advance, and this rod material or the like is directly melted. The other is a method in which raw material lump (sponge titanium, remaining material, scrap, etc.) is put into a hearth (holding container), and these are melted with hearth. The method of directly dissolving the rod material or the like is costly for the molding of the raw material, and the dissolution rate is slow. Therefore, the method of charging the raw material into the hearth and dissolving it with hearth is more effective. The apparatus described in Patent Document 1 also employs a method in which the raw material charged into the hearth is dissolved by the hearth.
 ここで、チタンの溶解速度は遅いため、ハースで原料を溶解させる場合、原料の溶け残りが後段の鋳型に流入する危険性がある。また、溶けきらない原料がハースの底に沈降したりハース内壁に付着したりするなどの操業トラブルが発生する可能性もある。 Here, since the dissolution rate of titanium is slow, when the raw material is melted with hearth, there is a risk that the unmelted raw material will flow into the latter mold. In addition, there is a possibility that an operation trouble such as a raw material that cannot be melted sinks to the bottom of the hearth or adheres to the inner wall of the hearth.
 このような懸念事項は、特許文献1に記載の装置にも当てはまる。特許文献1に記載の装置では、プラズマ電子銃、ハース、および鋳型、という機器全てを囲む位置にソレノイドコイルが設けられている。このソレノイドコイルにより、プラズマ電子ビームのビーム密度が調節される。また、このソレノイドコイルにより、水冷銅ハース上の溶湯の磁気攪拌が行われる。すなわち、特許文献1に記載のソレノイドコイルは、プラズマ電子ビームの調節を主眼としており、ハースでの溶湯の攪拌が不十分となることが危惧される。結果として、原料の溶け残りが鋳型に流入してしまったり、溶けきらない原料がハースの底に沈降したりハース内壁に付着したりするなどの操業トラブルが発生してしまう可能性がある。 Such concerns also apply to the apparatus described in Patent Document 1. In the apparatus described in Patent Document 1, a solenoid coil is provided at a position surrounding all devices such as a plasma electron gun, a hearth, and a mold. This solenoid coil adjusts the beam density of the plasma electron beam. Moreover, the magnetic stirring of the molten metal on water-cooled copper hearth is performed by this solenoid coil. That is, the solenoid coil described in Patent Document 1 focuses on the adjustment of the plasma electron beam, and there is a concern that the molten metal may not be sufficiently stirred in the hearth. As a result, there is a possibility that an operation trouble such as the unmelted raw material flows into the mold, or the unmelted raw material settles on the bottom of the hearth or adheres to the inner wall of the hearth.
 本発明は、上記事情に鑑みてなされたものであって、その目的は、ハースでの溶湯の攪拌を従来よりも十分に行うことができる構造を備えたチタン溶解装置を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a titanium melting apparatus having a structure capable of sufficiently stirring the molten metal in the hearth as compared with the prior art.
 本発明は、チタンまたはチタン合金の鋳塊を連続的に製造する装置に設けられ、原料である固体のチタンまたはチタン合金をプラズマ加熱により溶解させて溶湯とし、前記溶湯を流下させて鋳型に注入するチタン溶解装置である。このチタン溶解装置は、原料である固体のチタンまたはチタン合金が投入され、前記原料をプラズマ加熱により溶解させて溶湯とする原料溶解用ハースと、前記原料溶解用ハースの底面に近接配置され、前記原料溶解用ハース内の前記溶湯に旋回流を生じさせて前記溶湯を攪拌する電磁攪拌装置と、を備えることを特徴とする。 The present invention is provided in an apparatus for continuously producing an ingot of titanium or titanium alloy, and melts solid titanium or titanium alloy, which is a raw material, by plasma heating to form a molten metal, and then flows the molten metal down into a mold. This is a titanium melting apparatus. This titanium melting apparatus is charged with raw material solid titanium or titanium alloy, and is disposed in proximity to the raw material melting hearth to be melted by melting the raw material by plasma heating, and the bottom surface of the raw material melting hearth, An electromagnetic stirrer that stirs the molten metal by generating a swirling flow in the molten metal in the raw material melting hearth.
 本発明のチタン溶解装置によれば、ハースでの溶湯の攪拌を従来よりも十分に行うことができる。その結果、原料の溶け残りが鋳型に流入してしまったり、溶けきらない原料がハースの底に沈降したりハース内壁に付着したりするなどの操業トラブルをより防止することができる。 According to the titanium melting apparatus of the present invention, the molten metal can be sufficiently stirred in the hearth than in the past. As a result, it is possible to further prevent operational troubles such as the undissolved raw material flowing into the mold, or the undissolved raw material sinking to the bottom of the hearth or adhering to the inner wall of the hearth.
(a)は本発明の一実施形態に係るチタン溶解装置を具備してなる鋳造装置の主要部の平面図であり、(b)は(a)のA-A断面図であり、(c)は(a)のB-B断面図である。(A) is a top view of the principal part of the casting apparatus which comprises the titanium melting apparatus which concerns on one Embodiment of this invention, (b) is AA sectional drawing of (a), (c) FIG. 4 is a cross-sectional view taken along line BB in FIG. 図1に示したチタン溶解装置の変形例を示す図である。It is a figure which shows the modification of the titanium melt | dissolution apparatus shown in FIG. 図1に示したチタン溶解装置の変形例を示す図である。It is a figure which shows the modification of the titanium melt | dissolution apparatus shown in FIG. 比較例に係る原料溶解用ハースを示す図である。It is a figure which shows the hearth for raw material melt | dissolution which concerns on a comparative example.
 以下、本発明を実施するための形態を、図面を参照しつつ説明する。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings.
(チタン溶解装置の構成)
 図1(a)は、本発明の一実施形態に係るチタン溶解装置1を備える鋳造装置の主要部の平面図である。また、図1(b)は、図1(a)のA-A断面図であり、図1(c)は、図1(a)のB-B断面図である。
(Configuration of titanium dissolution apparatus)
Fig.1 (a) is a top view of the principal part of a casting apparatus provided with the titanium melting | dissolving apparatus 1 which concerns on one Embodiment of this invention. 1B is a cross-sectional view taken along the line AA in FIG. 1A, and FIG. 1C is a cross-sectional view taken along the line BB in FIG.
