JPH11310833A - Method for melting metal and alloy and melting and casting method thereof - Google Patents

Method for melting metal and alloy and melting and casting method thereof

Info

Publication number
JPH11310833A
JPH11310833A JP10119171A JP11917198A JPH11310833A JP H11310833 A JPH11310833 A JP H11310833A JP 10119171 A JP10119171 A JP 10119171A JP 11917198 A JP11917198 A JP 11917198A JP H11310833 A JPH11310833 A JP H11310833A
Authority
JP
Japan
Prior art keywords
melting
metal
molten metal
alloy
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10119171A
Other languages
Japanese (ja)
Other versions
JP3571212B2 (en
Inventor
Tatsuhiko Sodo
龍彦 草道
Koichi Sakamoto
浩一 坂本
Hitoshi Ishida
斉 石田
Shingo Ninagawa
伸吾 蜷川
Motohiro Nagao
元裕 長尾
Katsuyuki Yoshikawa
克之 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11917198A priority Critical patent/JP3571212B2/en
Publication of JPH11310833A publication Critical patent/JPH11310833A/en
Application granted granted Critical
Publication of JP3571212B2 publication Critical patent/JP3571212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • General Induction Heating (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a melting and casting method with which various shapes of melting raw materials are melted in the lump and the adjustment of components in the molten metal can be executed and a cast block can be produced by tapping the molten metal just after melting. SOLUTION: In a melting method with which melting treatment is executed by high frequency induction heating at the time of producing a metal and alloy cast block, a crucible 4 for melting, having >=400 mm inner diameter, is constituted with a square or round shaped peripheral barrel part formed by combining many long bar-like copper materials water-cooled in the inner part in a cylindrical shape and a bottom part formed with the copper material water-cooled in the inner part. A high frequency induction coil 5 is wound around the outside of the peripheral barrel part and a high frequency current satisfying the frequency range shown in the following formula is supplied to the high frequency induction coil 5 from a high frequency electric source. The formula is 7.8-2×log D<=log F<=8.7-2× log D. Wherein, F is the frequency of the high frequency electric source (Hz) and D is the inner diameter of the crucible (mm).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チタン等の活性金
属やその合金、あるいはクロム等の高融点金属やその合
金、又は超高清浄性が要求される各種金属合金材料につ
いての溶解技術及び溶解鋳造技術に関する。
The present invention relates to a melting technique and a melting technique for an active metal such as titanium or an alloy thereof, a high melting point metal such as chromium or an alloy thereof, or various metal alloy materials requiring ultra-high cleanliness. Related to casting technology.

【0002】[0002]

【従来の技術】チタン等の活性な金属・合金の溶解鋳造
方法としては、真空アーク溶解法や電子ビーム溶解法、
プラズマアーク溶解法などが工業的規模での溶解鋳造法
に適しているところから、従来から多用されている。
2. Description of the Related Art As a method for melting and casting active metals and alloys such as titanium, there are vacuum arc melting method, electron beam melting method,
Since the plasma arc melting method and the like are suitable for the melting and casting method on an industrial scale, they have been widely used.

【0003】これらの溶解法はいずれも原理的に溶融金
属の表面のみを加熱する方式であるため、多量の溶融金
属浴を形成することが困難である。このため、一括して
溶融し、溶湯での成分調整を行った後、出湯して鋳塊を
製造する溶解鋳造方式が採用できなく、それに替わって
溶解材料自体で成分調整を行い、これを逐次溶解しては
凝固させて鋳塊を製造する方法が用いられている。この
ような溶解鋳造方法は、チタン等の活性金属・合金の溶
解法としては幾らかの実績がある方法ではあるが、様々
な形状・組成を有するスクラップの有効活用の見地から
すると大きな制約がある。
[0003] Since each of these melting methods is a method of heating only the surface of the molten metal in principle, it is difficult to form a large amount of molten metal bath. For this reason, it is impossible to adopt a melting and casting method in which the molten metal is melted all at once and the components are adjusted in the molten metal, and then the molten metal is poured out to produce an ingot.Instead, the components are adjusted in the molten material itself, and this is sequentially performed. A method of producing an ingot by melting and solidifying is used. Although such a melting casting method is a method with some results as a method for melting active metals and alloys such as titanium, there is a great limitation from the viewpoint of effective use of scrap having various shapes and compositions. .

【0004】また、チタン等の活性金属・合金の溶解に
際しては、るつぼ材として石灰系の耐火物を用いる方法
も試みられているが、溶融金属浴温度が1700℃以上
になると著しくるつぼ耐火物と反応して、溶湯中の酸素
含有量が数千ppmにも達して、材料としての仕様を外
れてしまうことが知られている。これは、溶融金属がる
つぼ材と反応して、溶融金属浴自体が汚染されるためで
ある。
For dissolving active metals and alloys such as titanium, a method using a lime-based refractory as a crucible material has also been tried. However, when the temperature of the molten metal bath becomes 1700 ° C. or more, the refractory refractory becomes remarkable. It is known that the oxygen content in the molten metal reaches thousands of ppm due to the reaction, and the specification as a material is deviated. This is because the molten metal reacts with the crucible material and contaminates the molten metal bath itself.

【0005】このため、工業的には水冷した銅材でるつ
ぼを構成し、この銅るつぼと接した溶湯が直ちに凝固し
て凝固層を形成し、溶融金属浴はその凝固層の内側に保
持される方式で、真空アーク溶解法や電子ビーム溶解
法、プラズマアーク溶解法などによる溶解が行われてい
る。
For this reason, industrially, a crucible is made of a water-cooled copper material, and the molten metal in contact with the copper crucible immediately solidifies to form a solidified layer, and the molten metal bath is held inside the solidified layer. In this method, melting is performed by a vacuum arc melting method, an electron beam melting method, a plasma arc melting method, or the like.

【0006】[0006]

【発明が解決しようとする課題】従来から用いられてい
るコールドクルーシブル誘導溶解法と称される水冷銅る
つぼ利用の誘導溶解法は、原理的には種々の形状の溶解
原料が利用でき、これを一括溶融して成分調整した後、
鋳造を行うことができる溶解法ではあるが、工業規模で
利用できるるつぼサイズでの溶解技術が未だ確立されて
おらず、従って、現実には利用できない状況にある。
The induction melting method using a water-cooled copper crucible, which is conventionally called a cold crucible induction melting method, can use various shapes of melting raw materials in principle. After batch melting and component adjustment,
Although it is a melting method capable of performing casting, a melting technique in a crucible size that can be used on an industrial scale has not yet been established, and therefore, it cannot be used in practice.

【0007】本発明は、このような従来の懸案とされる
問題点の解消を図るために成されたものであり、従っ
て、本発明の目的は、様々の形状の溶解原料を一括して
溶融して、溶湯での成分調整を行うことができ、さら
に、溶融直後において出湯して鋳塊を製造することがで
きて、しかもこれを工業的規模で高純度かつ高均質の下
に達成し得る如き新規な溶解鋳造方式を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem. Therefore, an object of the present invention is to melt molten materials of various shapes at once. Then, the components can be adjusted in the molten metal, and further, the molten metal can be discharged immediately after melting to produce an ingot, and this can be achieved under high purity and high homogeneity on an industrial scale. It is an object of the present invention to provide a novel melting casting method.

