JP5656532B2 - Induction melting furnace - Google Patents

Induction melting furnace Download PDF

Info

Publication number
JP5656532B2
JP5656532B2 JP2010217129A JP2010217129A JP5656532B2 JP 5656532 B2 JP5656532 B2 JP 5656532B2 JP 2010217129 A JP2010217129 A JP 2010217129A JP 2010217129 A JP2010217129 A JP 2010217129A JP 5656532 B2 JP5656532 B2 JP 5656532B2
Authority
JP
Japan
Prior art keywords
frequency
power factor
melted
control signal
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010217129A
Other languages
Japanese (ja)
Other versions
JP2012074196A (en
Inventor
伸一 宮島
伸一 宮島
進 石原
進 石原
渡辺 敏之
敏之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitashiba Electric Co Ltd
Original Assignee
Kitashiba Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitashiba Electric Co Ltd filed Critical Kitashiba Electric Co Ltd
Priority to JP2010217129A priority Critical patent/JP5656532B2/en
Publication of JP2012074196A publication Critical patent/JP2012074196A/en
Application granted granted Critical
Publication of JP5656532B2 publication Critical patent/JP5656532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)
  • General Induction Heating (AREA)

Description

炉壁の外周に設けられた加熱コイルに電力供給手段を介して電力を供給することにより炉内に収納された被溶解材を溶解させる誘導溶解炉に関する。   The present invention relates to an induction melting furnace that melts a material to be melted stored in a furnace by supplying electric power to a heating coil provided on the outer periphery of the furnace wall through power supply means.

従来、この種の誘導溶解炉としては、下記特許文献1および2に示すように、順変換器と逆変換器とが並列共振型回路(電流型回路)を構成する電力変換部と、電力変換部の出力力率を検出し、検出された力率から電力変換部の周波数を制御することにより出力力率を所望の値に制御する制御装置が知られている。   Conventionally, as this type of induction melting furnace, as shown in Patent Documents 1 and 2 below, a power converter in which a forward converter and an inverse converter form a parallel resonance circuit (current circuit), and power conversion There is known a control device that controls the output power factor to a desired value by detecting the output power factor of the unit and controlling the frequency of the power conversion unit from the detected power factor.

さらに、下記特許文献3に示すように、真空浮揚溶解装置において、真空容器内の銅るつぼに収容された溶解材料が完全に溶解した後、誘導コイルの運転周波数を予め設定された周波数に低下させて、溶湯への撹拌力を増大させることにより、不純物除去のための脱ガス処理を行う真空浮揚溶解装置が知られている(特許文献1段落[0030])。   Furthermore, as shown in Patent Document 3 below, in the vacuum levitation melting apparatus, after the melting material accommodated in the copper crucible in the vacuum vessel is completely dissolved, the operating frequency of the induction coil is lowered to a preset frequency. Thus, there is known a vacuum levitation melting apparatus that performs a degassing process for removing impurities by increasing the stirring power to the molten metal (Patent Document 1, paragraph [0030]).

特開昭60−84789号公報JP-A-60-84789 特開昭60−180478号公報JP 60-180478 A 特開2000−74568号公報JP 2000-74568 A

しかしながら、従来の誘導溶解炉の制御装置では、電力変換部が並列共振型回路(電流型回路)では、この特性上、負荷共振周波数で運転されるため、発振周波数を任意に変更することは困難である。   However, in the conventional induction melting furnace control device, the power conversion unit is operated at the load resonance frequency due to this characteristic in the parallel resonance type circuit (current type circuit), so it is difficult to arbitrarily change the oscillation frequency. It is.

そのため、溶解作業中に溶湯に成分調整材である微量の黒鉛、シリコン、マンガン等を添加すると、負荷共振周波数による溶湯の撹拌力では、成分調整材が溶湯に溶け込む前に、溶湯が過昇温状態となり成分調整剤の一部が未溶融で残ったり、溶湯成分が不均一になるなどの問題がある。   Therefore, if a small amount of graphite, silicon, manganese, etc., which are component adjustment materials, is added to the molten metal during the melting operation, the molten metal agitates by the load resonance frequency before the component adjustment material melts into the molten metal. There is a problem that a part of the component adjusting agent remains unmelted and the molten metal components become non-uniform.

これに対して、引用文献3に示すように、発振周波数を低下させて溶湯の撹拌力を増大させることも考えられるが、(引用文献3では発振周波数を低下させる具体的構成は不明であり)並列共振型回路では上述のように発振周波数を変更すること自体困難である。   On the other hand, as shown in the cited document 3, it is conceivable to increase the stirring power of the molten metal by lowering the oscillation frequency (in the cited document 3, the specific configuration for lowering the oscillation frequency is unknown). In the parallel resonant circuit, it is difficult to change the oscillation frequency as described above.