 本発明のチタン溶解装置は、チタンまたはチタン合金の鋳塊を連続的に製造する鋳造装置に設けられる。本発明のチタン溶解装置は、原料である固体のチタンまたはチタン合金をプラズマ加熱により溶解させて溶湯とし、当該溶湯を流下させて鋳型に注入するよう働く。 The titanium melting apparatus of the present invention is provided in a casting apparatus that continuously manufactures an ingot of titanium or a titanium alloy. The titanium melting apparatus of the present invention works by melting solid titanium or a titanium alloy as a raw material by plasma heating to form a molten metal, and then pouring the molten metal into a mold.
 図1に示したように、本実施形態のチタン溶解装置1は、原料溶解用ハース2、中間ハース3などを備えている。プラズマトーチ5からのプラズマガスにより原料51が溶解した溶湯53は、原料溶解用ハース2から中間ハース3へ流下し、中間ハース3から鋳型4に流れ込む。本実施形態では、例示として多孔質のスポンジチタン(純チタン)を原料としている。 As shown in FIG. 1, the titanium melting apparatus 1 of the present embodiment includes a raw material melting hearth 2 and an intermediate hearth 3. The molten metal 53 in which the raw material 51 is melted by the plasma gas from the plasma torch 5 flows down from the raw material melting hearth 2 to the intermediate hearth 3 and flows from the intermediate hearth 3 into the mold 4. In this embodiment, as an example, porous sponge titanium (pure titanium) is used as a raw material.
 なお、ハース2,3および鋳型4などは、チャンバー(不図示)と呼ばれる容器の中に入れられている。ハース2,3および鋳型4のまわり(チャンバー内)は、アルゴンガス、ヘリウムガスなどの不活性ガスが充填された不活性ガス雰囲気とされている。 Note that the hearths 2, 3 and the mold 4 are placed in a container called a chamber (not shown). Around the hearths 2 and 3 and the mold 4 (inside the chamber) is an inert gas atmosphere filled with an inert gas such as argon gas or helium gas.
(原料溶解用ハース)
 原料溶解用ハース2は、底部を有する保持容器であり、原料51(スポンジチタン)をプラズマ加熱により溶解させて溶湯53とする役割を担う。原料溶解用ハース2は上方に開口しており、平面視においてその内周壁および外周壁は、いずれも正方形状とされている。図1(a)に示したように、原料溶解用ハース2の内周壁の一辺の長さをL1、これに垂直な一辺の長さをL2とすると、L1=L2とされている。なお、原料溶解用ハース2の内周壁のうち4つのコーナー部(角部)は、円弧状に面取りされている。このように、本発明において正方形形状は、正方形(内角がすべて直角で、辺の長さがすべて等しい四角形)だけでなく、コーナー部(角部)が面取りされた正方形も含む。
(Heart for melting raw materials)
The raw material melting hearth 2 is a holding container having a bottom, and plays a role of melting the raw material 51 (sponge titanium) by plasma heating to form a molten metal 53. The hearth 2 for melting the raw material is opened upward, and the inner peripheral wall and the outer peripheral wall are both square in plan view. As shown in FIG. 1A, when the length of one side of the inner peripheral wall of the raw material melting hearth 2 is L1, and the length of one side perpendicular thereto is L2, L1 = L2. Note that four corner portions (corner portions) of the inner peripheral wall of the raw material melting hearth 2 are chamfered in an arc shape. As described above, in the present invention, the square shape includes not only a square (a quadrangle in which all the inner angles are right angles and all the sides are equal), but also a square in which corner portions (corner portions) are chamfered.
 原料溶解用ハース2の内周壁および/または外周壁は、長方形形状であってもよい。原料溶解用ハース2の内周壁を長方形形状とする場合、その長辺の長さと短辺の長さとの比は、1.5以下とすることが好ましい。すなわち、図1(a)において、L1/L2、またはL2/L1の値は、1以上1.5以下であることが好ましい。なお、正方形は、長方形の一種であるとする。 The inner peripheral wall and / or outer peripheral wall of the raw material melting hearth 2 may be rectangular. When the inner peripheral wall of the raw material melting hearth 2 is rectangular, the ratio of the long side length to the short side length is preferably 1.5 or less. That is, in FIG. 1A, the value of L1 / L2 or L2 / L1 is preferably 1 or more and 1.5 or less. The square is a kind of rectangle.
 さらには、原料溶解用ハース2の内周壁および/または外周壁は、楕円または円であってもよい。原料溶解用ハース2の内周壁を楕円とする場合、その短軸の長さに対する長軸の長さの比の値は、1.5以下とすることが好ましい。すなわち、「長軸の長さ」/「短軸の長さ」の値は、1以上1.5以下であることが好ましい。なお、円は、楕円の一種であるとする。 Furthermore, the inner peripheral wall and / or outer peripheral wall of the hearth 2 for melting the raw material may be an ellipse or a circle. When the inner peripheral wall of the raw material melting hearth 2 is an ellipse, the ratio of the length of the major axis to the length of the minor axis is preferably 1.5 or less. That is, the value of “major axis length” / “minor axis length” is preferably 1 or more and 1.5 or less. A circle is a kind of ellipse.
 さらには、原料溶解用ハース2の内周壁および/または外周壁は、四角形以外の多角形であってもよい。多角形として、例えば八角形を挙げることができる。原料溶解用ハース2の内周壁を例えば八角形とする場合、正八角形に近い(縦横比が小さい)形とすることが好ましい。 Furthermore, the inner peripheral wall and / or outer peripheral wall of the hearth 2 for melting the raw material may be a polygon other than a rectangle. An example of the polygon is an octagon. When the inner peripheral wall of the hearth 2 for melting the raw material is, for example, an octagon, it is preferably a shape close to a regular octagon (a small aspect ratio).
 なお、原料溶解用ハース2は銅製であり、水で冷却されるようになっている。中間ハースおよび鋳型も同様である。 The hearth 2 for melting the raw material is made of copper and is cooled with water. The same applies to the intermediate hearth and the mold.
