JPH11162632A - Input power control method for electrode of electric furnace - Google Patents

Input power control method for electrode of electric furnace

Info

Publication number
JPH11162632A
JPH11162632A JP9343682A JP34368297A JPH11162632A JP H11162632 A JPH11162632 A JP H11162632A JP 9343682 A JP9343682 A JP 9343682A JP 34368297 A JP34368297 A JP 34368297A JP H11162632 A JPH11162632 A JP H11162632A
Authority
JP
Japan
Prior art keywords
furnace
electrodes
electrode
thermocouples
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9343682A
Other languages
Japanese (ja)
Inventor
Masakatsu Naruse
正克 成瀬
Takatoshi Kameshima
隆俊 亀島
Shoji Kitabayashi
庄治 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP9343682A priority Critical patent/JPH11162632A/en
Publication of JPH11162632A publication Critical patent/JPH11162632A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Discharge Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the total processing time and reduce partial wear of a furnace wall by measuring the furnace wall temp. around each electrode, and controlling individually the input powers to the electrodes so that the measurements lie within the tolerable range. SOLUTION: A furnace body 11 is structured so that thermocouples 31-33 are embedded in a fireproof material 13 around the electrodes 21-33. The thermocouples 31-33 are connected with a computational control device 51 through respective thermometers 41-43. By these thermometers 41-43 the furnace wall temps. around the electrodes 21-33 are directly measured by the thermocouples 31-33, and the acquired measurements are fed to the computational control device 51, where they are compared with the preset values and subjected to a computational processing. For example, the electrodes 21-33 are elevated and lowered through an electrode device 61 in conformity to the command signals given from the control device 51 in accordance with the obtained difference between the measurements and set values, and the input powers to the electrodes 21-33 are controlled individually.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気炉における電極
への投入電力制御方法に関する。金属材料の溶解や精錬
等に各種の電気炉が使用されている。例えば、金属スク
ラップの溶解に、炉の上部に二つ以上の複数の電極を備
える交流アーク炉や炉の下部に二つ以上の複数の電極を
備える直流アーク炉が使用されている。本発明は、炉の
上部又は下部に複数の電極を備える電気炉において、各
電極への投入電力を個別に制御する方法に関する。
The present invention relates to a method for controlling power supplied to electrodes in an electric furnace. Various electric furnaces are used for melting and refining metal materials. For example, an AC arc furnace having two or more electrodes at the top of the furnace or a DC arc furnace having two or more electrodes at the bottom of the furnace are used for melting metal scrap. The present invention relates to a method for individually controlling power supplied to each electrode in an electric furnace having a plurality of electrodes at an upper portion or a lower portion of the furnace.

【0002】[0002]

【従来の技術】従来、電気炉における電極への投入電力
制御方法として、操業条件との関係で経験則に基づき、
投入電力を経時的に、又は処理開始時からの累積投入電
力量に応じて制御することが行なわれている。例えば、
金属スクラップを炉の上部に3本の電極を備える3相交
流アーク炉で溶解する場合、炉の構造や金属スクラップ
の性状等との関係で経験則に基づき、3本の電極への投
入電力を一括して経時的に、又は処理開始時からの累積
投入電力量に応じて制御することが行なわれている。と
ころが、かかる従来法には、諸条件が複雑に絡み合う実
際の操業下において、炉内に所謂コールドスポットやホ
ットスポットが生じ、コールドスポットに起因して全体
の処理に時間がかかり、またホットスポットに起因して
炉壁の特定部分の損耗が特に増加するという問題があ
る。
2. Description of the Related Art Conventionally, as a method for controlling power supplied to electrodes in an electric furnace, based on empirical rules in relation to operating conditions,
The input power is controlled over time or according to the cumulative input power from the start of processing. For example,
When melting metal scrap in a three-phase AC arc furnace equipped with three electrodes at the top of the furnace, the input power to the three electrodes is determined based on empirical rules in relation to the structure of the furnace and the properties of the metal scrap. The control is performed collectively over time or according to the accumulated input electric energy from the start of the processing. However, in the conventional method, so-called cold spots and hot spots are generated in the furnace during actual operation in which various conditions are intertwined, and it takes a long time to process the entire process due to the cold spots. As a result, there is a problem that the wear of a specific portion of the furnace wall is particularly increased.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来法では、実際のところ、全体の処理に
時間がかかり、また炉壁の特定部分の損耗が特に増加す
るという点である。
The problem to be solved by the present invention is that, in the prior art, in fact, the whole process is time-consuming and the wear of particular parts of the furnace wall is particularly increased. is there.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決する本
発明は、炉の上部又は下部に複数の電極を備える電気炉
における電極への投入電力制御方法であって、各電極回
りの炉壁温度を測定し、各測定値と予め設定されている
設定値とを比較演算して、各電極への投入電力を個別に
制御することを特徴とする電気炉における電極への投入
電力制御方法に係る。
SUMMARY OF THE INVENTION The present invention, which solves the above-mentioned problems, is a method for controlling power supplied to electrodes in an electric furnace having a plurality of electrodes at the top or bottom of the furnace. A method for controlling the power supplied to the electrodes in an electric furnace, comprising measuring the temperature, comparing and calculating each measured value and a preset value, and individually controlling the power supplied to each electrode. Related.