以上の事情に鑑みて、本発明は、溶解作業中に溶湯の過昇温を抑止し成分調整材を十分に溶け込ませることができる誘導溶解炉を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an induction melting furnace capable of suppressing an excessive temperature rise of a molten metal during a melting operation and sufficiently dissolving a component adjusting material.

上記目的を達成するために、第1発明の誘導溶解炉は、
炉壁の外周に設けられた加熱コイルに電力供給手段を介して電力を供給することにより炉内に収納された被溶解材を溶解させる誘導溶解炉であって、
順変換器と、第1および第2スイッチング素子が交互に動作する逆変換器とが直列共振型回路を構成する電力変換部と、
前記電力変換部の出力力率を検出する力率検出部と、
前記第1および第2スイッチング素子に対する制御信号を生成する制御信号生成部と
を備え、
前記制御信号生成部は、前記第1および第2スイッチング素子に対する制御信号として、
被溶解材を溶解させる第1段階において、前記力率検出部を介して検出される出力力率が1となる周波数の制御信号を生成し、
溶解した被溶解材に成分調整材を添加する第2段階において、該成分調整材を被溶解材に溶け込ませるのに適した周波数の制御信号として、撹拌による被溶解材の液面の高さの変化が所定の大きさとなる周波数の制御信号を生成し、
成分調整材が被溶解材に溶け込んだ後の第3段階において、前記力率検出部を介して検出される出力力率が1となる周波数の制御信号を生成することを特徴とする。
In order to achieve the above object, the induction melting furnace of the first invention comprises:
An induction melting furnace that melts a material to be melted housed in the furnace by supplying power to the heating coil provided on the outer periphery of the furnace wall through power supply means,
A power converter in which a forward converter and an inverse converter in which the first and second switching elements operate alternately constitute a series resonant circuit;
A power factor detector for detecting an output power factor of the power converter;
A control signal generator for generating control signals for the first and second switching elements,
The control signal generator is a control signal for the first and second switching elements.
In the first stage of melting the material to be melted, a control signal having a frequency at which the output power factor detected through the power factor detector is 1 is generated,
In the second stage of adding the component adjusting material to the dissolved material to be dissolved, as a control signal having a frequency suitable for dissolving the component adjusting material into the material to be dissolved , the liquid level of the material to be dissolved by stirring is adjusted . Generate a control signal with a frequency at which the change is a predetermined magnitude,
In a third stage after the component adjusting material is dissolved in the material to be melted, a control signal having a frequency at which the output power factor detected through the power factor detecting unit is 1 is generated.

第1発明の誘導溶解炉によれば、制御信号生成部により、逆変換器の第1および第2スイッチング素子の制御信号を負荷共振周波数に拘らず任意の周波数にすることができる。   According to the induction melting furnace of the first aspect of the invention, the control signal generator can set the control signals for the first and second switching elements of the inverse converter to an arbitrary frequency regardless of the load resonance frequency.

そのため、制御信号生成部により、被溶解材を溶解させる第1段階においては、力率検出部を介して検出される出力力率が1となるように、第1および第2スイッチング素子に対する制御信号を生成することで、高力率で被溶解材を溶解させることができる。   Therefore, in the first stage in which the material to be melted is melted by the control signal generator, the control signals for the first and second switching elements are set so that the output power factor detected through the power factor detector is 1. The material to be dissolved can be dissolved at a high power factor.

また、溶解した被溶解材に成分調整材を添加する第2段階においては、成分調整材を被溶解材に溶け込ませるのに適した周波数の制御信号を生成することで、成分調整材が溶湯に溶け込む前に溶湯が過昇温状態となることを防止することができる。   In addition, in the second stage of adding the component adjusting material to the melted material to be dissolved, the component adjusting material is converted into the molten metal by generating a control signal having a frequency suitable for causing the component adjusting material to be dissolved in the material to be melted. It is possible to prevent the molten metal from being overheated before melting.

さらに、成分調整材が被溶解材に溶け込んだ後の第3段階においては、力率検出部を介して検出される出力力率が1となる周波数の制御信号を生成することで、成分調整材の溶け込み後もその状態が継続されることによる炉壁の磨耗を抑制することができ、高力率で被溶解材を溶解させることができる。   Further, in the third stage after the component adjusting material is melted into the material to be melted, the component adjusting material is generated by generating a control signal having a frequency at which the output power factor detected through the power factor detecting unit is 1. It is possible to suppress the wear of the furnace wall due to the continuation of the state even after melting, and to dissolve the material to be melted at a high power factor.