 原料溶解用ハース2の一側壁の上には、原料投入経路9が設けられている。この原料投入経路9から原料溶解用ハース2内へ、原料51が投入される。また、原料投入経路9が設けられたこの一側壁に垂直な側壁部には、溶湯出口流路11が設けられている。この溶湯出口流路11を経由して、原料溶解用ハース2から中間ハース3内へ、原料51が溶解してなる溶湯53が流れ込む。溶湯出口流路11は上方に開口している。 A raw material charging path 9 is provided on one side wall of the raw material melting hearth 2. The raw material 51 is charged into the raw material melting hearth 2 from the raw material charging path 9. Further, a molten metal outlet channel 11 is provided in a side wall portion perpendicular to the one side wall provided with the raw material charging path 9. A molten metal 53 formed by melting the raw material 51 flows from the raw material melting hearth 2 into the intermediate hearth 3 via the molten metal outlet channel 11. The molten metal outlet channel 11 opens upward.
 原料溶解用ハース2の上方には、プラズマトーチ5(プラズマ加熱装置)が配置されている。このプラズマトーチ5は、軸方向へスライド可能(上下動可能)、且つ360°どの方向にも揺動可能なように、軸受(不図示)を介してチャンバーの天井壁に取り付けられている。すなわち、プラズマトーチ5は、チャンバーを貫く形態でチャンバーに取り付けられている。また、プラズマトーチ5は、電動駆動または油圧駆動され、その制御装置(不図示)からの信号に応じてあらかじめ設定された移動パターンで動かされる。プラズマトーチ5は、手動に切り替えて手動で動かすこともできる。なお、これは、後述する中間ハース3の上方に配置されたプラズマトーチ5、鋳型4の上方に配置されたプラズマトーチ7、および図2、3に示したプラズマトーチ5,7に関しても同様である。これらのプラズマトーチも、その軸方向へスライド可能(上下動可能)、且つ360°どの方向にも揺動可能な態様で、チャンバーを貫く形態でチャンバーの天井壁に取り付けられる。また、これらのプラズマトーチも、電動駆動または油圧駆動され、あるいは手動に切り替えて手動で動かすこともできる。 A plasma torch 5 (plasma heating device) is disposed above the raw material melting hearth 2. The plasma torch 5 is attached to the ceiling wall of the chamber via a bearing (not shown) so as to be slidable in the axial direction (movable up and down) and to be able to swing in any direction of 360 °. That is, the plasma torch 5 is attached to the chamber so as to penetrate the chamber. Further, the plasma torch 5 is electrically driven or hydraulically driven and is moved with a movement pattern set in advance according to a signal from a control device (not shown). The plasma torch 5 can also be moved manually by switching to manual. This also applies to the plasma torch 5 disposed above the intermediate hearth 3 described later, the plasma torch 7 disposed above the mold 4, and the plasma torches 5 and 7 shown in FIGS. . These plasma torches are also attached to the ceiling wall of the chamber so as to penetrate the chamber in such a manner that the plasma torch can slide in the axial direction (movable up and down) and can swing in any direction of 360 °. Further, these plasma torches are also electrically driven or hydraulically driven, or can be moved manually by switching to manual operation.
 ここで、図1(a)中の太線の実線矢印は、プラズマトーチ5のプラズマ噴射部5a(または、プラズマ噴射部5aから噴射されるプラズマガスの中心)を移動(揺動および/またはスライド移動(上下動))させる範囲(移動パターン)を例示している。この構成によって、プラズマトーチ5からのプラズマガスにより、原料溶解用ハース2の中央部の溶湯53の湯面だけでなく、原料投入部2aの原料51(および溶湯53の湯面)や、溶湯出口流路11の溶湯53の湯面を、状況に応じて重点的にプラズマ加熱することができる。 Here, a thick solid arrow in FIG. 1A moves (oscillates and / or slides) in the plasma injection part 5a (or the center of the plasma gas injected from the plasma injection part 5a) of the plasma torch 5. The range (movement pattern) to be moved (up and down movement) is illustrated. With this configuration, the plasma gas from the plasma torch 5 causes not only the molten metal surface of the molten metal 53 at the center of the raw material melting hearth 2 but also the raw material 51 (and the molten metal surface of the molten metal 53) of the raw material charging unit 2a, and the molten metal outlet. The molten metal surface of the molten metal 53 in the channel 11 can be plasma-heated with priority depending on the situation.
 なお、図1(a)において、中間ハース3の上方であって中間ハース3の中央よりも左側に配置されたプラズマトーチ5を、例えば中間ハース3の中央よりも右側に配置すれば、当該プラズマトーチ5により、溶湯出口流路11の溶湯53の湯面をプラズマ加熱することができる。すなわち、原料投入部2aおよび溶湯出口流路11の湯面を同時にプラズマ加熱することも可能である。 In FIG. 1A, if the plasma torch 5 disposed above the intermediate hearth 3 and on the left side of the center of the intermediate hearth 3 is disposed on the right side of the center of the intermediate hearth 3, for example, the plasma With the torch 5, the molten metal surface of the molten metal 53 in the molten metal outlet channel 11 can be plasma heated. That is, it is possible to simultaneously plasma-heat the molten metal surface of the raw material charging part 2a and the molten metal outlet channel 11.
(電磁攪拌装置)
 原料溶解用ハース2の下には、電磁攪拌装置6が配置されている。より詳細には、電磁攪拌装置6は、原料溶解用ハース2の底面に対して所定の間隔をあけて、原料溶解用ハース2に対して下に近接配置されている。電磁攪拌装置6は、原料溶解用ハース2内の溶湯53に水平方向の旋回流を生じさせて溶湯53を攪拌するための装置である。電磁攪拌装置6は、交流電流を通電するEMS(Electro-Magnetic Stirrer)であってもよいし、機械回転式のものであってもよい。なお、チタンの溶解速度は遅いため、電磁攪拌装置6を設置せずにチタン原料の溶解のみを利用する場合の原料溶解用ハース2内の流速は、最大でも1cm/秒程度である。
(Electromagnetic stirring device)
An electromagnetic stirrer 6 is disposed under the raw material melting hearth 2. More specifically, the electromagnetic stirring device 6 is disposed close to the raw material melting hearth 2 at a predetermined interval with respect to the bottom surface of the raw material melting hearth 2. The electromagnetic stirring device 6 is a device for stirring the molten metal 53 by generating a horizontal swirling flow in the molten metal 53 in the raw material melting hearth 2. The electromagnetic stirring device 6 may be an EMS (Electro-Magnetic Stirrer) that energizes an alternating current, or may be a mechanical rotary type. Since the dissolution rate of titanium is slow, the flow rate in the raw material melting hearth 2 when only the dissolution of the titanium raw material is used without installing the electromagnetic stirring device 6 is about 1 cm / second at the maximum.