【0008】[0008]

【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。即
ち、本発明に関して請求項1の発明は、チタン、ジルコ
ニウム、希土類元素、シリコン、アルミニウムを含む活
性金属元素を主成分とする金属・合金、あるいはクロ
ム、バナジウムを含む融点の高い金属元素を主成分とす
る金属・合金、又は非金属介在物含有量の極めて少ない
超高清浄性が要求される鉄基、ニッケル基、コバルト基
合金、銅基を含む金属・合金の鋳塊を製造するに際し
て、高周波誘導加熱を加熱原理として溶解処理する金属
・合金の溶解方法において、内部が水冷される角形又は
丸形の長尺棒状の銅材を複数本筒状に組み合わせて形成
される周胴部と内部が水冷される銅材で形成される底部
とにより内径が400mm以上の溶解用るつぼを構成
し、前記周胴部の外側に高周波誘導コイルを巻装して、
前記高周波誘導コイルに対し次式で示す周波数範囲を満
足する高周波電流を高周波電源から通電することによ
り、前記底部の上に溶融金属・合金の凝固物、溶解原料
自体から成る固相の領域を形成させて、この固相の上に
溶融浴を保持させつつ溶解原料の溶解を行うことを特徴
とする金属・合金の溶解方法である。 7.8−2×log(D)≦log(F)≦8.7−2
×log(D) 但し、F:高周波電源の周波数 (HZ) D:るつぼの内径 (mm)
The present invention has the following configuration to achieve the above object. That is, the invention of claim 1 relates to a metal / alloy mainly containing an active metal element containing titanium, zirconium, rare earth element, silicon and aluminum, or a metal element having a high melting point containing chromium and vanadium. When manufacturing ingots of metals / alloys containing metals or alloys containing non-metallic inclusions and extremely low cleanliness that require ultra-high cleanliness, such as iron-based, nickel-based, cobalt-based alloys, and copper-based metals and alloys, In the method of melting metals and alloys in which the melting treatment is performed using induction heating as a heating principle, the peripheral body formed by combining a plurality of rectangular or round long rod-shaped copper materials whose inside is water-cooled into a cylindrical shape, and the inside is water-cooled. By forming a melting crucible having an inner diameter of 400 mm or more with the bottom formed of a copper material, a high-frequency induction coil is wound around the outer body,
A high-frequency current that satisfies the frequency range given by the following formula is applied to the high-frequency induction coil from a high-frequency power source to form a solid phase region composed of a molten metal / alloy solidified material and a molten raw material itself on the bottom. This is a method for dissolving a metal / alloy, which comprises dissolving a raw material while holding a molten bath on the solid phase. 7.8-2 × log (D) ≦ log (F) ≦ 8.7-2
× log (D) where F: frequency of high frequency power supply (HZ) D: inner diameter of crucible (mm)

【0009】また、本発明における請求項2の発明は、
上記請求項1の発明に関して、前記溶解原料を溶解用る
つぼに装入するに先立って、それまでの溶解により形成
されてなる固相物を前記底部上側に載置したままで、溶
解原料をその上に装入した後、高周波誘導コイルに高周
波電流を通電して加熱溶融を行い、かつ所定量になるま
で溶解原料を追加装入することを特徴とする金属・合金
の溶解方法である。
Further, the invention of claim 2 of the present invention provides:
Regarding the invention of claim 1, prior to charging the melting raw material into a melting crucible, the solid raw material formed by the previous melting is placed on the upper side of the bottom, and A metal / alloy melting method characterized in that a high-frequency current is passed through a high-frequency induction coil to heat and melt after being charged above, and a melting raw material is additionally charged until a predetermined amount is reached.

【0010】また、本発明における請求項3の発明は、
上記請求項1又は2の発明に関して、前記溶解原料の溶
解に際して、フッ化物、塩化物、酸化物等から構成され
る添加物を装入して同時に加熱溶融させるか、又は金属
浴が形成された後に前記添加物を装入することを特徴と
する金属・合金の溶解方法である。
[0010] The invention of claim 3 in the present invention provides:
Regarding the invention of claim 1 or 2, when dissolving the dissolving raw material, an additive composed of a fluoride, a chloride, an oxide or the like is charged and heated and melted simultaneously, or a metal bath is formed. A method for dissolving a metal or an alloy, wherein the additive is added later.

【0011】また、本発明における請求項4の発明は、
上記請求項1、2又は3の発明に関して、形成された溶
融金属浴から成分分析用試料を採取し、その速やかな分
析の結果に基づいて、前記溶解原料を追加装入すること
により、所定の合金成分組成に調整することを特徴とす
る金属・合金の溶解方法である。
[0011] The invention of claim 4 in the present invention provides:
According to the first, second or third aspect of the present invention, a sample for component analysis is collected from the formed molten metal bath, and based on the result of the prompt analysis, the melted raw material is additionally charged to thereby obtain a predetermined solution. This is a method of melting a metal or alloy, which is adjusted to an alloy component composition.

【0012】また、本発明における請求項5の発明は、
上記請求項1、2、3又は4の発明に関して、溶解、出
湯の操作を真空雰囲気下又は不活性ガスの減圧・常圧・
加圧雰囲気下で実施することを特徴とする金属・合金の
溶解方法である。
Further, the invention of claim 5 in the present invention provides:
According to the invention of claim 1, 2, 3 or 4, the operation of melting and tapping is performed under a vacuum atmosphere or reduced pressure / normal pressure of an inert gas.
This is a method for melting a metal or alloy, which is carried out under a pressurized atmosphere.

【0013】また、本発明における請求項6の発明は、
上記請求項1、2、3、4又は5の金属・合金の溶解方
法による溶解工程と、その直後において前記金属・合金
の鋳塊を製造する鋳造工程とを備える溶解鋳造方法であ
って、水冷される栓が取付けられた溶融金属浴出湯用の
ノズルの1個以上が前記溶解用るつぼの底部又は/及び
周胴部下方部分に取付けられるとともに、前記ノズルの
下部に鋳型が設けられて、前記栓を取り除いて、溶解用
るつぼの底部又は周胴部下方部分に形成されてなる固相
部を溶融金属浴自体の熱により溶融させて、溶解用るつ
ぼ内の溶融金属をノズルより出湯させ、前記鋳型内に注
入して凝固させて鋳塊を製造することを特徴とする金属
・合金の溶解鋳造方法である。
[0013] The invention of claim 6 in the present invention provides:
A melting casting method comprising: a melting step of the metal / alloy melting method according to claim 1, 2, 3, 4 or 5; and a casting step of manufacturing an ingot of the metal / alloy immediately after the melting step. At least one of the nozzles for molten metal tapping to which the stopper to be attached is attached is attached to the bottom of the melting crucible or / and the lower part of the peripheral body, and a mold is provided at the lower part of the nozzle. Remove the stopper, melt the solid phase formed at the bottom of the melting crucible or the lower part of the peripheral body by the heat of the molten metal bath itself, let the molten metal in the melting crucible out of the nozzle from the nozzle, This is a method for melting and casting metals and alloys, which comprises injecting into a mold and solidifying to produce an ingot.

【0014】また、本発明における請求項7の発明は、
上記請求項6の発明に関して、内部が水冷される角形又
は丸形の長尺棒状の銅材を複数本筒状に組み合わせて前
記溶融金属浴出湯用のノズルが形成されるとともに、そ
の外側に高周波誘導コイルが巻装されてなり、前記溶解
用るつぼ内の溶融金属浴を出湯する際に、前記ノズル内
で凝固してなる金属塊を、前記高周波誘導コイルに高周
波電流を通電することにより加熱溶融して、溶解用るつ
ぼ内の溶融金属浴を出湯させることを特徴とする金属・
合金の溶解鋳造方法である。
[0014] The invention of claim 7 in the present invention provides:
According to the sixth aspect of the present invention, a nozzle for the molten metal bath is formed by combining a plurality of rectangular or round long rod-shaped copper materials whose inside is water-cooled into a cylindrical shape, and a high-frequency nozzle is formed outside the nozzle. When an induction coil is wound and a molten metal bath in the melting crucible is discharged, a metal lump solidified in the nozzle is heated and melted by applying a high-frequency current to the high-frequency induction coil. And, the molten metal bath in the melting crucible is poured out of the metal
This is a method of melting and casting alloys.