このように第1発明の誘導溶解炉によれば、溶解作業中に溶湯に成分調整材を十分に溶け込ませることができる。   Thus, according to the induction melting furnace of the first invention, the component adjusting material can be sufficiently dissolved in the molten metal during the melting operation.

また、発明の誘導溶解炉によれば、溶湯内の撹拌力を直接計測することができないため、撹拌による被溶解材の液面の高さの変化を基準とすることで、任意の周波数にすることができる第1および第2スイッチング素子の制御信号を、成分調整材の溶解に適した撹拌周波数にすることができる。これにより、成分調整材が溶湯に溶け込む前に溶湯が過昇温状態となり、成分調整剤の一部が未溶融となる事を防止することができ、溶解作業中に溶湯に成分調整材を十分に溶け込ませることができる。 In addition, according to the induction melting furnace of the first invention, since the stirring force in the molten metal cannot be directly measured, an arbitrary frequency can be obtained based on the change in the liquid level of the material to be melted by stirring. The control signals of the first and second switching elements that can be made to be the stirring frequency suitable for the dissolution of the component adjusting material. As a result, it is possible to prevent the molten metal from being overheated before the component adjusting material melts into the molten metal, and to prevent a part of the component adjusting agent from being unmelted. Can be dissolved.

誘導溶解炉の構成を示す全体構成図。The whole block diagram which shows the structure of an induction melting furnace. 制御部の構成を示す説明図。Explanatory drawing which shows the structure of a control part. 制御部による処理内容を示す説明図。Explanatory drawing which shows the processing content by a control part. 誘導溶解炉における溶解方法を示すフローチャート。The flowchart which shows the melting method in an induction melting furnace.

図1を参照して、本実施形態の誘導溶解炉について説明する。   With reference to FIG. 1, the induction melting furnace of this embodiment is demonstrated.

誘導溶解炉は、溶解炉内に収納された被溶解材Xを溶解させるものであり、具体的には、電源1と、高圧受電盤2と、変換装置用変圧器3と、電力変換装置4と、高周波整合装置5と、誘導加熱装置6と、液面計測装置7と、コントローラ100とを備える。   The induction melting furnace melts the material to be melted X housed in the melting furnace. Specifically, the power source 1, the high-voltage power receiving panel 2, the converter transformer 3, and the power converter 4. A high-frequency matching device 5, an induction heating device 6, a liquid level measuring device 7, and a controller 100.

なお、電力変換装置4および高周波整合装置5が本発明の電力変換部に相当する。   The power conversion device 4 and the high frequency matching device 5 correspond to the power conversion unit of the present invention.

電源1は、交流電源であって、高圧受電盤2に接続されている。   The power source 1 is an AC power source and is connected to the high voltage power receiving panel 2.

高圧受電盤2は、誘導加熱装置6への電源通電・停止と故障発生時の電源遮断を行う装置であって、パワーヒューズ2aと遮断機2bとを備える。パワーヒューズ2aは、短絡事故時に電流遮断する手段であって、遮断機2bは、電源の通電と停止に伴う開閉動作を行う。   The high-voltage power receiving panel 2 is a device that energizes / stops the power to the induction heating device 6 and shuts off the power when a failure occurs, and includes a power fuse 2a and a circuit breaker 2b. The power fuse 2a is a means for interrupting current in the event of a short circuit accident, and the circuit breaker 2b performs an opening / closing operation accompanying energization and stop of the power source.

変換装置用変圧器3は、高圧受電盤2に接続され、電力変換装置4への入力電圧が所定の値となるように調整する。   The transformer for converter 3 is connected to the high voltage power receiving panel 2 and adjusts so that the input voltage to the power converter 4 becomes a predetermined value.

電力変換装置4は、変換装置用変圧器3に接続され、50Hzまたは60Hzの商用電源から任意の高周波電流を生成するための装置であって、制御回路10と、交流/直流変換器である順変換器41a,41bと、直流/交流変換器である逆変換器42a,42bとを備え、制御回路10からの出力制御信号により制御される。   The power conversion device 4 is a device for generating an arbitrary high-frequency current from a commercial power supply of 50 Hz or 60 Hz, connected to the transformer 3 for the conversion device, and is a control circuit 10 and an AC / DC converter. Converters 41a and 41b and inverse converters 42a and 42b, which are DC / AC converters, are controlled by an output control signal from the control circuit 10.

具体的に、電力変換装置4は、入力側にダイオード式順変換器41a,41bを備え、出力側にIGBT式逆変換器42a,42bを備え、順変換器41a,41bにはそれぞれ直列に平滑用リアクトル43a,43bが接続されると共に、順変換器41a,41bに並列に平滑用コンデンサ44aおよび44bが接続される。   Specifically, the power conversion device 4 includes diode-type forward converters 41a and 41b on the input side, IGBT-type reverse converters 42a and 42b on the output side, and each of the forward converters 41a and 41b is smoothed in series. Reactors 43a and 43b are connected, and smoothing capacitors 44a and 44b are connected in parallel to forward converters 41a and 41b.