 図1(a)に溶湯53の攪拌方向Rで示したように、電磁攪拌装置6による溶湯53の攪拌方向としては、原料投入部2aから溶湯出口流路11への2つの攪拌方向のうち、距離が長い方の攪拌方向(図1(a)において時計回りの方向)が選択されることが好ましい。 As shown in the stirring direction R of the molten metal 53 in FIG. 1A, the stirring direction of the molten metal 53 by the electromagnetic stirring device 6 is, among the two stirring directions from the raw material charging unit 2a to the molten metal outlet channel 11, It is preferable that the longer stirring direction is selected (the clockwise direction in FIG. 1A).
(中間ハース)
 中間ハース3は、底部を有する保持容器であり、溶湯53の温度の均一化・介在物の沈降分離・溶解量変動に起因する鋳型4への溶湯流入量変化の低減などの役割を担う。中間ハース3は上方に開口しており、その内周壁および外周壁は、平面視においていずれも長方形形状とされている。ここで、本実施形態では、中間ハース3の周囲四辺のうちの長辺の一端部に原料溶解用ハース2が配置され、この長辺の他端部に鋳型4が配置されている。すなわち、原料溶解用ハース2と中間ハース3とはL字状に配置され、鋳型4を含めると全体として角のあるU字状に配置されている。
(Intermediate Hearth)
The intermediate hearth 3 is a holding container having a bottom, and plays a role such as equalizing the temperature of the molten metal 53, settling and separating the inclusions, and reducing changes in the amount of molten metal flowing into the mold 4 due to fluctuations in the molten amount. The intermediate hearth 3 is opened upward, and the inner peripheral wall and the outer peripheral wall thereof have a rectangular shape in plan view. Here, in the present embodiment, the raw material melting hearth 2 is disposed at one end of the long side of the four sides around the intermediate hearth 3, and the mold 4 is disposed at the other end of the long side. That is, the raw material melting hearth 2 and the intermediate hearth 3 are arranged in an L shape, and when the mold 4 is included, the whole is arranged in a U shape with a corner.
 ここで、中間ハース3の長い側の側壁の端部には、鋳型4への溶湯注入流路12が設けられている。原料溶解用ハース2から中間ハース3内へ流れ込んだ溶湯53は、中間ハース3内を流下した後、溶湯注入流路12を経由して鋳型4に流れ込む。溶湯注入流路12は上方に開口している。中間ハース3内を流下する溶湯53の湯面は、中間ハース3の上方に配置されたプラズマトーチ5によりプラズマ加熱される。これにより、溶湯53の凝固が防止される。なお、中間ハース3の上方に配置されたプラズマトーチ5のプラズマ噴射部(または、プラズマ噴射部から噴射されるプラズマガスの中心)を移動させる範囲は、図1(a)中に太線の実線矢印で例示されている。 Here, at the end of the long side wall of the intermediate hearth 3, a molten metal injection channel 12 to the mold 4 is provided. The molten metal 53 that has flowed into the intermediate hearth 3 from the raw material melting hearth 2 flows down into the intermediate hearth 3 and then flows into the mold 4 via the molten metal injection channel 12. The molten metal injection channel 12 opens upward. The surface of the molten metal 53 flowing down in the intermediate hearth 3 is heated by plasma by a plasma torch 5 disposed above the intermediate hearth 3. Thereby, solidification of the molten metal 53 is prevented. In addition, the range which moves the plasma injection part (or the center of the plasma gas injected from a plasma injection part) of the plasma torch 5 arrange | positioned above the intermediate hearth 3 is a thick solid line arrow in Fig.1 (a). It is illustrated by.
(鋳型)
 鋳型4は、流れ込んだ(注入された)溶湯53を凝固させて鋳塊55とするための、底部が設けられない鋳型である。鋳型4は、断面長方形形状とされているので、スラブ形状(直方体)の鋳塊55が得られる。鋳型4の下には引抜装置13が配置されており、溶湯53が凝固した鋳塊55が、引抜装置13で下方に引き抜かれながら鋳造される。なお、図1(c)における符号54は、凝固部を示している。鋳型4の上方には、プラズマトーチ7が配置されている。鋳型4に流れ込んだ溶湯53の湯面は、プラズマトーチ7によりプラズマ加熱される。
(template)
The mold 4 is a mold having no bottom portion for solidifying the molten (injected) molten metal 53 into an ingot 55. Since the mold 4 has a rectangular cross section, a slab-shaped (cuboid) ingot 55 is obtained. The drawing device 13 is disposed under the mold 4, and the ingot 55 in which the molten metal 53 is solidified is cast while being drawn downward by the drawing device 13. In addition, the code | symbol 54 in FIG.1 (c) has shown the solidification part. A plasma torch 7 is disposed above the mold 4. The surface of the molten metal 53 that has flowed into the mold 4 is plasma heated by the plasma torch 7.
 ここで、プラズマトーチ7のプラズマ噴射部(または、プラズマ噴射部から噴射されるプラズマガスの中心)を移動させる範囲は、図1(a)中に太線の実線矢印で例示されている。プラズマトーチ7がこのような範囲で移動可能であるので、プラズマトーチ7からのプラズマガスにより、鋳型4の溶湯53の湯面、および溶湯注入流路12の溶湯53の湯面をいずれも加熱できる。 Here, the range in which the plasma injection part (or the center of the plasma gas injected from the plasma injection part) of the plasma torch 7 is moved is illustrated by a thick solid arrow in FIG. Since the plasma torch 7 is movable in such a range, both the molten metal surface of the molten metal 53 of the mold 4 and the molten metal surface of the molten metal injection channel 12 can be heated by the plasma gas from the plasma torch 7. .
 なお、中間ハース3の上方に配置されたプラズマトーチ5の移動範囲を、溶湯注入流路12まで広げることで、当該プラズマトーチ5からのプラズマガスにより湯注入流路12の溶湯53の湯面を加熱することも可能である。 In addition, by extending the moving range of the plasma torch 5 disposed above the intermediate hearth 3 to the molten metal injection channel 12, the molten metal 53 of the molten metal 53 in the molten metal injection channel 12 is caused by the plasma gas from the plasma torch 5. Heating is also possible.