【0015】また、本発明における請求項8の発明は、
上記請求項6又は7の発明に関して、前記溶融金属浴出
湯用のノズルより出湯される溶融金属を水冷される鋳型
内に注入して、上表面側では溶融した状態を維持させつ
つ下方側より凝固させて、溶融金属注入速度に対応する
速度で凝固塊の引き抜きを行い、鋳塊を製造することを
特徴とする金属・合金の溶解鋳造方法である。
[0015] The invention of claim 8 in the present invention provides:
According to the invention of claim 6 or 7, the molten metal discharged from the molten metal bath tapping nozzle is poured into a water-cooled mold, and solidified from the lower side while maintaining a molten state on the upper surface side. This is a method of melting and casting a metal / alloy, wherein a solidified ingot is drawn at a speed corresponding to a molten metal injection speed to produce an ingot.

【0016】また、本発明における請求項9の発明は、
上記請求項6、7又は8の発明に関して、溶解、出湯、
鋳造の操作を真空雰囲気下又は不活性ガスの減圧・常圧
・加圧雰囲気下で実施することを特徴とする金属・合金
の溶解鋳造方法である。
Further, the invention of claim 9 in the present invention provides:
According to the invention of claim 6, 7, or 8, melting, tapping,
This is a method for melting and casting metals and alloys, wherein the casting operation is performed in a vacuum atmosphere or in a reduced pressure, normal pressure, or pressurized atmosphere of an inert gas.

【0017】[0017]

【発明の実施の形態】以下、本発明の好ましい実施形態
を、添付図面を参照しながら具体的に説明する。図1に
は本発明の実施の形態に係る溶解鋳造手段が概念図で示
される。また図2には本発明の実施の形態に係る溶解用
るつぼの直径と高周波電源周波数との関係線図が示され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings. FIG. 1 is a conceptual view showing a melting casting means according to an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the diameter of the melting crucible according to the embodiment of the present invention and the high frequency power supply frequency.

【0018】図1を参照して、溶解原料mである金属又
は/及び金属合金は、原料室1内の供給バケット10に
収納され、所定量が直下に配設された真空誘導溶解炉2
内の溶解用るつぼ4に供給される。この真空誘導溶解炉
2内には、角形又は丸形の長尺棒状を成して内部が水冷
される複数個の水冷銅セグメントを縦円筒状に組み合わ
せて形成される周胴部と、内部が水冷される銅材で形成
される底部とにより分割型水冷銅鋳型に構成される溶解
用るつぼ4と、このるつぼ4の外周に囲ませて設けられ
る高周波誘導コイル5と、溶解用るつぼ4の底部に連結
された出湯用ノズル7とが収設されており、また、真空
誘導溶解炉2の真空チャンバーには、真空排気手段6が
接続されている。
Referring to FIG. 1, a metal and / or a metal alloy, which is a melting raw material m, is stored in a supply bucket 10 in a raw material chamber 1 and a predetermined amount of vacuum induction melting furnace 2 is disposed immediately below.
Is supplied to the melting crucible 4 in the inside. In this vacuum induction melting furnace 2, a peripheral body formed by combining a plurality of water-cooled copper segments, each of which has a rectangular or round long rod shape and the inside of which is water-cooled, in a vertical cylindrical shape, and the inside of which is water-cooled Melting crucible 4 constituted by a split type water-cooled copper mold with a bottom portion formed of a copper material, a high-frequency induction coil 5 provided around the outer periphery of the crucible 4, and a bottom portion of the melting crucible 4 The hot water supply nozzle 7 is housed therein, and the vacuum chamber of the vacuum induction melting furnace 2 is connected to a vacuum exhaust means 6.

【0019】溶解用るつぼ4に供給された溶解原料m
は、真空排気手段6により排気されてなる真空チャンバ
ー内の減圧雰囲気下で高周波誘導コイル5による加熱に
よって溶解され、その際、溶解用るつぼ4内は、例えば
脱酸剤付加と、133.322×10-3〜10-4Paの
真空又はAr等不活性ガスの雰囲気との条件が維持され
る。
Melting raw material m supplied to melting crucible 4
Is melted by heating by the high-frequency induction coil 5 under a reduced pressure atmosphere in a vacuum chamber evacuated by the vacuum evacuation means 6, and at this time, the inside of the melting crucible 4 is added with, for example, a deoxidizing agent and 133.322 × The conditions of a vacuum of 10 −3 to 10 −4 Pa or an atmosphere of an inert gas such as Ar are maintained.

【0020】溶解用るつぼ4内で溶解された溶解原料m
は、出湯用ノズル7から取り出され、その直下に設けら
れた鋳造室内の例えば鋳型3に供給されて鋳造された
後、インゴット9として鋳型3から取り出される。前記
出湯用ノズル7は、内部が水冷される角形又は丸形の長
尺棒状を成す銅材を複数本組み合わせて縦筒状に形成し
たノズル本体部11と、その外側に巻装させた高周波誘
導コイル12とを備えている。
The melting raw material m dissolved in the melting crucible 4
Is taken out of the tapping nozzle 7, is supplied to, for example, the mold 3 in a casting chamber provided immediately below, and is cast, and then is taken out of the mold 3 as an ingot 9. The tapping nozzle 7 has a nozzle body 11 formed in a vertical cylindrical shape by combining a plurality of rectangular or round long rod-shaped copper materials, the inside of which is water-cooled, and a high-frequency induction wound around the outside thereof. And a coil 12.

【0021】溶解原料mを例えば高融点の金属系である
として、水冷銅構造の溶解用るつぼ4を用いる誘導溶解
技術が、るつぼ内径(直径)が400mm以上の工業規
模のものでも成立することは、本発明者等が行った検討
・実験の結果に基づいて明らかとなった。本発明が対象
とする溶解法についてはこれまで、直径300mm以下
程度の実験設備においての実績はあるが、工業規模の大
型炉での安定操業に必要な諸条件を明確にした事例は今
のところ全く見当たらない。そこで、本発明者等は、工
業規模の大型炉でも本発明方法を適用することにより工
業的に成立し得ることを明らかにしたのである。
Assuming that the melting raw material m is, for example, a metal material having a high melting point, the induction melting technique using the melting crucible 4 having a water-cooled copper structure can be established even on an industrial scale having a crucible inner diameter (diameter) of 400 mm or more. It has become clear based on the results of studies and experiments conducted by the present inventors. So far, the melting method targeted by the present invention has been used in experimental facilities with a diameter of about 300 mm or less, but there are no cases where the conditions necessary for stable operation in an industrial-scale large furnace have been clarified. I can't find it at all. Therefore, the present inventors have clarified that even a large-scale furnace on an industrial scale can be industrially established by applying the method of the present invention.

【0022】融点が著しく低い金属材料、例えば錫(融
点,232℃)の場合、水冷銅構造の溶解用るつぼ4自
体と反応して、該るつぼ4を溶損するためこの溶解法に
は適用できない。これは、水冷銅からなるるつぼの銅材
自体の温度は高温部で100〜250℃程度の温度にな
るため、溶解材料の融点がこれと同程度の場合、銅るつ
ぼに溶融金属が接触しても凝固層を形成することができ
ず、そのために銅自体を溶融させてしまうからである。
従って、溶解対象となる材料はその融点が500℃程度
以上である高融点の金属・合金材料に限定する必要があ
る。
In the case of a metal material having a remarkably low melting point, for example, tin (melting point: 232 ° C.), it reacts with the melting crucible 4 having a water-cooled copper structure and melts the crucible 4, so that it cannot be applied to this melting method. This is because the temperature of the copper material itself in the crucible made of water-cooled copper is about 100 to 250 ° C. in the high temperature part, so when the melting point of the molten material is about the same, the molten metal comes into contact with the copper crucible. This is also because a solidified layer cannot be formed, thereby melting the copper itself.
Therefore, it is necessary to limit the material to be melted to a high melting point metal or alloy material whose melting point is about 500 ° C. or higher.