【0005】本発明では炉の上部又は下部に複数の電極
を備える電気炉を対象とする。このような電気炉として
は、炉本体と該炉本体に被着された炉蓋とを備え、炉蓋
を貫通して2本以上の複数の電極が炉内へ挿入された交
流或は直流アーク炉やLF、同様に炉蓋を貫通して1本
又は2本以上の複数の電極が炉内へ挿入されると共に、
炉本体の底部に二つ以上の複数の電極が配置された直流
アーク炉等の電気溶解精錬炉がある。
The present invention is directed to an electric furnace having a plurality of electrodes at the top or bottom of the furnace. Such an electric furnace includes a furnace body and a furnace cover attached to the furnace body, and an AC or DC arc having two or more electrodes inserted into the furnace through the furnace cover. While one or two or more electrodes are inserted into the furnace through the furnace or LF, similarly through the furnace lid,
There is an electric smelting furnace such as a DC arc furnace in which two or more electrodes are arranged at the bottom of a furnace body.

【0006】本発明では、上記のような炉の上部又は下
部に複数の電極を備える電気炉において、炉内の金属材
料の処理状況又は炉壁の損耗状況を推定し、金属材料の
処理状況又は炉壁の損耗状況を調整するよう各電極への
投入電力を個別に制御する。各電極への投入電力を個別
に制御するのに炉内の金属材料の処理状況又は炉壁の損
耗状況を推定するための因子は各電極回りの炉壁温度で
ある。各電極回り(例えば近傍)の炉壁温度を測定し、
各測定値が例えば許容される一定範囲内となるよう、各
電極への投入電力を個別に制御する。
According to the present invention, in an electric furnace having a plurality of electrodes above or below the furnace as described above, the processing state of the metal material in the furnace or the wear state of the furnace wall is estimated, and the processing state of the metal material or The power supplied to each electrode is individually controlled so as to adjust the state of wear of the furnace wall. A factor for estimating the processing state of the metal material in the furnace or the wear state of the furnace wall for individually controlling the power supplied to each electrode is the furnace wall temperature around each electrode. Measure the furnace wall temperature around (for example, near) each electrode,
The input power to each electrode is individually controlled so that each measured value falls within, for example, a certain allowable range.

【0007】各電極回りの炉壁温度は直接的に測定する
こともできるし、或は間接的に測定することもできる。
例えば、各電極回りの炉壁(炉本体を構成する耐火材)
中に熱電対を埋め込み、これらの熱電対を温度計に接続
することにより、炉壁温度を直接的に測定することがで
き、また炉が水冷耐火壁を備えるものである場合には、
各電極回りの水冷ボックスから排出される冷却水の温度
を測定することにより、炉壁温度を間接的に測定するこ
とができる。
[0007] The temperature of the furnace wall around each electrode can be measured directly or indirectly.
For example, the furnace wall around each electrode (refractory material constituting the furnace body)
By embedding thermocouples inside and connecting these thermocouples to a thermometer, the temperature of the furnace wall can be measured directly, and if the furnace has a water-cooled refractory wall,
By measuring the temperature of the cooling water discharged from the water cooling box around each electrode, the furnace wall temperature can be measured indirectly.

【0008】各電極回りの炉壁温度を測定し、各測定値
を演算制御装置へ入力して、ここで演算処理し、該演算
制御装置から発せられる指令信号により、電極装置を介
して、各電極への投入電力を個別に制御する。例えば、
炉壁温度の測定値が予め演算制御装置に設定しておいた
設定値よりも高い場合や低い場合には、該当する電極を
昇降させて、結果的にそれらの電極への投入電力を個別
に制御する。
[0008] The furnace wall temperature around each electrode is measured, and each measured value is input to an arithmetic and control unit, where it is subjected to arithmetic processing. The power supplied to the electrodes is individually controlled. For example,
When the measured value of the furnace wall temperature is higher or lower than the preset value set in the arithmetic and control unit, the corresponding electrodes are raised and lowered, and as a result, the power supplied to those electrodes is individually increased. Control.