(作用・効果)
 本発明では、原料溶解用ハース2の底面に電磁攪拌装置6を近接配置し、この電磁攪拌装置6により原料溶解用ハース2内の溶湯53に旋回流を生じさせて、溶湯53を攪拌している。この構成によると、電磁攪拌装置6の電磁攪拌エネルギーのほとんどを、原料溶解用ハース2内の溶湯53の攪拌に用いることができ、原料溶解用ハース2での溶湯53の攪拌を十分に行うことができる。これにより、溶解効率が向上する。すなわち、原料51と溶湯53との接触速度を上げて、溶湯53から原料51への接触熱伝達率を増加させることができる。その結果、原料51の溶け残りが鋳型4に流入してしまったり、溶けきらない原料51がハースの底に沈降したりハース内壁に付着したりするなどの操業トラブルを、さらに防止することができる。また、本実施形態では、ハースからハースへ、ハースから鋳型へ、溶湯53を連続的に流しながら鋳造を行う。このような場合には、最も上流に位置する原料溶解用ハース2の底面に電磁攪拌装置6を近接配置して、原料溶解用ハース2内の溶湯53に旋回流を生じさせて溶湯53を攪拌することが特に重要となる。また、原料51の溶解効率が向上するため、原料溶解用ハース2の小型化が可能となり、電力効率が向上するというメリットもある。
(Action / Effect)
In the present invention, the electromagnetic stirrer 6 is disposed close to the bottom surface of the raw material melting hearth 2, and the electromagnetic stirrer 6 generates a swirling flow in the molten metal 53 in the raw material melting hearth 2 to stir the molten metal 53. Yes. According to this configuration, most of the electromagnetic stirring energy of the electromagnetic stirring device 6 can be used for stirring the molten metal 53 in the raw material melting hearth 2, and the molten metal 53 is sufficiently stirred in the raw material melting hearth 2. Can do. Thereby, dissolution efficiency improves. That is, the contact heat transfer rate from the molten metal 53 to the raw material 51 can be increased by increasing the contact speed between the raw material 51 and the molten metal 53. As a result, it is possible to further prevent operational troubles such as the undissolved raw material 51 flowing into the mold 4 or the undissolved raw material 51 sinking to the bottom of the hearth or adhering to the inner wall of the hearth. . In this embodiment, casting is performed while flowing the molten metal 53 continuously from Haas to Haas and from Haas to the mold. In such a case, an electromagnetic stirrer 6 is disposed close to the bottom surface of the raw material melting hearth 2 located at the most upstream, and a swirling flow is generated in the molten metal 53 in the raw material melting hearth 2 to stir the molten metal 53. It is especially important to do. Further, since the melting efficiency of the raw material 51 is improved, it is possible to reduce the size of the raw material melting hearth 2 and there is an advantage that the power efficiency is improved.
 また、本実施形態では、原料溶解用ハース2の内周壁を正方形形状としている(L1=L2)。すなわち、本実施形態では、原料溶解用ハース2の内周壁を長方形形状(または楕円)とし、且つ、内周壁の長辺(または長軸)の長さ/短辺(または短軸)の長さを、1以上1.5以下としている。これにより、原料溶解用ハース2内の旋回流の乱れを防止することができ、旋回流速を高く維持することができる。結果として、原料51と溶湯53との接触速度が、さらに上がる。図4は、比較例に係る原料溶解用ハース62を示す図である。図4に示したように、縦横比が大きい原料溶解用ハース62においては、ハース内の溶湯53に流れの弱い領域Sが生じる(旋回流が乱れる)。この流れの弱い領域Sへ原料51が飛ばされる結果、原料51の溶解効率が低下してしまう。 In the present embodiment, the inner peripheral wall of the raw material melting hearth 2 has a square shape (L1 = L2). That is, in this embodiment, the inner peripheral wall of the raw material melting hearth 2 has a rectangular shape (or ellipse), and the length of the long side (or long axis) / short side (or short axis) of the inner peripheral wall. 1 or more and 1.5 or less. Thereby, disturbance of the swirling flow in the raw material melting hearth 2 can be prevented, and the swirling flow velocity can be kept high. As a result, the contact speed between the raw material 51 and the molten metal 53 is further increased. FIG. 4 is a view showing a raw material melting hearth 62 according to a comparative example. As shown in FIG. 4, in the raw material melting hearth 62 having a large aspect ratio, a weak flow region S is generated in the molten metal 53 in the hearth (the swirl flow is disturbed). As a result of the raw material 51 being blown to the region S where the flow is weak, the melting efficiency of the raw material 51 is lowered.
 さらに、本実施形態では、電磁攪拌装置6による溶湯53の攪拌方向を、原料投入部2aから溶湯出口流路11への2つの攪拌方向のうち、距離が長い方の攪拌方向Rとする。これにより、原料投入部2aと溶湯出口流路11との間に短絡流が発生することを防止でき、原料51の溶け残りが原料溶解用ハース2から出ていくことを有効に防止することができる。 Furthermore, in this embodiment, the stirring direction of the molten metal 53 by the electromagnetic stirring device 6 is set to the stirring direction R having the longer distance among the two stirring directions from the raw material charging unit 2a to the molten metal outlet channel 11. Thereby, it can prevent that a short circuit flow generate | occur | produces between the raw material injection | throwing-in part 2a and the molten metal exit flow path 11, and can prevent effectively that the unmelted raw material 51 comes out from the hearth 2 for raw material melt | dissolution. it can.
 また、中間ハース3を配置し、中間ハース3内に溶湯53を流すことで、中間ハース3内でも溶湯53を攪拌することができる。なお、中間ハース3の下に電磁攪拌装置6を配置してもよい。この場合、介在物の沈降分離効率などを考慮して、電磁攪拌の強さを決めることになる。 Also, the molten metal 53 can be stirred in the intermediate hearth 3 by arranging the intermediate hearth 3 and flowing the molten metal 53 in the intermediate hearth 3. Note that an electromagnetic stirring device 6 may be disposed under the intermediate hearth 3. In this case, the strength of electromagnetic stirring is determined in consideration of the sedimentation efficiency of inclusions.