【0023】本発明に係る溶解法は、水冷銅からなるる
つぼ内に金属浴を形成させて溶解し、合金を製造する方
法であるが、るつぼ底面と接する部分には溶融金属合金
自体による固相物8の層(凝固層)を形成させてその上
側に溶融金属浴を保持させており、一方、溶融金属浴の
側周面部を高周波誘導コイル5の高周波電流による電磁
気力によって加振状態で保持させることにより、溶融金
属浴の側周面部が銅るつぼと強固に接触することを抑制
しつつ溶解を維持し得る点に特徴を有する方式であり、
このような態様を確実に維持するには、高周波電源の周
波数範囲を適切な条件に設定する必要がある。すなわ
ち、周波数が低すぎると、溶融金属浴の攪拌が激しくな
りすぎて、溶融金属浴の乱れが大きくなり、銅るつぼと
接触しやすくなって溶解が不安定となる。
The melting method according to the present invention is a method in which a metal bath is formed in a crucible made of water-cooled copper and melted to produce an alloy. A layer (solidified layer) of the object 8 is formed and a molten metal bath is held above the layer, and the side peripheral surface of the molten metal bath is held in a vibrated state by electromagnetic force generated by a high-frequency current of the high-frequency induction coil 5. It is a method characterized by the fact that it is possible to maintain the dissolution while suppressing the side peripheral surface of the molten metal bath from firmly contacting the copper crucible,
In order to reliably maintain such an aspect, it is necessary to set the frequency range of the high-frequency power supply to appropriate conditions. That is, when the frequency is too low, the stirring of the molten metal bath becomes too violent, the turbulence of the molten metal bath becomes large, and the molten metal bath is easily brought into contact with the copper crucible, and the melting becomes unstable.

【0024】この周波数範囲の下限周波数に関して、本
発明者等は、従来の小型試験炉での幾多の実験結果を検
討することにより、図2に示すように、るつぼ直径(胴
体部直径D:mm)と下限周波数値(Fmin :HZ )と
の間に下記 (1)式の関係が成立することを見出した。 7.8−2×log(D)=log(Fmin ) …… (1)
With regard to the lower limit frequency of this frequency range, the present inventors examined a number of experimental results with a conventional small test furnace, and as shown in FIG. 2, determined the diameter of the crucible (body diameter D: mm). ) And the lower limit frequency value (Fmin: HZ), the following equation (1) holds. 7.8-2 × log (D) = log (Fmin) (1)

【0025】この場合、るつぼ直径によって決まる下限
の周波数値より低い値の周波数を用いると、溶融金属浴
が電磁気力により強く攪拌されて、溶融金属の一部が水
冷銅るつぼと接触して凝固し、銅るつぼへの伝熱量がさ
らに増大して、溶融金属浴を保持すること自体が困難と
なる。
In this case, if a frequency lower than the lower limit of the frequency determined by the crucible diameter is used, the molten metal bath is strongly stirred by electromagnetic force, and a part of the molten metal contacts the water-cooled copper crucible and solidifies. In addition, the amount of heat transferred to the copper crucible further increases, and it becomes difficult to maintain the molten metal bath itself.

【0026】一方、周波数が高すぎると、水冷銅るつぼ
での電力損失が大きくなりすぎて、実質上工業的に成立
しにくい状況となる。例えば直径が1200mmの水冷
銅るつぼを用いる際の所要電力量を高周波電源の周波数
毎に計算した結果の一例は、下記〔表1〕に示す通りで
ある。
On the other hand, if the frequency is too high, the power loss in the water-cooled copper crucible becomes too large, and it becomes practically difficult to establish industrially. For example, an example of the result of calculating the required power amount for each frequency of the high-frequency power supply when using a water-cooled copper crucible having a diameter of 1200 mm is as shown in [Table 1] below.

【表1】 注:給電部での電力ロス30%として計算。[Table 1] Note: Calculated as 30% power loss at the feeder.

【0027】直径1200mmのるつぼでの下限周波数
値は、 (1)式より44HZ となるので、50HZ 、20
0HZ 、500HZ の場合について所要の電源出力を計
算した結果、周波数が高くなるにつれて著しく高い電力
(例えば500HZ では50HZ の約3倍)が必要とな
ることが明らかとなった。工業的な成立性を考慮する
と、過大な電源容量を必要とする周波数は不適切である
と考えられる。実用的に許容できる電源容量は、下限周
波数の場合の3倍程度と考えられるので、これを満足す
るためには、上限周波数Fmax を設定する必要があり、
下記の (2)式の関係式(図2参照)で示される上限周波
数Fmax の値より低い周波数を用いることが望ましいと
いえる。 log(Fmax )=8.7−2×log(D) …… (2)
The lower limit frequency value of a crucible having a diameter of 1200 mm is 44 Hz according to the equation (1).
Calculation of the required power supply output for the cases of 0 Hz and 500 Hz reveals that as the frequency increases, significantly higher power is required (for example, 500 Hz requires about three times 50 Hz). Considering industrial feasibility, a frequency that requires an excessive power supply capacity is considered inappropriate. The practically allowable power supply capacity is considered to be about three times that of the lower limit frequency, and in order to satisfy this, it is necessary to set the upper limit frequency Fmax,
It can be said that it is desirable to use a frequency lower than the value of the upper limit frequency Fmax expressed by the following equation (2) (see FIG. 2). log (Fmax) = 8.7-2 × log (D) (2)

【0028】このようなことから、本発明者等は、小型
試験炉での操業結果報告の解析結果や、磁場解析と伝熱
解析に基づく大型炉での解析検討の結果から、 (1)式と
(2)式との間の適切な周波数、即ち、特許請求の範囲の
請求項1記載の下記式(3) 7.8−2×log(D)≦log(F)≦8.7−2×log(D)… (3) を満足し得る範囲(図2において細平行線を付した個
所)の周波数を用いれば、前述するチタン、ジルコニウ
ム、希土類元素、シリコン、アルミニウムを含む活性金
属元素を主成分とする金属・合金、あるいはクロム、バ
ナジウムを含む融点の高い金属元素を主成分とする金属
・合金、又は非金属介在物含有量の極めて少ない超高清
浄性が要求される鉄基、ニッケル基、コバルト基合金、
銅基を含む金属・合金に関して、安定して溶解できるこ
とを見出したのである。
From the above, the inventors of the present invention have obtained the following equation (1) from the analysis results of the operation result report in the small test furnace and the results of the analysis and investigation in the large furnace based on the magnetic field analysis and the heat transfer analysis. When
Appropriate frequency between equation (2), that is, equation (3) 7.8-2 × log (D) ≦ log (F) ≦ 8.7-2 according to claim 1 of the claims. × log (D) (3) By using a frequency in a range that can satisfy (3) (the portion with a thin parallel line in FIG. 2), the above-described active metal element including titanium, zirconium, rare earth element, silicon, and aluminum can be obtained. Metals and alloys as the main component, or metals and alloys with a high melting point metal element containing chromium and vanadium as the main component, or iron base and nickel with extremely low non-metallic inclusion content and ultra-high cleanliness Base, cobalt base alloy,
They have found that metals and alloys containing copper groups can be stably dissolved.