【0009】本発明によると、操業中、複数の電極への
投入電力を個別に制御することにより、炉内に所謂コー
ルドスポットやホットスポットが発生するのを未然に防
止できるので、全体の処理時間を短縮でき、また炉壁の
部分的損耗を防止できる。
According to the present invention, the so-called cold spots or hot spots can be prevented from occurring in the furnace by individually controlling the power supplied to the plurality of electrodes during operation, so that the total processing time can be reduced. Can be shortened, and partial wear of the furnace wall can be prevented.

【0010】複数の電極への投入電力を一括して制御す
る従来法では、例えば各電極への給電経路の長短により
インピーダンスに相違があるため、結果として各電極へ
の投入電力に差が生じる。これが炉内に所謂コールドス
ポットやホットスポットを発生させる原因の一つとな
り、金属スクラップを均一に溶解することができなくな
る。このような不都合は炉自体の特性として生じるた
め、コールドスポットやホットスポットの位置は炉によ
り固有のものとなる。
In the conventional method of controlling the power supplied to a plurality of electrodes collectively, impedance differs depending on, for example, the length of a power supply path to each electrode, and as a result, a difference occurs in the power supplied to each electrode. This is one of the causes of the generation of so-called cold spots and hot spots in the furnace, and the metal scrap cannot be uniformly melted. Since such inconvenience occurs as a characteristic of the furnace itself, the positions of the cold spots and hot spots are more specific to the furnace.

【0011】上記のような不都合を解消するため、本発
明では、操業開始時に各電極回りの炉壁温度が同じとな
るよう、すなわち各電極の位置を同じとして炉内に所謂
コールドスポットやホットスポットが発生しないよう、
事前に各電極への投入電力を個別に設定しておくのが好
ましい。例えば、上記のように各電極への給電経路の長
短がある場合には、給電経路の短い電極への投入電力よ
りも給電経路の長い電極への投入電力を高くしておくの
である。また操業中においても炉壁温度を連続的に測定
し、炉内金属材料の処理経過に伴う炉壁の露出、熱負荷
の変化等に応じて既応的に制御する。
In order to solve the above-mentioned inconveniences, in the present invention, so-called cold spots or hot spots are set in the furnace so that the furnace wall temperature around each electrode becomes the same at the start of operation, that is, the position of each electrode is the same. So that
It is preferable to individually set the power input to each electrode in advance. For example, when there is a length of the power supply path to each electrode as described above, the input power to the electrode having the long power supply path is set higher than the power input to the electrode having the short power supply path. In addition, the furnace wall temperature is continuously measured even during the operation, and the temperature is controlled according to the exposure of the furnace wall and the change in the heat load as the metal material in the furnace is processed.

【0012】[0012]

【発明の実施の形態】図1は本発明に係る投入電力制御
方法の実施形態を略示する全体図である。図1では、図
示しない炉蓋を貫通して炉内へ3本の電極21〜23が
挿入された3相交流アーク炉の場合を示している。3相
交流アーク炉の炉本体11は炉殻12と炉殻12に内張
りされた耐火材13とを備えており、各電極21〜23
のそれぞれ近傍における耐火材13中に熱電対31〜3
3が埋設されている。各熱電対31〜33はそれぞれ温
度計41〜43を介して演算制御装置51に接続されて
おり、演算制御装置51は電極装置61に接続されてい
て、電極装置61は各電極21〜23に接続されてい
る。熱電対31〜33を介して温度計41〜43で各電
極21〜23近傍の炉壁温度を直接的に測定し、その測
定値を演算制御装置51へ入力して、ここで予め設定し
ておいた設定値と比較演算処理し、各測定値と設定値と
の間の相違分に応じて演算制御装置51から発せられる
指令信号により、電極装置61を介して、例えば各電極
21〜23を昇降させ、各電極21〜23への投入電力
を個別に制御している。
FIG. 1 is an overall view schematically showing an embodiment of a supplied power control method according to the present invention. FIG. 1 shows a case of a three-phase AC arc furnace in which three electrodes 21 to 23 are inserted into a furnace through a furnace lid (not shown). The furnace main body 11 of the three-phase AC arc furnace includes a furnace shell 12 and a refractory material 13 lined with the furnace shell 12.
Thermocouples 31 to 3 in the refractory material 13 in the vicinity of
3 are buried. The thermocouples 31 to 33 are connected to the arithmetic and control unit 51 via thermometers 41 to 43, respectively. The arithmetic and control unit 51 is connected to the electrode device 61, and the electrode device 61 is connected to each of the electrodes 21 to 23. It is connected. The temperature of the furnace wall near each of the electrodes 21 to 23 is directly measured by the thermometers 41 to 43 via the thermocouples 31 to 33, and the measured values are input to the arithmetic and control unit 51, where they are set in advance. For example, each of the electrodes 21 to 23 is processed through the electrode device 61 by a command signal issued from the arithmetic and control unit 51 in accordance with the difference between each of the measured values and the set value. It is raised and lowered, and the power supplied to each of the electrodes 21 to 23 is individually controlled.