 また、溶湯出口流路11や溶湯注入流路12は、溶湯53が凝固しやすい部分である。溶湯出口流路112の溶湯53の湯面、溶湯注入流路12の溶湯53の湯面をプラズマ加熱できるようにしておくことで、これら流路部分での溶湯53の凝固を有効に防止することができる。 Further, the molten metal outlet channel 11 and the molten metal injection channel 12 are portions where the molten metal 53 is easily solidified. By making the surface of the molten metal 53 in the molten metal outlet channel 112 and the molten metal surface of the molten metal injection channel 12 plasma heated, it is possible to effectively prevent the molten metal 53 from solidifying in the flow channel portions. Can do.
(変形例1)
 図2は、図1に示したチタン溶解装置1の変形例を示す図である。なお、この変形例では、例示としてロッド状のチタン合金が原料52として使用される。なお、図1に示した構成部材と同様の構成部材については同じ符号を付している。
(Modification 1)
FIG. 2 is a view showing a modification of the titanium dissolving apparatus 1 shown in FIG. In this modification, a rod-shaped titanium alloy is used as the raw material 52 as an example. In addition, the same code | symbol is attached | subjected about the structural member similar to the structural member shown in FIG.
 チタン合金を原料とする場合、チタン(純チタン)を原料とする場合よりも、ハース内での溶湯53の滞留時間を長くする必要がある。チタン合金の鋳塊(製品)は、チタン(純チタン)の鋳塊(製品)よりも、介在物の含有率が低い必要がある。そのため、チタン合金を原料とする場合、沈降分離により溶湯53から介在物をより確実に除去する必要がある。 When titanium alloy is used as a raw material, the residence time of the molten metal 53 in the hearth needs to be longer than when titanium (pure titanium) is used as a raw material. The ingot (product) of the titanium alloy needs to have a lower inclusion content than the ingot (product) of titanium (pure titanium). Therefore, when using a titanium alloy as a raw material, it is necessary to more reliably remove inclusions from the molten metal 53 by sedimentation separation.
 本変形例のチタン溶解装置102では、正方形状の2個の中間ハース81,82を用いることで、ハースの容量を大きくし、溶湯53の滞留時間を長くしている。中間ハース81と中間ハース82との間には流路14が設けられている。1つの大きな中間ハースを用いても溶湯53の滞留時間を長くすることはできるが、複数の中間ハース81,82を用いることで、原料溶解用ハース2から鋳型4への短絡流(直送流)の発生をさらに防止することができる。これにより、原料52の溶け残りが鋳型10に流れ込むことを防止できる。 In the titanium melting apparatus 102 of this modification, the square heart-shaped two hearths 81 and 82 are used, so that the capacity of the hearth is increased and the residence time of the molten metal 53 is lengthened. A flow path 14 is provided between the intermediate hearth 81 and the intermediate hearth 82. Even if one large intermediate hearth is used, the residence time of the molten metal 53 can be lengthened, but by using a plurality of intermediate hearts 81 and 82, a short-circuit flow from the raw material melting hearth 2 to the mold 4 (direct flow) Can be further prevented. Thereby, it is possible to prevent the unmelted raw material 52 from flowing into the mold 10.
 チタン合金の原料52の成分は不均一なため、ハース内での溶湯53の十分な攪拌が必要である。この観点からも、原料溶解用ハース2の底面に電磁攪拌装置6を近接配置することにより、原料溶解用ハース2内の溶湯53に旋回流を生じさせて、溶湯53を攪拌することが好ましい。 Since the components of the titanium alloy raw material 52 are not uniform, it is necessary to sufficiently stir the molten metal 53 in the hearth. Also from this viewpoint, it is preferable to stir the molten metal 53 by causing the molten metal 53 in the raw material melting hearth 2 to generate a swirling flow by placing the electromagnetic stirring device 6 close to the bottom surface of the raw material melting hearth 2.
 また、図2中の太線の実線矢印は、図1(a)と同様に、プラズマトーチ5(または7)のプラズマ噴射部(または、プラズマ噴射部から噴射されるプラズマガスの中心)を移動(揺動および/またはスライド移動(上下動))させる範囲を例示している。本実施形態においても、各流路11,12,14の溶湯53の湯面をプラズマ加熱できるようになっている。尚、この点は、後述する図3に示したチタン溶解装置103についても同様である。 In addition, the thick solid arrow in FIG. 2 moves in the plasma injection part (or the center of the plasma gas injected from the plasma injection part) of the plasma torch 5 (or 7) (as in FIG. 1A) ( An example of a range of rocking and / or sliding movement (up and down movement) is illustrated. Also in this embodiment, the molten metal surface of the molten metal 53 of each flow path 11, 12, 14 can be heated by plasma. This also applies to the titanium dissolving apparatus 103 shown in FIG. 3 described later.
 なお、チタン合金の鋳塊は、主に円柱形状の製品とされるため、鋳型10は、断面円形の無底の鋳型とされている。 Since the ingot of titanium alloy is mainly a cylindrical product, the mold 10 is a bottomless mold having a circular cross section.
(変形例2)
 図3は、図1に示したチタン溶解装置1の変形例を示す図である。なお、図1に示した構成部材と同様の構成部材については同じ符号を付している。
(Modification 2)
FIG. 3 is a view showing a modification of the titanium dissolving apparatus 1 shown in FIG. In addition, the same code | symbol is attached | subjected about the structural member similar to the structural member shown in FIG.
 図1に示したチタン溶解装置1と本変形例のチタン溶解装置103との相違点は、中間ハースの形状、およびハース・鋳型の配置である。 The difference between the titanium melting apparatus 1 shown in FIG. 1 and the titanium melting apparatus 103 of this modification is the shape of the intermediate hearth and the arrangement of the hearth mold.
 本変形例では、中間ハース8の内周壁および外周壁を、原料溶解用ハース2と同じように正方形形状としている。なお、中間ハース8内の容量と、図1に示した中間ハース3内の容量とはほぼ同じである。 In the present modification, the inner peripheral wall and the outer peripheral wall of the intermediate hearth 8 are formed in a square shape in the same manner as the raw material melting hearth 2. Note that the capacity in the intermediate hearth 8 and the capacity in the intermediate hearth 3 shown in FIG. 1 are substantially the same.