さらに、電力変換装置4は、順変換器41a,41bの出力側の直流電圧を検出して直流電圧信号(a)を出力する直流電圧検出器45と、直流電流を検出して直流電流信号(b)を出力する直流電流検出器46とを備え、直流電圧検出器45および直流電流検出器46の出力値は、制御回路10に出力される。   Further, the power conversion device 4 detects a DC voltage on the output side of the forward converters 41a and 41b and outputs a DC voltage signal (a); and a DC current signal ( b), and output values of the DC voltage detector 45 and the DC current detector 46 are output to the control circuit 10.

なお、制御回路10による電力変換装置4の制御内容については詳細を後述する。   Details of the control content of the power conversion device 4 by the control circuit 10 will be described later.

高周波整合装置5は、電力変換装置4と誘導加熱装置6との間に設けられて、誘導加熱装置6が低力率であるため負荷力率を改善する。   The high-frequency matching device 5 is provided between the power conversion device 4 and the induction heating device 6 and improves the load power factor because the induction heating device 6 has a low power factor.

具体的に、高周波整合装置5は、共振用コンデンサ51a,51bと、高周波整合装置5の出力電流を検出して出力電流信号(d)を出力する電流検出器52および出力電圧を検出して出力電圧信号(e)を出力する電圧検出器53等から構成される。   Specifically, the high-frequency matching device 5 detects and outputs the resonance capacitors 51a and 51b, the current detector 52 that detects the output current of the high-frequency matching device 5 and outputs the output current signal (d), and the output voltage. The voltage detector 53 is configured to output a voltage signal (e).

共振用コンデンサ51aおよび51bには、それぞれ並列に、調整用コンデンサ51acおよび51bcが設けられる。調整用コンデンサ51acおよび51bcには、それぞれコンタクタ51adおよび51bdが設けられており、コンタクタ51adおよび51bdにより、調整用コンデンサ51acおよび51bcが共振用コンデンサ51aおよび51bに並列接続される。調整用コンデンサ51acおよび51bcにより、負荷共振回路の共振周波数よりも十分に低い発振周波数を電力変換装置4から出力した場合にも、負荷共振回路の無効電力の増大を防止することができる。   Resonance capacitors 51a and 51b are provided with adjustment capacitors 51ac and 51bc, respectively, in parallel. The adjustment capacitors 51ac and 51bc are provided with contactors 51ad and 51bd, respectively, and the adjustment capacitors 51ac and 51bc are connected in parallel to the resonance capacitors 51a and 51b by the contactors 51ad and 51bd. Adjustment capacitors 51ac and 51bc can prevent the reactive power of the load resonance circuit from increasing even when an oscillation frequency sufficiently lower than the resonance frequency of the load resonance circuit is output from power converter 4.

誘導加熱装置6は、電力変換装置4と高周波整合装置5とから供給される高周波電流を加熱コイル61に通電させることにより、溶解炉本体内に収納された被溶解材Xにうず電流を発生させ、うず電流により発生するジュール熱で被溶解材Xを加熱溶解する。   The induction heating device 6 generates an eddy current in the material X to be melted accommodated in the melting furnace body by energizing the heating coil 61 with a high-frequency current supplied from the power conversion device 4 and the high-frequency matching device 5. The melted material X is heated and melted by Joule heat generated by eddy current.

液面計測装置7は、溶解炉内で溶解した被溶解材Xの液面高さを計測する装置であって、計測した液面高さをコントローラ100へ出力する。液面計測装置7により液面の計測方法は、例えば、特開2004−151088号公報に記載の光学式による計測方法のほか、種々の公知の液面変位計測手法を採用し得る。   The liquid level measuring device 7 is a device that measures the liquid level height of the material to be melted X melted in the melting furnace, and outputs the measured liquid level height to the controller 100. As a method for measuring the liquid level by the liquid level measuring device 7, for example, various known liquid level displacement measuring methods can be adopted in addition to the optical measuring method described in Japanese Patent Application Laid-Open No. 2004-151088.

本実施形態において、液面計測装置7は、溶解炉本体の直上側から溶解した被溶解材Xの液面に向けて計測用のレーザを照射することにより、液面の盛り上がり高さを計測する。   In the present embodiment, the liquid level measuring device 7 measures the rising height of the liquid level by irradiating the measurement laser toward the liquid level of the material X to be melted from the upper side of the melting furnace body. .