【0029】次に請求項2に係る本発明溶解方法では、
水冷銅るつぼと接する領域に、溶解金属合金による固相
物の層(凝固層)を形成させるのである。この固相物
は、その内部の溶融金属浴が出湯された後にるつぼ内に
残留して、冷却されると凝固収縮して水冷銅るつぼ内径
より小さくなる。従って、溶解操作終了後に、この固相
物を取り出すことが可能であり、また、別の溶解の際に
この固相物を水冷銅るつぼ内に装入して、その上に溶解
原料を装入することが可能である。
Next, in the dissolving method of the present invention according to claim 2,
A layer (solidified layer) of a solid phase material of a molten metal alloy is formed in a region in contact with the water-cooled copper crucible. This solid phase material remains in the crucible after the molten metal bath inside is poured, and when cooled, solidifies and contracts to become smaller than the inner diameter of the water-cooled copper crucible. Therefore, it is possible to take out this solid phase after the dissolution operation is completed, and to put this solid phase into a water-cooled copper crucible at the time of another dissolution, and to put the raw material on top of it. It is possible to

【0030】水冷銅るつぼ内に装入した溶解原料は、通
常、嵩密度が溶湯状態の1/2から1/4程度のことが
多いため、装入溶解原料が溶融するとるつぼ内での容積
が減少することから、本溶解方法においても、溶解原料
を追加装入する溶解法が不可欠となる。
The molten raw material charged into the water-cooled copper crucible usually has a bulk density of about か ら to の of that of the molten metal, so that when the charged molten raw material is melted, the volume in the crucible is increased. Because of the decrease, in this dissolution method, a dissolution method in which a dissolving raw material is additionally charged is indispensable.

【0031】また、請求項3に係る本発明溶解方法で
は、水冷銅るつぼ内で金属合金を溶融する際に、金属浴
の精錬効果を奏するフッ化物、塩化物、酸化物等を同時
に添加して溶解することや、金属浴が形成された後に添
加することが可能である。この場合、フッ化物として
は、CaF2 、BaF2 、MgF2 、NaF、KF、希
土類フッ化物等が挙げられ、塩化物としては、NaC
l、KCl、CaCl2 、MgCl2 等が挙げられ、ま
た、酸化物としては、CaO、BaO、MgO、Na2
O、SiO2 、Al2 O3 等が挙げられる。
In the melting method according to the third aspect of the present invention, when a metal alloy is melted in a water-cooled copper crucible, a fluoride, a chloride, an oxide or the like having a refining effect of a metal bath is simultaneously added. It can be dissolved or added after the metal bath is formed. In this case, examples of the fluoride include CaF2, BaF2, MgF2, NaF, KF, rare earth fluoride, and the like.
1, KCl, CaCl2, MgCl2, etc., and oxides such as CaO, BaO, MgO, Na2
O, SiO2, Al2 O3 and the like.

【0032】通常の耐火物を用いる溶解法では、活性度
の高いフッ化物、塩化物、酸化物等を精錬材として用い
ると、精錬材による耐火物の浸食が著しくなり、安定し
て溶融することが困難となるが、本溶解法では、水冷銅
るつぼを用いるため、るつぼ浸食などの問題を引き起こ
すことなく、安定した溶解精錬操作を行うことができ
る。
In the melting method using ordinary refractories, when highly active fluorides, chlorides, oxides, and the like are used as a refining material, the refractories are significantly eroded by the refining materials and are stably melted. However, in the present melting method, since a water-cooled copper crucible is used, a stable melting and refining operation can be performed without causing problems such as crucible erosion.

【0033】また、請求項4に係る本発明溶解方法で
は、水冷銅るつぼ内に安定して金属合金浴が形成できる
ことから、溶融金属合金浴の一部を採取して迅速に成分
分析を行うことが可能となる。そして、その分析結果を
基に、様々な合金成分を添加することができ、所定の合
金組成に成分調整することが可能となる。
Further, in the melting method according to the present invention, since a metal alloy bath can be formed stably in a water-cooled copper crucible, a part of the molten metal alloy bath is sampled and the component analysis is performed quickly. Becomes possible. Then, based on the analysis result, various alloy components can be added, and the components can be adjusted to a predetermined alloy composition.

【0034】以上述べた請求項1乃至請求項4に係る本
発明溶解方法では、溶解、出湯の操作が真空或いは不活
性ガスの雰囲気下で実施されることが、前掲の各溶解原
料のの処理の場合に望ましいことである。
In the melting method of the present invention according to claims 1 to 4, the melting and tapping operations are performed in a vacuum or in an atmosphere of an inert gas. This is desirable in the case of

【0035】次に、請求項6に係る本発明溶解鋳造方法
は、水冷銅るつぼの底面又は/及び周胴部下方部分と接
する領域に、溶融金属合金浴自体が凝固した固相物層
(凝固層)が形成されている状態であるのに対して有効
な手法である。すなわち、溶融金属合金浴のるつぼ外へ
の取り出しに当たっては、水冷銅るつぼの底面又は/及
び周胴部下方部分に溶融金属浴出湯用のノズルと該ノズ
ルの水冷式栓を設けた構成としているので、該水冷式栓
を取り除くことにより、このノズルと接する領域の凝固
層の一部を溶融させて、溶湯を出湯させることが可能と
なる。この方法で出湯した溶湯を前記ノズル下に設けた
鋳型内に注入して凝固させることにより、容易かつ効率
よく鋳塊を製造することができる。
Next, according to a sixth aspect of the present invention, there is provided the molten casting method according to the first aspect of the present invention, wherein the molten metal alloy bath itself is solidified (solidified) on a region in contact with the bottom surface of the water-cooled copper crucible and / or the lower part of the peripheral body. This is an effective method for a state in which a layer is formed. That is, when the molten metal alloy bath is taken out of the crucible, a nozzle for molten metal bath tapping and a water-cooled plug of the nozzle are provided on the bottom of the water-cooled copper crucible or / and the lower part of the peripheral body. By removing the water-cooled plug, it is possible to melt a part of the solidified layer in a region in contact with the nozzle and to discharge the molten metal. The ingot can be easily and efficiently manufactured by pouring the molten metal discharged by this method into a mold provided below the nozzle and solidifying it.

【0036】また、請求項7に係る本発明溶解鋳造方法
では、前記請求項6に係る出湯方式の場合に凝固層を内
部の溶湯の熱により溶融させるため、出湯の制御性に若
干の問題があることに対して有効な手法である。即ち、
請求項7に係る出湯方式は、水冷銅るつぼに接続するノ
ズル部もまた該水冷銅るつぼに類似した基本的構造と成
し、内部を水で冷却した複数本の角形又は丸形の長尺棒
状銅材で形成して、その外側に高周波加熱用の高周波誘
導コイルを設けた構造としていて、ノズル内で凝固して
いる金属浴を加熱溶融して、その熱も利用して水冷銅る
つぼ内に形成されている凝固層を溶融することにより、
るつぼ内の金属溶湯を取り出すことができるため、出湯
の状況をより精密に制御することが可能である。このよ
うにして出湯した溶湯を鋳型内で凝固させることによ
り、容易かつ効率よく鋳塊を製造することができる。
In the molten casting method according to the seventh aspect of the present invention, since the solidified layer is melted by the heat of the internal molten metal in the case of the tapping method according to the sixth aspect, there is a slight problem in the controllability of the molten metal. It is an effective technique for something. That is,
In the tapping method according to claim 7, the nozzle portion connected to the water-cooled copper crucible also has a basic structure similar to the water-cooled copper crucible, and a plurality of rectangular or round long rods whose inside is cooled by water. It is made of copper material and has a structure in which a high-frequency induction coil for high-frequency heating is provided on the outside, and heats and melts the solidified metal bath in the nozzle, and also uses that heat in a water-cooled copper crucible. By melting the solidified layer that has been formed,
Since the molten metal in the crucible can be taken out, it is possible to control the state of tapping more precisely. By solidifying the molten metal thus discharged in the mold, an ingot can be easily and efficiently manufactured.