 ハース・鋳型の配置に関しては、原料投入経路9・原料溶解用ハース2、中間ハース8、鋳型4がこの順で一列に並んで配置される。また、溶湯53は、鋳型4の長い側の側壁の中央部から鋳型4内へ注入するようになっている。なお、図1に示したチタン溶解装置1では、溶湯53が、鋳型4の短い側の側壁の中央部から鋳型4内へ注入するようになっている。 Regarding the arrangement of the hearth and the mold, the raw material charging path 9, the raw material melting hearth 2, the intermediate hearth 8, and the mold 4 are arranged in a line in this order. Further, the molten metal 53 is injected into the mold 4 from the center of the long side wall of the mold 4. In the titanium melting apparatus 1 shown in FIG. 1, the molten metal 53 is poured into the mold 4 from the central portion of the side wall on the short side of the mold 4.
 ここで、原料投入経路9、溶湯出口流路11、および溶湯注入流路12は、隣り合うもの同士が一直線上の配置とならないように、相互にずらされている。これにより、原料溶解用ハース2(さらには原料投入部2a)から鋳型4への短絡流(直送流)の発生を防止している。 Here, the raw material charging path 9, the molten metal outlet flow path 11, and the molten metal injection flow path 12 are shifted from each other so that adjacent ones are not arranged in a straight line. This prevents the occurrence of a short-circuit flow (direct flow) from the raw material melting hearth 2 (and the raw material charging portion 2a) to the mold 4.
 なお、図1および図2に示したチタン溶解装置1,102では、いずれも、ハースはL字状に配置され、鋳型を含めると全体でとして角のあるU字状に配置されている。図1および図2に示したチタン溶解装置1,102では、ハース・鋳型をこのような配置にすることで、原料溶解用ハース2から鋳型4への短絡流(直送流)の発生を防止できている。 In each of the titanium dissolving apparatuses 1 and 102 shown in FIGS. 1 and 2, the hearth is arranged in an L shape, and when a mold is included, the hearth is arranged in a U shape with a corner as a whole. In the titanium melting apparatuses 1 and 102 shown in FIGS. 1 and 2, by arranging the hearth and the mold in this way, it is possible to prevent the occurrence of a short circuit flow (direct flow) from the raw material melting hearth 2 to the mold 4. ing.
 以上、本発明の実施形態および変形例について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。 Although the embodiments and modifications of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. Is.
 本出願は2012年3月6日出願の日本特許出願(特願2012-049418)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on March 6, 2012 (Japanese Patent Application No. 2012-049418), the contents of which are incorporated herein by reference.
1:チタン溶解装置
2:原料溶解用ハース
3:中間ハース
4:鋳型
6:電磁攪拌装置
11:溶湯出口流路
12:溶湯注入流路
51:原料(スポンジチタン)
52:原料(ロッド状)
53:溶湯
1: Titanium melting device 2: Raw material melting hearth 3: Intermediate hearth 4: Mold 6: Electromagnetic stirrer 11: Melt outlet channel 12: Molten injection channel 51: Raw material (sponge titanium)
52: Raw material (rod shape)
53: Molten metal

Claims (6)

  1.  チタンまたはチタン合金の鋳塊を連続的に製造する装置に設けられ、原料である固体のチタンまたはチタン合金をプラズマ加熱により溶解させて溶湯とし、前記溶湯を流下させて鋳型に注入するチタン溶解装置であって、
     原料である固体のチタンまたはチタン合金が投入され、前記原料をプラズマ加熱により溶解させて溶湯とする原料溶解用ハースと、
     前記原料溶解用ハースの底面に近接配置され、前記原料溶解用ハース内の前記溶湯に旋回流を生じさせて前記溶湯を攪拌する電磁攪拌装置と、を備えることを特徴とする、チタン溶解装置。
    Titanium melting apparatus provided in an apparatus for continuously producing an ingot of titanium or titanium alloy, melting solid titanium or titanium alloy as a raw material by plasma heating to form a molten metal, and pouring the molten metal into a mold Because
    Raw material melting hearth is charged with solid titanium or a titanium alloy as a raw material, and the raw material is melted by plasma heating to form a molten metal,
    A titanium melting apparatus, comprising: an electromagnetic stirring device that is disposed close to a bottom surface of the raw material melting hearth and causes a swirl flow in the molten metal in the raw material melting hearth to stir the molten metal.
  2.  請求項1に記載のチタン溶解装置において、
     前記原料溶解用ハースの内周壁は長方形状または楕円とされており、
     (前記内周壁の長辺または長軸の長さ)/(前記内周壁の短辺または短軸の長さ)が1以上1.5以下であることを特徴とする、チタン溶解装置。
    The titanium dissolving apparatus according to claim 1, wherein
    The inner peripheral wall of the raw material melting hearth is rectangular or oval,
    Titanium melting apparatus, wherein (length of long side or long axis of inner peripheral wall) / (length of short side or short axis of inner peripheral wall) is 1 or more and 1.5 or less.
  3.  請求項1または2に記載のチタン溶解装置において、
     前記原料溶解用ハースは、原料投入部および溶湯出口流路を有し、
     前記電磁攪拌装置による前記溶湯の攪拌方向が、前記原料投入部から前記溶湯出口流路への2つの攪拌方向のうち、距離が長い方の攪拌方向とされていることを特徴とする、チタン溶解装置。
    The titanium dissolving apparatus according to claim 1 or 2,
    The raw material melting hearth has a raw material charging part and a molten metal outlet channel,
    Titanium melting characterized in that the stirring direction of the molten metal by the electromagnetic stirring device is the longer stirring direction of the two stirring directions from the raw material charging section to the molten metal outlet channel apparatus.
  4.  請求項1に記載のチタン溶解装置において、
     前記原料溶解用ハースは、原料投入部および溶湯出口流路を有し、
     前記原料溶解用ハース内の前記溶湯の湯面だけでなく前記溶湯出口流路内の前記溶湯の湯面もプラズマ加熱できるようにされていることを特徴とする、チタン溶解装置。
    The titanium dissolving apparatus according to claim 1, wherein
    The raw material melting hearth has a raw material charging part and a molten metal outlet channel,
    The titanium melting apparatus, wherein not only the molten metal surface in the raw material melting hearth but also the molten metal surface in the molten metal outlet channel can be heated by plasma.