コントローラ100は、制御誘導溶解炉の運転・停止を始めとする誘導溶解炉の運転の全般を制御する。なお、コントローラ100による誘導溶解炉の被溶解材Xの溶解方法については、後述する。   The controller 100 controls the overall operation of the induction melting furnace including the operation / stop of the control induction melting furnace. A method for melting the material X to be melted in the induction melting furnace by the controller 100 will be described later.

次に、説明を後回しにした制御回路10について、図2および図3を参照して説明する。   Next, the control circuit 10 which has been described later will be described with reference to FIGS.

制御回路10は、主に、出力調整等の制御を行うと共に、誘導溶解炉の制御装置として出力力率を検出する力率検出部、IGBT式逆変換器42a,42bの制御を行う制御信号生成部としての機能を備える。   The control circuit 10 mainly performs control such as output adjustment, and also generates a control signal for controlling the power factor detection unit for detecting the output power factor and the IGBT inverse converters 42a and 42b as a control device for the induction melting furnace. A function as a part is provided.

図2に示すように、制御回路10は、力率検出回路11と、PLL制御回路12とを備える。   As shown in FIG. 2, the control circuit 10 includes a power factor detection circuit 11 and a PLL control circuit 12.

力率検出回路11は、電流検出器52の出力値である高周波整合装置5の出力電流信号(d)と、電圧検出器53の出力値である高周波整合装置5の出力電圧信号(e)とから、高周波整合装置5から出力される交流電流・電圧の出力力率を算出する。   The power factor detection circuit 11 includes an output current signal (d) of the high-frequency matching device 5 that is an output value of the current detector 52, and an output voltage signal (e) of the high-frequency matching device 5 that is an output value of the voltage detector 53. From this, the output power factor of the alternating current / voltage output from the high-frequency matching device 5 is calculated.

PLL制御回路12は、電圧制御発振回路13を備え、図示しない基準周波数生成部により生成された周波数基準に対して、力率検出回路11により検出された出力力率に応じた値を加減させた周波数(制御周波数)を生成する。そして、この制御周波数を発振周波数とする三角波を電圧制御発振回路13により生成し、この三角波を出力基準から減算して分周することで、IGBT式逆変換器42a,42bのそれぞれの制御信号(ゲート信号)を生成する。この制御信号(ゲート信号)を生成する様子を図3に模式的に示す。   The PLL control circuit 12 includes a voltage-controlled oscillation circuit 13 and adjusts a value corresponding to the output power factor detected by the power factor detection circuit 11 with respect to a frequency reference generated by a reference frequency generation unit (not shown). A frequency (control frequency) is generated. Then, a triangular wave having this control frequency as the oscillation frequency is generated by the voltage controlled oscillation circuit 13, and the triangular wave is subtracted from the output reference and divided, whereby each control signal (indicated by the IGBT inverse converters 42a and 42b) ( Gate signal). FIG. 3 schematically shows how this control signal (gate signal) is generated.

なお、力率検出回路11とPLL制御回路12との間には、スイッチ14が設けられている。これは、外部から設定される周波数基準信号と力率検出信号とを同時に有効とすると、相反する周波数変化となり得るため、発振周波数を意図的に変化させたい場合に、スイッチをOFFすることで、周波数基準信号のみを有効とするものである。   A switch 14 is provided between the power factor detection circuit 11 and the PLL control circuit 12. This is because if the frequency reference signal and the power factor detection signal set from the outside are enabled at the same time, it can be a contradictory frequency change, so if you want to intentionally change the oscillation frequency, turn off the switch, Only the frequency reference signal is valid.

以上のように構成された誘導溶解による被溶解材の溶解方法について、図4を参照しながら説明する。 A method of melting the material to be melted by the induction melting furnace configured as described above will be described with reference to FIG.

まず、コントローラ100は、ユーザにより誘導炉本体内に被溶解材Xの投入が開始されると、電力変換装置4の運転を開始する(図4/STEP11)。   First, the controller 100 starts the operation of the power converter 4 when the user starts to introduce the material X to be melted into the induction furnace main body (FIG. 4 / STEP 11).

この被溶解材Xの溶解を行う第1段階において、制御回路10は、力率検出部11を介して出力力率が1となるように、IGBT式逆変換器42a,42bの制御信号(ゲート信号)を生成する。これにより、高力率で被溶解材を溶解させることができる。   In the first stage of melting the material to be melted X, the control circuit 10 controls the control signals (gates) of the IGBT inverse converters 42a and 42b so that the output power factor becomes 1 through the power factor detector 11. Signal). Thereby, the material to be dissolved can be dissolved at a high power factor.

次に、コントローラ100は、被溶解材Xの誘導炉本体内への投入が完了したか否かをチェックし(図4/STEP12)、投入が完了していない場合には(図4/STEP12でNO)、投入が完了するまでこのチェックを繰り返す。   Next, the controller 100 checks whether or not the introduction of the material X to be melted into the induction furnace main body has been completed (FIG. 4 / STEP 12), and if the introduction has not been completed (FIG. 4 / STEP 12). NO), repeat this check until charging is complete.