【0037】また、請求項8に係る本発明溶解鋳造方法
では、溶融金属浴出湯用のノズルより出湯される溶融金
属を水冷される鋳型内に注入して、上表面側では溶融し
た状態を維持させつつ下方側より凝固させて、溶融金属
注入速度に対応する速度で凝固塊の引き抜きを行わせる
ようにすることにより、高純度の金属・合金を効率よく
連続的に鋳造することができる。
In the molten casting method according to the present invention, the molten metal discharged from the molten metal tapping nozzle is injected into a water-cooled mold, and the molten state is maintained on the upper surface side. By solidifying from the lower side while pulling out the solidified mass at a speed corresponding to the molten metal injection speed, a high-purity metal / alloy can be efficiently and continuously cast.

【0038】なお、以上述べた請求項6乃至請求項8に
係る本発明溶解方法では、溶解、出湯、鋳造の操作が真
空或いは不活性ガスの雰囲気下で実施されることが、前
掲の各溶解原料を対象とした場合により望ましいことで
ある。
It should be noted that in the melting method of the present invention according to claims 6 to 8, the melting, tapping, and casting operations are performed in a vacuum or in an atmosphere of an inert gas. This is more desirable when targeting raw materials.

【0039】[0039]

【実施例】以下、本発明の実施例について図1を参照し
ながら説明する。内部が水冷される銅製の角形の長尺棒
状物の複数本によって内径430mmと530mmとの
溶解用るつぼ4を構成し、その外側に水冷銅製の高周波
誘導コイル5を設けて、それらを真空チャンバ内に収設
することにより真空誘導溶解炉2を構成し、この真空誘
導溶解炉2を用いて、チタン、クロム、炭素鋼の溶解試
験を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. A melting crucible 4 having an inner diameter of 430 mm and 530 mm is formed by a plurality of rectangular copper rods whose inside is water-cooled, and a high-frequency induction coil 5 made of water-cooled copper is provided outside the melting crucible 4, and these are placed in a vacuum chamber. The vacuum induction melting furnace 2 was constructed by using the vacuum induction melting furnace 2, and a melting test of titanium, chromium, and carbon steel was performed using the vacuum induction melting furnace 2.

【0040】内径430mmの溶解用るつぼの場合は、
高周波電源周波数の範囲は、前記式(3) から340〜2
700HZ となり、内径530mmの溶解用るつぼの場
合は225〜1780HZ となる。なお、内径430m
mの溶解用るつぼの試験では、周波数1000HZ 、5
00HZ 程度の高周波電源を使用した。また、内径53
0mmの溶解用るつぼの試験では、周波数800HZ 、
400HZ 程度の高周波電源を使用した。
In the case of a melting crucible having an inner diameter of 430 mm,
The range of the high-frequency power supply frequency is from the above equation (3) to 340 to 2
700 Hz. In the case of a melting crucible having an inner diameter of 530 mm, the melting point is 225-1780 Hz. The inner diameter is 430m
m melting crucible test, frequency 1000 Hz, 5
A high frequency power supply of about 00Hz was used. Also, the inner diameter 53
In a test of a 0 mm melting crucible, the frequency was 800 Hz,
A high frequency power supply of about 400 Hz was used.

【0041】430mmと530mmの溶解用るつぼで
は、チタン、鋼については出力1000kw以上で溶解
が可能であり、クロムでは1500kw以上で溶解が可
能なことが確認された。一方、周波数の影響について
は、500HZ 、400HZ の電源でも溶解は可能であ
ったが、溶湯の攪拌による乱れが大きく、1000H
Z、800HZ の電源に比較すると、やや不安定と見ら
れる溶解状況となった。
In the melting pots of 430 mm and 530 mm, it was confirmed that titanium and steel could be melted at an output of 1000 kW or more, and chromium could be melted at 1500 kW or more. On the other hand, regarding the influence of the frequency, melting was possible even with a power supply of 500 Hz and 400 Hz, but the disturbance due to the stirring of the molten metal was large and 1000 Hz.
Compared to the power source of Z, 800Hz, the melting state was found to be somewhat unstable.

【0042】るつぼのボトムからの出湯については、直
径5〜100mmの黒鉛製のノズルと水冷栓の組合せに
より、出湯可能なことを確認できた。また、水冷銅製の
ノズルと高周波誘導コイルの組合せになるものにおいて
は、周波数5〜20kHZ の高周波電源を用いることに
より出湯可能なことを確認した。
With respect to tapping from the bottom of the crucible, it was confirmed that tapping was possible by a combination of a graphite nozzle having a diameter of 5 to 100 mm and a water cooling tap. In addition, it was confirmed that tapping could be achieved by using a high-frequency power supply having a frequency of 5 to 20 kHz in a combination of a water-cooled copper nozzle and a high-frequency induction coil.

【0043】金属の溶解と同時にCaF2 、BaF2 、
CaO、SiO2 などを溶湯重量の5%分装入して、金
属浴の熱により溶融させてスラグ浴を形成させると、金
属浴の上側るつぼ壁近傍部にスラグ浴が形成できた。こ
のスラグ浴による種々の精錬効果が期待できる。なお、
スラグ浴は金属浴の上側の側面側に形成されるため、る
つぼ底から金属浴を出湯させることにより、スラグ浴を
残して金属浴だけを取り出すことが可能である。
CaF 2, BaF 2,
When CaO, SiO2, etc. were charged in an amount of 5% of the weight of the molten metal and melted by the heat of the metal bath to form a slag bath, a slag bath could be formed near the upper crucible wall of the metal bath. Various refining effects by this slag bath can be expected. In addition,
Since the slag bath is formed on the upper side surface side of the metal bath, it is possible to take out the metal bath from the bottom of the crucible and take out only the metal bath while leaving the slag bath.

【0044】[0044]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。
The present invention is embodied in the form described above and has the following effects.

【0045】即ち、本発明によれば、様々の形状の溶解
原料を一括して溶融し、かつ溶湯側で成分を調整するこ
とが可能となり、従って、溶解工程での操作制御性が格
段に優れていて、高純度の金属・合金を量産することが
できる。また、溶融直後において出湯して鋳塊を製造で
きるので、工業的規模での溶解鋳造を効率よく行える。
That is, according to the present invention, it is possible to melt the molten raw materials of various shapes at once, and to adjust the components on the molten metal side, and therefore, the operation controllability in the melting step is remarkably excellent. Therefore, high-purity metals and alloys can be mass-produced. In addition, since the ingot can be produced by tapping immediately after melting, it is possible to efficiently perform melting and casting on an industrial scale.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る溶解鋳造手段の概念
図である。
FIG. 1 is a conceptual diagram of a melting casting means according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る溶解用るつぼの直径
と高周波電源周波数との関係線図である。
FIG. 2 is a diagram illustrating a relationship between a diameter of a melting crucible and a high frequency power supply frequency according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…原料室 2…真空誘導溶解炉 3…鋳
型 4…溶解用るつぼ 5…高周波誘導コイル 6…真
空排気手段 7…出湯用ノズル 8…固相物 9…イ
ンゴット 10…供給バケット 11…ノズル本体部 12…
高周波誘導コイル
DESCRIPTION OF SYMBOLS 1 ... Raw material chamber 2 ... Vacuum induction melting furnace 3 ... Mold 4 ... Melting crucible 5 ... High frequency induction coil 6 ... Vacuum exhaust means 7 ... Nozzle for hot water 8 ... Solid phase 9 ... Ingot 10 ... Supply bucket 11 ... Nozzle body 12 ...
High frequency induction coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 蜷川 伸吾 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 長尾 元裕 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 吉川 克之 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shingo Ninagawa 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Motohiro Nagao, Nishi-ku, Kobe City, Hyogo Prefecture 1-5-5 Takatsukadai Kobe Steel Research Institute, Kobe Research Institute (72) Katsuyuki Yoshikawa 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel Technical Research Institute, Kobe Research Institute

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 チタン、ジルコニウム、希土類元素、シ
リコン、アルミニウムを含む活性金属元素を主成分とす
る金属・合金、あるいはクロム、バナジウムを含む融点
の高い金属元素を主成分とする金属・合金、又は非金属
介在物含有量の極めて少ない超高清浄性が要求される鉄
基、ニッケル基、コバルト基合金、銅基を含む金属・合
金の鋳塊を製造するに際して、高周波誘導加熱を加熱原
理として溶解処理する金属・合金の溶解方法において、 内部が水冷される角形又は丸形の長尺棒状の銅材を複数
本筒状に組み合わせて形成される周胴部と内部が水冷さ
れる銅材で形成される底部とにより内径が400mm以
上の溶解用るつぼを構成し、前記周胴部の外側に高周波
誘導コイルを巻装して、前記高周波誘導コイルに対し次
式で示す周波数範囲を満足する高周波電流を高周波電源
から通電することにより、前記底部の上に溶融金属・合
金の凝固物、溶解原料自体から成る固相の領域を形成さ
せて、この固相の上に溶融浴を保持させつつ溶解原料の
溶解を行うことを特徴とする金属・合金の溶解方法。 7.8−2×log(D)≦log(F)≦8.7−2
×log(D) 但し、F:高周波電源の周波数 (HZ) D:るつぼの内径 (mm)
1. A metal or alloy mainly composed of an active metal element containing titanium, zirconium, a rare earth element, silicon or aluminum, or a metal or alloy mainly composed of a high melting point metal element containing chromium or vanadium, or When manufacturing ingots of metals and alloys containing iron, nickel, cobalt and copper bases that require ultra-high cleanliness with very low non-metallic inclusions, high-frequency induction heating is used as the heating principle to melt. In the method for melting a metal or alloy to be treated, a peripheral body formed by combining a plurality of rectangular or round long rod-shaped copper materials whose inside is water-cooled into a cylindrical shape and a copper material whose inside is water-cooled are formed. A melting crucible having an inner diameter of 400 mm or more is constituted by the bottom and a high-frequency induction coil is wound around the outer trunk, and a frequency range represented by the following formula is applied to the high-frequency induction coil. By passing a high-frequency current that satisfies the following from a high-frequency power source, a solid phase region consisting of a molten metal / alloy solidified material and a molten raw material itself is formed on the bottom, and a molten bath is formed on the solid phase. A method for melting a metal or alloy, comprising melting a raw material while holding the material. 7.8-2 × log (D) ≦ log (F) ≦ 8.7-2
× log (D) where F: frequency of high frequency power supply (HZ) D: inner diameter of crucible (mm)
【請求項2】 前記溶解原料を溶解用るつぼに装入する
に先立って、それまでの溶解により形成されてなる固相
物を前記底部上側に載置したままで、溶解原料をその上
に装入した後、高周波誘導コイルに高周波電流を通電し
て加熱溶融を行い、かつ所定量になるまで溶解原料を追
加装入することを特徴とする請求項1記載の金属・合金
の溶解方法。
2. Prior to loading the melting raw material into the melting crucible, the molten raw material is loaded on the solid material formed by the previous melting while the solid material is placed on the bottom upper side. 2. The method for melting a metal or alloy according to claim 1, wherein after the charging, a high-frequency current is applied to the high-frequency induction coil to perform heating and melting, and a molten raw material is additionally charged to a predetermined amount.
【請求項3】 前記溶解原料の溶解に際して、フッ化
物、塩化物、酸化物等から構成される添加物を装入して
同時に加熱溶融させるか、又は金属浴が形成された後に
前記添加物を装入することを特徴とする請求項1又は2
に記載の金属・合金の溶解方法。
3. When dissolving the dissolving raw material, an additive composed of fluoride, chloride, oxide and the like is charged and heated and melted at the same time, or the additive is added after a metal bath is formed. 3. A charging method according to claim 1, wherein the charging is performed.
3. The method for dissolving a metal or alloy according to item 1.
【請求項4】 形成された溶融金属浴から成分分析用試
料を採取し、その速やかな分析の結果に基づいて、前記
溶解原料を追加装入することにより、所定の合金成分組
成に調整することを特徴とする請求項1、2又は3に記
載の金属・合金の溶解方法。
4. A sample for component analysis is collected from the formed molten metal bath, and based on the result of the quick analysis, the melted raw material is additionally charged to adjust to a predetermined alloy component composition. The method for melting a metal or alloy according to claim 1, 2, or 3, wherein
【請求項5】 溶解、出湯の操作を真空雰囲気下又は不
活性ガスの減圧・常圧・加圧雰囲気下で実施することを
特徴とする請求項1、2、3又は4に記載の金属・合金
の溶解方法。
5. The method according to claim 1, wherein the melting and tapping operations are performed in a vacuum atmosphere or in a reduced pressure, normal pressure, or pressurized atmosphere of an inert gas. How to melt the alloy.
【請求項6】 請求項1、2、3、4又は5に記載の金
属・合金の溶解方法による溶解工程と、その直後におい
て前記金属・合金の鋳塊を製造する鋳造工程とを備える
溶解鋳造方法であって、水冷される栓が取付けられた溶
融金属浴出湯用のノズルの1個以上が前記溶解用るつぼ
の底部又は/及び周胴部下方部分に取付けられるととも
に、前記ノズルの下部に鋳型が設けられて、前記栓を取
り除いて、溶解用るつぼの底部又は周胴部下方部分に形
成されてなる固相部を溶融金属浴自体の熱により溶融さ
せて、溶解用るつぼ内の溶融金属をノズルより出湯さ
せ、前記鋳型内に注入して凝固させて鋳塊を製造するこ
とを特徴とする金属・合金の溶解鋳造方法。
6. A melting casting method comprising: a melting step of the metal / alloy melting method according to claim 1, 2, 3 or 5; and a casting step of producing an ingot of the metal / alloy immediately after the melting step. A method for melting one or more nozzles of a molten metal bath with a water-cooled plug attached to the bottom of the melting crucible and / or a lower part of the peripheral body, and a mold below the nozzle. Is provided, the plug is removed, and the solid phase portion formed at the bottom of the melting crucible or the lower part of the peripheral body is melted by the heat of the molten metal bath itself, and the molten metal in the melting crucible is melted. A method for melting and casting metals and alloys, wherein a molten metal is poured from a nozzle, poured into the mold and solidified to produce an ingot.
【請求項7】 内部が水冷される角形又は丸形の長尺棒
状の銅材を複数本筒状に組み合わせて前記溶融金属浴出
湯用のノズルが形成されるとともに、その外側に高周波
誘導コイルが巻装されてなり、前記溶解用るつぼ内の溶
融金属浴を出湯する際に、前記ノズル内で凝固してなる
金属塊を、前記高周波誘導コイルに高周波電流を通電す
ることにより加熱溶融して、溶解用るつぼ内の溶融金属
浴を出湯させることを特徴とする請求項6記載の金属・
合金の溶解鋳造方法。
7. A nozzle for molten metal bath tapping is formed by combining a plurality of rectangular or round long rod-shaped copper members whose inside is water-cooled, and a high-frequency induction coil is provided outside thereof. Being wound, when tapping the molten metal bath in the melting crucible, the metal lump solidified in the nozzle, heated and melted by applying a high-frequency current to the high-frequency induction coil, 7. The metal according to claim 6, wherein the molten metal bath in the melting crucible is poured.
A method of melting and casting alloys.
【請求項8】 前記溶融金属浴出湯用のノズルより出湯
される溶融金属を水冷される鋳型内に注入して、上表面
側では溶融した状態を維持させつつ下方側より凝固させ
て、溶融金属注入速度に対応する速度で凝固塊の引き抜
きを行い、鋳塊を製造することを特徴とする請求項6又
は7に記載の金属・合金の溶解鋳造方法。
8. A molten metal discharged from the molten metal bath tapping nozzle is poured into a water-cooled mold, and solidified from a lower side while maintaining a molten state on an upper surface side, thereby forming a molten metal. 8. The method for melting and casting a metal or alloy according to claim 6, wherein a solidified ingot is drawn at a speed corresponding to the pouring speed to produce an ingot.
【請求項9】 溶解、出湯、鋳造の操作を真空雰囲気下
又は不活性ガスの減圧・常圧・加圧雰囲気下で実施する
ことを特徴とする請求項6、7又は8に記載の金属・合
金の溶解鋳造方法。
9. The method according to claim 6, wherein the melting, tapping and casting operations are performed in a vacuum atmosphere or in a reduced pressure, normal pressure, or pressurized atmosphere of an inert gas. A method of melting and casting alloys.
JP11917198A 1998-04-28 1998-04-28 Metal and alloy melting method and melting casting method Expired - Lifetime JP3571212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11917198A JP3571212B2 (en) 1998-04-28 1998-04-28 Metal and alloy melting method and melting casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11917198A JP3571212B2 (en) 1998-04-28 1998-04-28 Metal and alloy melting method and melting casting method

Publications (2)

Publication Number Publication Date
JPH11310833A true JPH11310833A (en) 1999-11-09
JP3571212B2 JP3571212B2 (en) 2004-09-29

Family

ID=14754679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11917198A Expired - Lifetime JP3571212B2 (en) 1998-04-28 1998-04-28 Metal and alloy melting method and melting casting method

Country Status (1)

Country Link
JP (1) JP3571212B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062054A (en) * 2000-08-18 2002-02-28 Shinko Electric Co Ltd Induction heating and melting furnace
WO2007063748A1 (en) * 2005-11-30 2007-06-07 Kabushiki Kaisha Kobe Seiko Sho INDUCTION MELTING APPARATUS EMPLOYING HALIDE TYPE CRUCIBLE, PROCESS FOR PRODUCING THE CRUCIBLE, METHOD OF INDUCTION MELTING, AND PROCESS FOR PRODUCING INGOT OF ULTRAHIGH-PURITY Fe-, Ni-, OR Co-BASED ALLOY MATERIAL
JP2010172934A (en) * 2009-01-29 2010-08-12 Kobe Steel Ltd Melting and processing method of long ingot
US8496046B2 (en) 2009-07-15 2013-07-30 Kobe Steel. Ltd. Method for producing alloy ingot
JP6059389B1 (en) * 2016-06-20 2017-01-11 北芝電機株式会社 Melting control method for fast induction melting furnace
JP2018094628A (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method of active metal
WO2018110370A1 (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method for active metal
JP2020112334A (en) * 2019-01-16 2020-07-27 シンフォニアテクノロジー株式会社 Cold crucible melting furnace and method of maintaining the same
CN113758255A (en) * 2021-08-24 2021-12-07 合肥科晶材料技术有限公司 Small-size ultra-temperature electromagnetic stirring alloy casting furnace
KR20220052664A (en) * 2020-10-21 2022-04-28 (주)동아특수금속 Manufacturing technology of high-quality titanium alloy applied induction skull melt method
CN114769571A (en) * 2022-04-07 2022-07-22 昌航精铸有限公司 Metallurgical device
CN114833329A (en) * 2022-05-19 2022-08-02 中南大学 High-entropy alloy multi-section mixed casting device and method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062054A (en) * 2000-08-18 2002-02-28 Shinko Electric Co Ltd Induction heating and melting furnace
JP4496623B2 (en) * 2000-08-18 2010-07-07 シンフォニアテクノロジー株式会社 Induction heating melting furnace
WO2007063748A1 (en) * 2005-11-30 2007-06-07 Kabushiki Kaisha Kobe Seiko Sho INDUCTION MELTING APPARATUS EMPLOYING HALIDE TYPE CRUCIBLE, PROCESS FOR PRODUCING THE CRUCIBLE, METHOD OF INDUCTION MELTING, AND PROCESS FOR PRODUCING INGOT OF ULTRAHIGH-PURITY Fe-, Ni-, OR Co-BASED ALLOY MATERIAL
US7967057B2 (en) 2005-11-30 2011-06-28 Kobe Steel, Ltd. Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
JP2010172934A (en) * 2009-01-29 2010-08-12 Kobe Steel Ltd Melting and processing method of long ingot
US8496046B2 (en) 2009-07-15 2013-07-30 Kobe Steel. Ltd. Method for producing alloy ingot
JP6059389B1 (en) * 2016-06-20 2017-01-11 北芝電機株式会社 Melting control method for fast induction melting furnace
WO2018110370A1 (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method for active metal
JP2018094628A (en) * 2016-12-13 2018-06-21 株式会社神戸製鋼所 Casting method of active metal
CN110062671A (en) * 2016-12-13 2019-07-26 株式会社神户制钢所 The casting method of active metal
US20190299281A1 (en) * 2016-12-13 2019-10-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Casting method for active metal
RU2729246C1 (en) * 2016-12-13 2020-08-05 Кабусики Кайся Кобе Сейко Се (Кобе Стил, Лтд.) Casting method for active metal
US10981222B2 (en) 2016-12-13 2021-04-20 Kobe Steel, Ltd. Casting method for active metal
JP2020112334A (en) * 2019-01-16 2020-07-27 シンフォニアテクノロジー株式会社 Cold crucible melting furnace and method of maintaining the same
KR20220052664A (en) * 2020-10-21 2022-04-28 (주)동아특수금속 Manufacturing technology of high-quality titanium alloy applied induction skull melt method
CN113758255A (en) * 2021-08-24 2021-12-07 合肥科晶材料技术有限公司 Small-size ultra-temperature electromagnetic stirring alloy casting furnace
CN114769571A (en) * 2022-04-07 2022-07-22 昌航精铸有限公司 Metallurgical device
CN114833329A (en) * 2022-05-19 2022-08-02 中南大学 High-entropy alloy multi-section mixed casting device and method thereof

Also Published As

Publication number Publication date
JP3571212B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
US6144690A (en) Melting method using cold crucible induction melting apparatus
AU608785B2 (en) Method for induction melting reactive metals and alloys
US2548897A (en) Process for melting hafnium, zirconium, and titanium metals
US20110094705A1 (en) Methods for centrifugally casting highly reactive titanium metals
US20090133850A1 (en) Systems for centrifugally casting highly reactive titanium metals
US7967057B2 (en) Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
US5311655A (en) Method of manufacturing titanium-aluminum base alloys
Arh et al. Electroslag remelting: A process overview
CN102471828A (en) Method for producing alloy ingots
JP3571212B2 (en) Metal and alloy melting method and melting casting method
US5102450A (en) Method for melting titanium aluminide alloys in ceramic crucible
JP2017537224A (en) Process for producing chromium and niobium-containing nickel-base alloys with low nitrogen and substantially no nitride, and the resulting chromium and nickel-base alloys
JP2007154214A (en) METHOD FOR REFINING ULTRAHIGH PURITY Fe-BASE, Ni-BASE AND Co-BASE ALLOY MATERIALS
Chronister et al. Induction skull melting of titanium and other reactive alloys
JP5064974B2 (en) Ingot manufacturing method for TiAl-based alloy
JP2011021228A (en) Method for producing ultrahigh purity alloy ingot
JP2011173172A (en) Method for producing long cast block of active high melting point metal alloy
JP4263366B2 (en) Method and apparatus for melting rare earth magnet scrap
Breig et al. Induction skull melting of titanium aluminides
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
US20080178705A1 (en) Group IVB Metal Processing with Electric Induction Energy
US3508914A (en) Methods of forming and purifying nickel-titanium containing alloys
JPS61183419A (en) Electroslag remelting method of copper and copper alloy
JPS6092432A (en) Method and device for plasma arc melting

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

EXPY Cancellation because of completion of term