  5.  請求項1に記載のチタン溶解装置において、
     前記原料溶解用ハースから前記溶湯が流れ込む中間ハースを備え、
     前記中間ハースへと流れ込んだ前記溶湯が流下した後前記鋳型に流れ込むことを特徴とする、チタン溶解装置。
    The titanium dissolving apparatus according to claim 1, wherein
    An intermediate hearth into which the molten metal flows from the raw material melting hearth,
    The titanium melting apparatus, wherein the molten metal that has flowed into the intermediate hearth flows down into the mold after flowing down.
  6.  請求項5に記載のチタン溶解装置において、
     前記中間ハースは、前記鋳型への溶湯注入流路を有し、
     前記中間ハース内の前記溶湯の湯面および前記溶湯注入流路内の前記溶湯の湯面がいずれもプラズマ加熱できるようにされていることを特徴とする、チタン溶解装置。
    The titanium dissolving apparatus according to claim 5,
    The intermediate hearth has a melt injection channel to the mold,
    The titanium melting apparatus, wherein both the molten metal surface in the intermediate hearth and the molten metal surface in the molten metal pouring channel can be heated by plasma.
PCT/JP2013/056125 2012-03-06 2013-03-06 Titanium melting device WO2013133318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-049418 2012-03-06
JP2012049418A JP5878398B2 (en) 2012-03-06 2012-03-06 Titanium melting equipment

Publications (1)

Publication Number Publication Date
WO2013133318A1 true WO2013133318A1 (en) 2013-09-12

Family

ID=49116791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056125 WO2013133318A1 (en) 2012-03-06 2013-03-06 Titanium melting device

Country Status (2)

Country Link
JP (1) JP5878398B2 (en)
WO (1) WO2013133318A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125624A1 (en) * 2014-02-24 2015-08-27 株式会社神戸製鋼所 Continuous casting device for ingot formed from titanium or titanium alloy
CN108788040A (en) * 2018-07-04 2018-11-13 上海大学 A kind of device of hydrogen plasma melting continuously casting production high pure metal target blankss

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009216B1 (en) * 2013-11-13 2015-09-04 Aubert & Duval Sa TOOLING FOR ATTACHING A HITCH HEAD TO A CASTING ELECTRODE IN A MOLD, AND ASSOCIATED INSTALLATION AND METHOD
JP6279963B2 (en) * 2014-04-15 2018-02-14 株式会社神戸製鋼所 Continuous casting equipment for slabs made of titanium or titanium alloy
JP6389679B2 (en) * 2014-07-24 2018-09-12 大亜真空株式会社 Metal melting method
FR3033508B1 (en) * 2015-03-12 2018-11-09 Safran Aircraft Engines PROCESS FOR MANUFACTURING TURBOMACHINE PIECES, BLANK AND FINAL PIECE
KR101977359B1 (en) * 2017-10-23 2019-05-10 주식회사 포스코 Casting Apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417540A (en) * 1977-06-29 1979-02-08 Mansfeld Kombinat W Pieck Veb Plasma melting furnace
JPS62131194A (en) * 1985-12-02 1987-06-13 株式会社神戸製鋼所 Hearth for electromagnetic agitation of vacuum melting furnace
JP2005508758A (en) * 2001-11-16 2005-04-07 アーエルデー ヴァキューム テクノロジース アーゲー Method for producing an alloy ingot
JP2009161855A (en) * 2007-12-10 2009-07-23 Toho Titanium Co Ltd Method for melting metal using electron beam melting furnace, and melting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417540A (en) * 1977-06-29 1979-02-08 Mansfeld Kombinat W Pieck Veb Plasma melting furnace
JPS62131194A (en) * 1985-12-02 1987-06-13 株式会社神戸製鋼所 Hearth for electromagnetic agitation of vacuum melting furnace
JP2005508758A (en) * 2001-11-16 2005-04-07 アーエルデー ヴァキューム テクノロジース アーゲー Method for producing an alloy ingot
JP2009161855A (en) * 2007-12-10 2009-07-23 Toho Titanium Co Ltd Method for melting metal using electron beam melting furnace, and melting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125624A1 (en) * 2014-02-24 2015-08-27 株式会社神戸製鋼所 Continuous casting device for ingot formed from titanium or titanium alloy
JP2015157296A (en) * 2014-02-24 2015-09-03 株式会社神戸製鋼所 Continuous casting device of ingot made of titanium or titanium alloy
CN108788040A (en) * 2018-07-04 2018-11-13 上海大学 A kind of device of hydrogen plasma melting continuously casting production high pure metal target blankss

Also Published As

Publication number Publication date
JP5878398B2 (en) 2016-03-08
JP2013184173A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
WO2013133318A1 (en) Titanium melting device
JP6861823B2 (en) Casting method
JP5918572B2 (en) Continuous casting apparatus and continuous casting method for titanium ingot and titanium alloy ingot
WO2016093328A1 (en) Molten metal quality improving type low pressure casting method and device, molten metal quality improving type squeeze casting method and device, continuous casting method and continuous casting device with molten metal quality improving device, and casting method and casting device
EP2794149B1 (en) Arrangement and method for flow control of molten metal in a continuous casting process
CN103797323B (en) For reducing the method and apparatus of whirlpool in metal manufacturing process
KR101737721B1 (en) Continuous casting method for slab made of titanium or titanium alloy
JP6931749B1 (en) Levitation melting method using a movable induction unit
CN1150069C (en) Combined electromagnetic crystallizer for conticasting
JP6931748B1 (en) Levitation melting device and method using tilt induction unit
JP6961110B2 (en) Floating melting method using cyclic elements
JPH0520673B2 (en)
JP2008100248A (en) Continuously casting tundish, and method of continuous casting
JP5774419B2 (en) Continuous casting equipment for slabs made of titanium or titanium alloy
EP3414033A1 (en) Apparatus and method for casting ingots
WO2014208340A1 (en) Continuous casting apparatus for ingots obtained from titanium or titanium alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13757924

Country of ref document: EP

Kind code of ref document: A1