一方、コントローラ100は、投入が完了している場合には(図4/STEP12でYES)、成分調整材を被溶解材Xが溶解した溶湯に添加する成分調整段階であるか否かをチェックする(図4/STEP13)。   On the other hand, when the charging is completed (YES in FIG. 4 / STEP 12), the controller 100 checks whether or not it is a component adjustment stage in which the component adjustment material is added to the molten metal in which the material X is dissolved. (FIG. 4 / STEP 13).

そして、成分調整段階でない場合には(図4/STEP13でNO)、成分調整段階となるまでこのチェックを繰り返す。一方、成分調整段階の場合には(図4/STEP13でYES)、コントローラ100は、制御回路10を介して、以下の処理を実行する。   If it is not the component adjustment stage (NO in FIG. 4 / STEP 13), this check is repeated until the component adjustment stage is reached. On the other hand, in the component adjustment stage (FIG. 4 / YES in STEP 13), the controller 100 executes the following processing via the control circuit 10.

すなわち、溶解した被溶解材Xに成分調整材を添加する第2段階において、制御回路10は、スイッチ14をOFFすると共に周波数基準を低下させて、発振周波数を低下させる(図4/STEP21)。   That is, in the second stage of adding the component adjusting material to the melted material X, the control circuit 10 turns off the switch 14 and lowers the frequency reference to lower the oscillation frequency (STEP 21 in FIG. 4).

このとき、溶解した被溶解材Xに作用する撹拌力Fは、下式(1)で表わされる。   At this time, the stirring force F acting on the melted material X is expressed by the following formula (1).

Figure 0005656532
・・・・・(1)

Figure 0005656532
Figure 0005656532
(1)

Figure 0005656532

ここで、上式(1)の発振周波数fを低下させることで撹拌力Fが増大する。そのため、発振周波数を低下させて、成分調整材を溶解した被溶解材Xに溶け込ませるのに適した撹拌力Fを発生させることで、短時間に成分調整材を被溶解材Xに溶け込ませることができ、成分調整材が溶湯に溶け込む前に溶湯が過昇温状態となることを防止することができる。   Here, the stirring force F increases by decreasing the oscillation frequency f of the above equation (1). Therefore, the component adjusting material can be dissolved in the material X to be dissolved in a short time by reducing the oscillation frequency and generating a stirring force F suitable for being dissolved in the material X in which the component adjusting material is dissolved. It is possible to prevent the molten metal from being overheated before the component adjusting material melts into the molten metal.

次いで、コントローラ100は、液面計測装置7により計測される液面の高さが、(発振周波数低下前に対して)、所定の高さ(目標値)以上となっているか否かをチェックする(図4/STEP22)。   Next, the controller 100 checks whether or not the height of the liquid level measured by the liquid level measuring device 7 is higher than a predetermined height (target value) (before the oscillation frequency is lowered). (FIG. 4 / STEP22).

ここで、所定の高さ(目標値)は、被溶解材Xおよび添加される成分調整材の物性およびこれらの質量等から、成分調整材を被溶解材Xに溶け込ませるのに適した撹拌力が生じる場合の液面の高さとして設定される値である。   Here, the predetermined height (target value) is a stirring force suitable for dissolving the component adjusting material into the material X to be melted based on the physical properties of the material X to be dissolved and the component adjusting material to be added and their masses. This is a value set as the height of the liquid surface in the case of occurrence of

これにより、溶湯内の撹拌力を直接計測することができないため、撹拌による被溶解材の液面の高さの変化を基準とすることで、成分調整材の溶解に適した撹拌力Fを被溶解材Xの溶湯内に発生させることができる。   As a result, since the stirring force in the molten metal cannot be directly measured, the stirring force F suitable for dissolving the component adjusting material can be applied by using the change in the liquid level of the material to be melted by stirring as a reference. It can be generated in the molten metal X.

そして、コントローラ100は、液面計測装置7により計測される液面の高さが、所定の高さ(目標値)以上となっていない場合には(図4/STEP22でNO)、制御回路10を介して発振周波数をさらに低下させる。   When the liquid level measured by the liquid level measuring device 7 is not equal to or higher than a predetermined height (target value) (NO in FIG. 4 / STEP 22), the controller 100 controls the control circuit 10. The oscillation frequency is further lowered via

一方、液面計測装置7により計測される液面の高さが、所定の高さ(目標値)以上となっている場合には(図4/STEP22でYES)、被溶解材Xの溶湯内に成分調整材を投入する(図4/STEP23)。   On the other hand, when the height of the liquid level measured by the liquid level measuring device 7 is equal to or higher than the predetermined height (target value) (YES in FIG. 4 / STEP 22), the inside of the melt of the material X to be melted Ingredient adjustment material is put into (FIG. 4 / STEP23).