【0013】図2は本発明に係る投入電力制御方法の他
の実施形態を略示する全体図である。図2も、図示しな
い炉蓋を貫通して炉内へ3本の電極24〜26が挿入さ
れた3相交流アーク炉の場合を示している。3相交流ア
ーク炉の炉本体14は炉殻15と炉殻15に内張りされ
た耐火材16と炉殻15の外周に周設された水冷ボック
ス17とを備えており、水冷ボックス17は分割されて
いて、各電極24〜26のそれぞれ近傍における水冷ボ
ックス17a〜17cの冷却水排出部に熱電対34〜3
6が埋設されている。各熱電対34〜36はそれぞれ温
度計44〜46を介して演算制御装置52に接続されて
おり、演算制御装置52は電極装置62に接続されてい
て、電極装置62は各電極24〜26に接続されてい
る。熱電対34〜36を介して温度計44〜46で各電
極24〜26近傍の水冷ボックス17a〜17cから排
出される冷却水の温度を測定し、すなわち各電極24〜
26近傍の炉壁温度を間接的に求め、その測定値を演算
制御装置52へ入力して、ここで予め設定しておいた設
定値と比較演算処理し、各測定値と設定値との間の相違
分に応じて演算制御装置52から発せられる指令信号に
より、電極装置62を介して、例えば各電極24〜26
を昇降させ、各電極24〜26への投入電力を個別に制
御している。
FIG. 2 is an overall view schematically showing another embodiment of the applied power control method according to the present invention. FIG. 2 also shows a case of a three-phase AC arc furnace in which three electrodes 24 to 26 are inserted into a furnace through a furnace lid (not shown). The furnace body 14 of the three-phase AC arc furnace includes a furnace shell 15, a refractory material 16 lined with the furnace shell 15, and a water cooling box 17 provided around the outer periphery of the furnace shell 15, and the water cooling box 17 is divided. The thermocouples 34 to 3 are connected to the cooling water discharge portions of the water cooling boxes 17a to 17c in the vicinity of the electrodes 24 to 26, respectively.
6 are buried. The thermocouples 34 to 36 are connected to the arithmetic and control unit 52 via thermometers 44 to 46, respectively, and the arithmetic and control unit 52 is connected to the electrode unit 62, and the electrode unit 62 is connected to each of the electrodes 24 to 26. It is connected. The temperature of the cooling water discharged from the water cooling boxes 17a to 17c near the electrodes 24 to 26 is measured by the thermometers 44 to 46 via the thermocouples 34 to 36, that is, the temperatures of the electrodes 24 to 26 are measured.
The furnace wall temperature in the vicinity of 26 is indirectly obtained, the measured value is input to the arithmetic and control unit 52, and the calculated value is compared with a preset set value. Of the electrodes 24 to 26 via the electrode device 62 by a command signal issued from the arithmetic and control unit 52 in accordance with the difference between
And the power supplied to each of the electrodes 24 to 26 is individually controlled.

【0014】図3は本発明に係る投入電力制御方法の更
に他の実施形態を略示する全体図である。図3も、炉蓋
を貫通して炉内へ3本の電極27〜29が挿入された3
相交流アーク炉の場合を示しているが、図3では、かか
る3相交流アーク炉で炉内に投入した金属スクラップA
を溶解開始する直前の状態を示している。図3に略示し
た実施形態でも、炉本体18、炉殻19、耐火材20、
3本の電極27〜29、熱電対37〜39、温度計47
〜49、演算制御装置53及び電極装置63の相互関係
は図1について前述した実施形態と同様になっており、
また操業中(溶解中)に各電極27〜29への投入電力
を個別に制御する方法も図1について前述した実施形態
と同様になっている。図3に略示した実施形態では、操
業開始時(溶解開始時)に、各電極27〜29の位置を
同じとして炉内に所謂コールドスポットやホットスポッ
トが発生しないよう、事前に各電極27〜29への投入
電力を個別に設定している。例えば、演算制御装置53
に、電極27への投入電力を100と設定した場合、電
極27よりも給電経路が短い電極28への投入電力を9
5と設定し、また電極27よりも給電経路が長い電極2
9への投入電力を105と設定しておくのである。
FIG. 3 is an overall view schematically showing still another embodiment of the applied power control method according to the present invention. FIG. 3 also shows that three electrodes 27 to 29 are inserted into the furnace through the furnace lid.
FIG. 3 shows a case of a three-phase AC arc furnace.
Shows the state immediately before the start of dissolution. 3, the furnace body 18, the furnace shell 19, the refractory material 20,
Three electrodes 27 to 29, thermocouples 37 to 39, thermometer 47
1 to 49, the arithmetic control device 53 and the electrode device 63 are the same as in the embodiment described above with reference to FIG.
The method of individually controlling the power applied to each of the electrodes 27 to 29 during operation (during melting) is also the same as in the embodiment described above with reference to FIG. In the embodiment schematically illustrated in FIG. 3, at the start of operation (at the start of melting), the positions of the electrodes 27 to 29 are set to be the same so that so-called cold spots and hot spots do not occur in the furnace. The power supplied to the power supply 29 is individually set. For example, the arithmetic and control unit 53
In addition, when the input power to the electrode 27 is set to 100, the input power to the electrode 28 whose power supply path is shorter than that of the electrode 27 is 9
5, the electrode 2 having a longer power supply path than the electrode 27.
The input power to 9 is set to 105.

【0015】図1〜図3では炉の上部に3本の電極を備
える3相交流アーク炉について説明したが、本発明の対
象がかかる3相交流アーク炉に限定されるというもので
はなく、本発明は、例えば炉の上部に1本又は2本以上
の電極(陰極)を備えると共に、炉の下部(底部)に二
つ以上の複数の電極(陽極)を備える直流アーク炉につ
いても同様に適用できるし、LFにも適用できる。
1 to 3, a three-phase AC arc furnace having three electrodes on the upper part of the furnace has been described. However, the present invention is not limited to such a three-phase AC arc furnace, and the present invention is not limited thereto. The invention is similarly applied to, for example, a DC arc furnace having one or more electrodes (cathodes) at the top of the furnace and two or more electrodes (anodes) at the bottom (bottom) of the furnace. Yes, it can be applied to LF.

【0016】[0016]

【発明の効果】既に明らかなように、以上説明した本発
明には、電気炉による処理において、全体の処理時間を
短縮でき、また炉壁の部分的損耗を軽減できるという効
果がある。
As is clear from the above, the present invention described above has the effects of reducing the overall processing time and reducing the partial wear of the furnace wall in the processing using an electric furnace.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る投入電力制御方法の実施形態を略
示する全体図。
FIG. 1 is an overall view schematically showing an embodiment of a supplied power control method according to the present invention.

【図2】本発明に係る投入電力制御方法の他の実施形態
を略示する全体図。
FIG. 2 is an overall view schematically showing another embodiment of the applied power control method according to the present invention.

【図3】本発明に係る投入電力制御方法の更に他の実施
形態を略示する全体図。
FIG. 3 is an overall view schematically showing still another embodiment of the applied power control method according to the present invention.

【符号の説明】[Explanation of symbols]

11,14,18・・・炉本体、13,16,20・・
・耐火材、17a,17b,17c・・・水冷ボック
ス、21〜29・・・電極、31〜39・・・熱電対、
41〜49・・・温度計、51,52,53・・・演算
制御装置、61〜63・・・電極装置
11, 14, 18 ... furnace body, 13, 16, 20, ...
-Refractory materials, 17a, 17b, 17c: water-cooled boxes, 21 to 29: electrodes, 31 to 39: thermocouples,
41 to 49: thermometer, 51, 52, 53 ... arithmetic and control unit, 61 to 63 ... electrode device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炉の上部又は下部に複数の電極を備える
電気炉における電極への投入電力制御方法であって、各
電極回りの炉壁温度を測定し、各測定値と予め設定され
ている設定値とを比較演算して、各電極への投入電力を
個別に制御することを特徴とする電気炉における電極へ
の投入電力制御方法。
1. A method for controlling power supplied to electrodes in an electric furnace having a plurality of electrodes at an upper part or a lower part of a furnace, wherein a furnace wall temperature around each electrode is measured, and each measured value is set in advance. A method for controlling power supplied to electrodes in an electric furnace, wherein the power supplied to each electrode is individually controlled by comparing and calculating a set value.
【請求項2】 操業開始時に各電極回りの炉壁温度を測
定し、各測定値と予め設定されている設定値とを比較演
算して、事前に各電極への投入電力を個別に設定してお
く請求項1記載の電気炉における電極への投入電力制御
方法。
2. The furnace wall temperature around each electrode is measured at the start of operation, and each measured value is compared with a preset set value to calculate the input power to each electrode individually in advance. 2. A method for controlling power supplied to an electrode in an electric furnace according to claim 1.
JP9343682A 1997-11-28 1997-11-28 Input power control method for electrode of electric furnace Pending JPH11162632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9343682A JPH11162632A (en) 1997-11-28 1997-11-28 Input power control method for electrode of electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9343682A JPH11162632A (en) 1997-11-28 1997-11-28 Input power control method for electrode of electric furnace

Publications (1)

Publication Number Publication Date
JPH11162632A true JPH11162632A (en) 1999-06-18

Family

ID=18363439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9343682A Pending JPH11162632A (en) 1997-11-28 1997-11-28 Input power control method for electrode of electric furnace

Country Status (1)

Country Link
JP (1) JPH11162632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002895A (en) * 2012-06-18 2014-01-09 Nippon Electric Glass Co Ltd Control system of electric melting furnace, and production method of glass using control system of electric melting furnace
CN104807342A (en) * 2015-05-05 2015-07-29 中国恩菲工程技术有限公司 Power coordination control method for operation of multiple electric furnaces
WO2021176995A1 (en) * 2020-03-06 2021-09-10 スチールプランテック株式会社 Three-phase alternating current arc furnace and control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002895A (en) * 2012-06-18 2014-01-09 Nippon Electric Glass Co Ltd Control system of electric melting furnace, and production method of glass using control system of electric melting furnace
CN104807342A (en) * 2015-05-05 2015-07-29 中国恩菲工程技术有限公司 Power coordination control method for operation of multiple electric furnaces
WO2021176995A1 (en) * 2020-03-06 2021-09-10 スチールプランテック株式会社 Three-phase alternating current arc furnace and control method

Similar Documents

Publication Publication Date Title
RU2507724C2 (en) Control method of melting process in electric-arc furnace, and signal processing device, programme code and data carrier for implementation of that method
JP6294566B2 (en) System and method for determining the temperature of a metal melt in an electric arc furnace
RU2766939C2 (en) Method and device for determining various variables in toe of metallurgical converter
JPH11162632A (en) Input power control method for electrode of electric furnace
JP5408417B2 (en) Operation method of electric furnace for ferronickel smelting
US2519941A (en) Installation for the measurement and the control of the temperature in a metal melting and particularly in a submerged resistor type induction furnace
JP5599358B2 (en) Management method of molten steel pan
JP6673055B2 (en) Operation method of electric arc furnace
IT202000026807A1 (en) METHOD OF CONTROL OF SHAKING DEVICE AND SHAKING DEVICE
US3495018A (en) Arc voltage control for consumable electrode furnaces
JP5747286B2 (en) Three-phase AC electrode type circular electric furnace cooling method and three-phase AC electrode type circular electric furnace
JPH03152390A (en) Method and device for temperature control of fusion furnace
JPH11293326A (en) Operation of electric arc furnace
JPH11183044A (en) Method to control power charged to electrode in electric furnace
JP6954556B2 (en) Induction melting furnace
JP7482658B2 (en) Method for supporting electric furnace operation and method for steelmaking using electric furnace
JPH08185972A (en) Plasma heating method of fused metal and device therefor
JPH07332865A (en) Direct current system electric furnace
US4121043A (en) Preheating metallurgical enclosures
JP2000213728A (en) Temperature rise controller and control method for electric resistance type ash melting furnace
JP2003128469A (en) Method of drying monolithic refractory by applying microwaves
JPH09209011A (en) Method for restraining erosion of sidewall brick of furnace bottom of blast furnace
JP6913043B2 (en) How to operate a metal smelter
JP6086276B2 (en) Cold crucible melting furnace
JPS5855707A (en) Measuring device for pickup of slag in channel type induction furnace