ここで成分調整材としては、例えば、黒鉛,シリコン,マンガン等であり、これらを、成分調整材添加後の被溶解材Xが所望の化学成分となるように、所定量(微量)添加する。   Here, the component adjusting material is, for example, graphite, silicon, manganese or the like, and these are added in a predetermined amount (a small amount) so that the material X to be dissolved after adding the component adjusting material becomes a desired chemical component.

次いで、コントローラ100は、成分調整材の投入が完了したか否かをチェックし(図4/STEP24)、投入が完了していない場合には(図4/STEP24でNO)、投入完了までこのチェックを繰り返す。   Next, the controller 100 checks whether or not the introduction of the component adjusting material has been completed (FIG. 4 / STEP 24). If the introduction has not been completed (NO in FIG. 4 / STEP 24), this check is performed until the introduction is completed. repeat.

一方、成分調整材の投入が完了している場合には(図4/STEP24でYES)、第3段階として、スイッチ14をONさせると共に周波数基準を変更前に戻し、発振周波数の力率1を維持する制御状態に復帰させる(図4/STEP31)。   On the other hand, when the introduction of the component adjusting material is completed (YES in FIG. 4 / STEP 24), as the third stage, the switch 14 is turned on and the frequency reference is returned to before the change, and the power factor 1 of the oscillation frequency is set. The control state to be maintained is restored (FIG. 4 / STEP 31).

その後、コントローラ100は、電力変換装置4の運転を終了し(図4/STEP32)、被溶解材Xを溶解させる一連の溶解作業を終了する。   Thereafter, the controller 100 ends the operation of the power converter 4 (FIG. 4 / STEP 32), and ends a series of melting operations for melting the material X to be melted.

以上が本実施形態の誘導溶解による被溶解材の溶解方法であり、上述のように、本実施形態の誘導溶解炉によれば、成分調整材が溶湯に溶け込む前に溶湯が過昇温状態となることを防止することができ、溶解作業中に溶湯に成分調整材を十分に溶け込ませることができる。   The above is the melting method of the material to be melted by induction melting of the present embodiment, and as described above, according to the induction melting furnace of the present embodiment, the molten metal is brought into an overheated state before the component adjusting material melts into the molten metal. It is possible to prevent the component adjusting material from being sufficiently dissolved in the molten metal during the melting operation.

なお、本実施形態では、コントローラ100により、誘導溶解炉における制御処理の全般が実行される場合について説明したが、これに限定されるものでなく、コントローラ100による処理の一部または全部がユーザにより実行されるようにしてもよい。   In the present embodiment, the case where the controller 100 performs the entire control process in the induction melting furnace has been described. However, the present invention is not limited to this, and a part or all of the process by the controller 100 is performed by the user. It may be executed.

1…電源、2…高圧受電盤、3…変換装置用変圧器、4…電力変換装置、5…高周波整合装置、6…誘導加熱装置、7…液面計測装置、10…制御回路、11…力率検出部、12…PLL制御部(制御信号生成部)、41a,41b…ダイオード式順変換器、42a,42b…IGBT式逆変換器、61…加熱コイル、100…コントローラ、X…被溶解材。 DESCRIPTION OF SYMBOLS 1 ... Power supply, 2 ... High voltage receiving board, 3 ... Transformer for converters, 4 ... Power converter, 5 ... High frequency matching device, 6 ... Induction heating device, 7 ... Liquid level measuring device, 10 ... Control circuit, 11 ... Power factor detector, 12 ... PLL controller (control signal generator), 41a, 41b ... Diode forward converter, 42a, 42b ... IGBT inverse converter, 61 ... Heating coil, 100 ... Controller, X ... Melting Wood.

Claims (1)

炉壁の外周に設けられた加熱コイルに電力供給手段を介して電力を供給することにより炉内に収納された被溶解材を溶解させる誘導溶解炉であって、
順変換器と、第1および第2スイッチング素子が交互に動作する逆変換器とが直列共振型回路を構成する電力変換部と、
前記電力変換部の出力力率を検出する力率検出部と、
前記第1および第2スイッチング素子に対する制御信号を生成する制御信号生成部と
を備え、
前記制御信号生成部は、前記第1および第2スイッチング素子に対する制御信号として、
被溶解材を溶解させる第1段階において、前記力率検出部を介して検出される出力力率が1となる周波数の制御信号を生成し、
溶解した被溶解材に成分調整材を添加する第2段階において、該成分調整材を被溶解材に溶け込ませるのに適した周波数の制御信号として、撹拌による被溶解材の液面の高さの変化が所定の大きさとなる周波数の制御信号を生成し、
成分調整材が被溶解材に溶け込んだ後の第3段階において、前記力率検出部を介して検出される出力力率が1となる周波数の制御信号を生成することを特徴とする誘導溶解炉。
An induction melting furnace that melts a material to be melted housed in the furnace by supplying power to the heating coil provided on the outer periphery of the furnace wall through power supply means,
A power converter in which a forward converter and an inverse converter in which the first and second switching elements operate alternately constitute a series resonant circuit;
A power factor detector for detecting an output power factor of the power converter;
A control signal generator for generating control signals for the first and second switching elements,
The control signal generator is a control signal for the first and second switching elements.
In the first stage of melting the material to be melted, a control signal having a frequency at which the output power factor detected through the power factor detector is 1 is generated,
In the second stage of adding the component adjusting material to the dissolved material to be dissolved, as a control signal having a frequency suitable for dissolving the component adjusting material into the material to be dissolved , the liquid level of the material to be dissolved by stirring is adjusted . Generate a control signal with a frequency at which the change is a predetermined magnitude,
An induction melting furnace characterized by generating a control signal having a frequency at which the output power factor detected through the power factor detector is 1 in the third stage after the component adjusting material has melted into the material to be melted .
JP2010217129A 2010-09-28 2010-09-28 Induction melting furnace Expired - Fee Related JP5656532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010217129A JP5656532B2 (en) 2010-09-28 2010-09-28 Induction melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217129A JP5656532B2 (en) 2010-09-28 2010-09-28 Induction melting furnace

Publications (2)

Publication Number Publication Date
JP2012074196A JP2012074196A (en) 2012-04-12
JP5656532B2 true JP5656532B2 (en) 2015-01-21

Family

ID=46170168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217129A Expired - Fee Related JP5656532B2 (en) 2010-09-28 2010-09-28 Induction melting furnace

Country Status (1)

Country Link
JP (1) JP5656532B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059389B1 (en) * 2016-06-20 2017-01-11 北芝電機株式会社 Melting control method for fast induction melting furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981687B2 (en) * 2020-02-28 2021-12-17 浜松ヒートテック株式会社 Load power factor control method using matrix converter for induction melting furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084789A (en) * 1983-10-14 1985-05-14 株式会社東芝 Power source for induction heating furnace
JP3998859B2 (en) * 1999-06-08 2007-10-31 高周波熱錬株式会社 Induction heating type melting furnace and melting method using the same
JP2005166621A (en) * 2003-12-01 2005-06-23 Uchino:Kk Control method of induction heating device
JP4985903B2 (en) * 2005-02-16 2012-07-25 シンフォニアテクノロジー株式会社 Alloy melting method for melting furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059389B1 (en) * 2016-06-20 2017-01-11 北芝電機株式会社 Melting control method for fast induction melting furnace

Also Published As

Publication number Publication date
JP2012074196A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP2011069606A (en) Arc melting facility and method of manufacturing molten metal using the arc melting facility
JP5656532B2 (en) Induction melting furnace
CN117598028A (en) Method for operating an arc furnace
JP5079865B2 (en) Induction melting furnace
JP5815904B1 (en) Induction melting furnace
TWI530651B (en) And the melting state determining device of the electric arc furnace
KR101857662B1 (en) Electric range controlling multiple working coil with frequency and duty
JP5862523B2 (en) Electrode lifting device
JP5602503B2 (en) Induction melting furnace controller
US20240114601A1 (en) Induction heating type cooktop and operating method thereof
JP5530116B2 (en) Alarm processing method for induction melting furnace
JP6059389B1 (en) Melting control method for fast induction melting furnace
JP6910741B2 (en) Electrode lifting device for arc furnace
Hammouma et al. Combined PDM with frequency-temperature profile adaptation control for induction metal hardening
JP6486983B2 (en) Abnormality detection apparatus and abnormality detection method for induction melting furnace
JP5074535B2 (en) Induction melting furnace controller
KR102508631B1 (en) Power conversion device and method for controlling the power conversion device
JP3116491B2 (en) Arc furnace input power control device
JP5912976B2 (en) Electrode lifting control method and apparatus for arc furnace
JP2007165122A (en) Induction heating cooking device
JP2006228541A (en) Induction heating device
JP4437728B2 (en) Cast metal melting equipment
JP2008196722A (en) Melting completion determining method for arc furnace
JP2003133054A (en) Electrode elevation control system for a.c. arc furnace, a.c. arc furnace and operation method of a.c. arc furnace
JP2006085936A (en) Electrode elevation control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5656532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees