JPH03152390A - Method and device for temperature control of fusion furnace - Google Patents
Method and device for temperature control of fusion furnaceInfo
- Publication number
- JPH03152390A JPH03152390A JP29111189A JP29111189A JPH03152390A JP H03152390 A JPH03152390 A JP H03152390A JP 29111189 A JP29111189 A JP 29111189A JP 29111189 A JP29111189 A JP 29111189A JP H03152390 A JPH03152390 A JP H03152390A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- melting
- power
- molten metal
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 36
- 230000004927 fusion Effects 0.000 title abstract 5
- 239000000463 material Substances 0.000 claims abstract description 44
- 238000002844 melting Methods 0.000 claims description 136
- 230000008018 melting Effects 0.000 claims description 136
- 239000002184 metal Substances 0.000 claims description 65
- 230000005611 electricity Effects 0.000 claims description 8
- 239000012768 molten material Substances 0.000 claims description 8
- 239000000155 melt Substances 0.000 abstract description 5
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000011156 evaluation Methods 0.000 abstract 2
- 238000010438 heat treatment Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000009529 body temperature measurement Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 4
- 230000003028 elevating effect Effects 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 239000003082 abrasive agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Control Of Temperature (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、溶解炉の温度制御方法およびその装置に関し
、とくに溶解材料の溶解時の温度制御を自動化するよう
にした溶解炉の温度制御方法および装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a temperature control method for a melting furnace and an apparatus thereof, and particularly to a temperature control method for a melting furnace that automates temperature control during melting of melted material. and regarding equipment.
[従来の技術]
金属材料を溶wlする溶解炉においては、溶湯の温度を
所望の温度に上昇させるための温度制御が行なわれてお
り、溶湯温度の測定結果に基づいて溶解炉への通電量を
制御することにより、溶湯温度を所定の温度に精度よく
到達させるようにしている。[Prior Art] In a melting furnace for melting metal materials, temperature control is performed to raise the temperature of the molten metal to a desired temperature, and the amount of electricity applied to the melting furnace is controlled based on the measurement result of the molten metal temperature. By controlling the temperature of the molten metal, the temperature of the molten metal reaches a predetermined temperature with high accuracy.
これに関連する先行技術として、たとえば特開昭63−
108190@公報、特公平1−32916号公報が知
られている。前者は、溶解俊の溶湯の温度上昇率から設
定サイクルタイム到達時点の溶湯温度を予測し、目e!
、温度との比較で投入電力を算出し、溶湯温度を所定サ
イクルタイムで目標温度に到達させるようにしている。As prior art related to this, for example, JP-A-63-
108190 @ publication and Japanese Patent Publication No. 1-32916 are known. The former predicts the temperature of the molten metal at the time the set cycle time is reached based on the rate of temperature rise of the molten metal.
The input power is calculated by comparison with the temperature, and the molten metal temperature is made to reach the target temperature in a predetermined cycle time.
後者は、炉入力に対応して溶湯を1℃上昇させるのに必
要な時間を計算し、溶融後の溶湯を湿度センサで測温後
、上記時間毎に1°Cを加えて目標温度に達した時点で
信号を出力するようにしている。The latter calculates the time required to raise the molten metal by 1°C in response to the furnace input, measures the temperature of the molten metal after melting with a humidity sensor, and then adds 1°C for each of the above hours to reach the target temperature. I am trying to output a signal at that point.
[発明が解決しようとする課題]
しかしながら、前記両公報に開示されている装置の場合
は、溶湯の湿度測定するためには溶解材料が完全に溶融
したか否かの判断が必要であり、とくに、後者(特公平
1−32916@公報)における溶解材料の溶解時には
作業者による監視が必要であった。前者(特開昭63−
108190号公報)の場合では、溶融温度にプラスの
溶湯温度TOより検出温度Tが高いか否かで溶融状態を
判定しているが、溶融前の炉内に温度センサを挿入する
のは非常に困難であり、また測温の精度も低いので、現
実には前者と同様に監視者が必要となる。[Problems to be Solved by the Invention] However, in the case of the devices disclosed in both of the above-mentioned publications, in order to measure the humidity of molten metal, it is necessary to determine whether or not the molten material has completely melted. In the latter case (Japanese Patent Publication No. 1-32916@publication), supervision by an operator was required during melting of the melted material. The former (Unexamined Japanese Patent Publication No. 1983-
108190), the molten state is determined based on whether the detected temperature T is higher than the molten metal temperature TO, which is the plus of the melting temperature, but it is extremely difficult to insert a temperature sensor into the furnace before melting. Since this is difficult and the accuracy of temperature measurement is low, in reality, a supervisor is required as in the former case.
また、後者の場合では、溶解時間を所定時間内に入れる
手段がなく、各秤条件の変動により溶解時間が変動し、
ワンショットメルクのようにサイクルタイムに制約があ
る場合には不適である。In addition, in the latter case, there is no means to set the dissolution time within a predetermined time, and the dissolution time fluctuates due to fluctuations in each weighing condition.
It is unsuitable in cases where cycle time is restricted, such as in one-shot Merck.
ざらに、両者とも溶融完了に至るまでと、投入された溶
解材料が完全に溶湯になってからの投入電力の切替えが
ないので、短時間での急速溶解の場合は、温度制御が間
に合わず、溶解炉がA−バヒートする危険がある。Generally, in both cases, there is no switching of the input power until the melting is completed or after the melted material has completely turned into molten metal, so in the case of rapid melting in a short time, temperature control cannot be done in time. There is a risk that the melting furnace will become A-bajito.
本発明は、上記の問題に着目し、溶解材料の溶解時の作
業者による監視が不要で、しかもサイクルタイムに合わ
せた溶解が可能な溶解炉の温度制御方法およびその装置
を提供することを目的とする。The present invention has focused on the above-mentioned problems, and aims to provide a temperature control method and device for a melting furnace that does not require operator monitoring during melting of melted materials and can melt in accordance with the cycle time. shall be.
[課題を解決するための手段]
この目的に沿う本発明に係る溶解炉の温度制御方法は、
電力の供給により溶解材料を溶融する溶解炉の温度制御
方法において、前記溶解材料の重量および特性値とから
溶解炉に投入される溶解材料が完全に溶融するのに必要
な電力量を予め求め、該電力毎に基づいた電力の供給に
よって溶解材料を溶融させ、該溶解材料の溶融完了後に
溶湯の温度を自動測定し、該自動測定された溶湯の温度
と溶湯の目標温度との温度差から必要とされる供給電力
量を求め、該必要とされる供給電力口と予め設定された
溶解時間とから溶湯を目標温度に上昇させるための供給
電力を算出する方法から成る。[Means for Solving the Problems] A temperature control method for a melting furnace according to the present invention that meets this objective is as follows:
In a temperature control method for a melting furnace that melts a melting material by supplying electric power, the amount of electricity required to completely melt the melting material input into the melting furnace is determined in advance from the weight and characteristic values of the melting material, The molten material is melted by supplying electric power based on the electric power, the temperature of the molten metal is automatically measured after the melting of the molten material is completed, and the temperature difference between the automatically measured molten metal temperature and the molten metal target temperature is required. The method consists of calculating the amount of power to be supplied to raise the temperature of the molten metal to a target temperature from the required power supply port and a preset melting time.
また、本発明に係る溶解炉の温度制御装置は、溶解炉内
の溶湯の温度を自動測定する温度測定手段と、
前記溶解材料の重量および特性値とから溶解炉に投入さ
れる溶解材料が完全に溶融するのに必要な電力毎を求め
るとともに、前記温度測定手段によって測定された溶湯
の温度と溶湯の目標温度との温度差から必要とされる供
給電力口を求め、該供給電力口と予め設定された溶解時
間とから溶湯を目標温度に1貸させるための供給電力を
算出する演p手段と、
前記演算手段からの信号に基づいて前記溶解炉への通電
mを制御する電力制御手段と、を具備したものから成る
。Further, the temperature control device for a melting furnace according to the present invention includes a temperature measuring means that automatically measures the temperature of the molten metal in the melting furnace, and a temperature measuring means that automatically measures the temperature of the molten metal in the melting furnace, and a temperature control device that automatically measures the temperature of the molten metal in the melting furnace. At the same time, the required power supply port is determined from the temperature difference between the temperature of the molten metal measured by the temperature measuring means and the target temperature of the molten metal. a calculation means for calculating the power to be supplied to bring the molten metal up to the target temperature from a set melting time; and a power control means for controlling energization m to the melting furnace based on a signal from the calculation means. It consists of a device equipped with the following.
[作 用]
このように構成された溶解炉の温度制御方法およびその
方法においては、まず、溶解材料の重量および特性値と
から溶解炉に投入される溶解材料が完全に溶融するのに
必要な電力量が予め演算手段によって求められる。そし
て、この求められた電力量に基づいて溶解炉に電力が供
給され溶解材料は完全に溶融される。溶解材料が溶融さ
れると、溶湯の温度が温度測定手段によって自動測定さ
れる。演算手段は、自動測定された溶湯の温度と溶湯の
目標温度との温度差から必要とされる供給電力量を求め
、ざらに、この供給電力量と予め設定された溶解時間と
から溶湯を目標温度に玉貸させるための供給電力が算出
される。[Function] In the temperature control method of a melting furnace configured as described above and its method, first, the temperature required for the melting material charged into the melting furnace to be completely melted is calculated based on the weight and characteristic values of the melting material. The amount of electric power is determined in advance by the calculation means. Then, electric power is supplied to the melting furnace based on the determined electric power amount, and the melting material is completely melted. When the molten material is melted, the temperature of the molten metal is automatically measured by the temperature measuring means. The calculation means calculates the required amount of power to be supplied from the temperature difference between the automatically measured temperature of the molten metal and the target temperature of the molten metal, and roughly calculates the amount of power to be supplied to the molten metal to the target from this amount of power to be supplied and the preset melting time. The power supplied to change the temperature is calculated.
このように、演粋手段によって筒用される供給電力量に
基づいて溶解vj利を完全に溶融させてから湿度測定手
段による溶湯の温度測定が行なわれるので、溶解材II
の完全溶融を作業者によって監視する必要がなくなる。In this way, the temperature of the molten metal is measured by the humidity measuring means after the molten metal is completely melted based on the amount of power supplied by the extraction means.
There is no need for an operator to monitor the complete melting of the melt.
また、溶解vi 11が完全に溶融された後は、測定さ
れた溶湯の温度と溶湯の目標温度との温度差から必要と
される供給型り早が求められ、この供給電力量と予め設
定された溶解時間とから供給すべき電h@筒用するよう
にしているため、サイクルタイムに合わせた温度上野が
可能になるとともに、温はの急上昇による溶解炉のオー
バーと−]・も防止される。In addition, after the melting vi 11 is completely melted, the required supply rate is calculated from the temperature difference between the measured temperature of the molten metal and the target temperature of the molten metal, and this supply power amount and the preset value are determined. Since the electric current to be supplied is adjusted according to the melting time, it is possible to adjust the temperature according to the cycle time, and it also prevents the melting furnace from overshooting due to a sudden rise in temperature. .
[実施例]
以下に、本発明に係る溶解炉の温度小制御方法およびそ
の装置の望ましい実施例を、図面を参照して説明する。[Embodiments] Below, preferred embodiments of the melting furnace temperature control method and device according to the present invention will be described with reference to the drawings.
第1実施例
第1図ないし第6図は、本発明の第1実施例を示してお
り、このうち第1図は、本発明が適用される溶解炉の温
度制御装着を示している。First Embodiment FIGS. 1 to 6 show a first embodiment of the present invention, of which FIG. 1 shows a temperature control installation of a melting furnace to which the present invention is applied.
第1図において、図中、1は溶解炉を示しており、溶解
炉1の炉体2の外周には、高周波加熱コイル3が配;2
されている。炉体2内には溶解材料が投入されており、
溶解材料は高周波加熱コイル3によってIJ口熱され溶
融されるようになっている。In FIG. 1, 1 indicates a melting furnace, and a high-frequency heating coil 3 is arranged around the outer periphery of a furnace body 2 of the melting furnace 1;
has been done. Melting material is put into the furnace body 2,
The melted material is heated by the high frequency heating coil 3 through the IJ and melted.
炉体2の上方には、高周波加熱コイル3によって溶融さ
れた溶湯4の温度を測定する温度測定手段5が配置され
ている。温度測定手段5は、昇降手段6に取付けられて
おり、温度測定時には昇降手段6の下降動作によって温
度測定手段5が溶湯に浸漬可能になっている。本実施例
では、温度測定手段5は溶湯4に直接浸漬させる熱電対
から構成されているが、故tFJ温度計等の非接触型の
温度測定手段を用いてもよい。したがって、非接触型の
温度測定手段を用いた場合は、本実施例のような昇降手
段6は不要である。高周波加熱コイル3と温度測定手段
5は、温度υ]制御手段に接続されている。温度制御手
段7は、@算手段としてのマイクロコンピュータのCP
UII、AD変換器12、電力制御手段13とから構成
されている。Temperature measuring means 5 for measuring the temperature of molten metal 4 melted by high-frequency heating coil 3 is arranged above furnace body 2 . The temperature measuring means 5 is attached to the elevating means 6, and when measuring the temperature, the temperature measuring means 5 can be immersed in the molten metal by the lowering operation of the elevating means 6. In this embodiment, the temperature measuring means 5 is composed of a thermocouple immersed directly into the molten metal 4, but a non-contact type temperature measuring means such as the late tFJ thermometer may also be used. Therefore, when a non-contact type temperature measuring means is used, the elevating means 6 as in this embodiment is not necessary. The high frequency heating coil 3 and the temperature measuring means 5 are connected to a temperature υ control means. The temperature control means 7 is a CP of a microcomputer as @ calculation means.
It is composed of a UII, an AD converter 12, and a power control means 13.
CPUIIは、溶解材料の千Gおよび特性値とから溶解
炉に投入される溶解材料が完全に溶融するのに必要な電
力♀を求める機能を有している。また、c p u t
iは、温度測定手段5によって測定された溶湯4の温度
と、溶湯4の目標温度との温度差から必要とされる供給
電力量を求め、この供給電力量と予め設定された溶解時
間とから溶湯を目標温度に玉貸させるための供給電力を
算出する機能を有している。The CPU II has a function of determining the electric power required for completely melting the melting material introduced into the melting furnace from the 1,000G of the melting material and the characteristic values. Also, c p u t
i calculates the required amount of power to be supplied from the temperature difference between the temperature of the molten metal 4 measured by the temperature measuring means 5 and the target temperature of the molten metal 4, and calculates the amount of power to be supplied from this amount of power and the preset melting time. It has a function to calculate the power to be supplied to bring the molten metal to the target temperature.
温度測定手段5は、AD変換器12を介してCPtJl
lに接続されている。つまり、温度測定手段5は熱雷対
から構成されているので、アナログ信号をデジタル信号
に変換する必要があり、温度情報としてCP U 11
にはデジタル信号が入力される。The temperature measuring means 5 is connected to the CPtJl via the AD converter 12.
connected to l. In other words, since the temperature measuring means 5 is composed of a thermal lightning pair, it is necessary to convert an analog signal into a digital signal, and the temperature information is sent to the CPU 11.
A digital signal is input to.
溶解炉1の高周波加熱コイル3は、電力υ制御手段13
を介してCPU11に接続されている。電り制御手段1
3は、cpuilからの信号に基づいて高周波加熱コイ
ル3への通電ωを制御する機能を有している。また、g
度測定手段5を4降させる昇降手段6は、CP U 1
1に接続されており、CPU11h1らの出力信号に基
づいて温度測定手段5が昇降動作するようになっている
。The high frequency heating coil 3 of the melting furnace 1 is controlled by the power υ control means 13
It is connected to the CPU 11 via. Electricity control means 1
3 has a function of controlling energization ω to the high frequency heating coil 3 based on a signal from the cpuil. Also, g
The elevating means 6 for lowering the degree measuring means 5 four times is the CPU 1
1, and the temperature measuring means 5 moves up and down based on output signals from the CPU 11h1 and others.
なお、CP U 11には、初期投入電力量WH,、初
期投入時間t1、溶解時間tc、目標溶解温度Tcおよ
び保温電力Wにが予め設定されている。Note that the initial input power amount WH, the initial input time t1, the melting time tc, the target melting temperature Tc, and the heat-retaining power W are preset in the CPU 11.
初期投入電力ωW H,は、溶解材料の重量、材質、形
状等の特性値から理論的に求めることもでき、あるいは
実際に溶解したデータを統計的に処理して求めることも
できる。The initial input power ωW H, can be determined theoretically from characteristic values such as the weight, material, shape, etc. of the melted material, or can be determined by statistically processing data on actual melting.
上述の初期投入電力IWH,は、溶解材料が完全に溶融
するのに必要な電力ff1WHHおよび目標溶解温度に
達するまでの全投入電力ffi W H丁を一例として
次の関係が成立する範囲で設定される。The above-mentioned initial input power IWH is set within a range where the following relationship holds, taking as an example the power ff1WHH required to completely melt the melting material and the total input power ff1WHH until reaching the target melting temperature. Ru.
WHH+α<WHl<WHT xk
ここで、αは溶解効率のバラツキと完全に溶融するため
の余裕係数であり、kは溶解効率のバラツキと目標溶解
温度以上にオーバヒートさせないための余裕係数である
。また、全供給電力ffiWH■はWH)fと同様の方
法で求められる。WHH+α<WHl<WHT xk Here, α is a margin coefficient for variations in melting efficiency and for complete melting, and k is a margin coefficient for variations in melting efficiency and for preventing overheating beyond the target melting temperature. Further, the total supplied power ffiWH■ is obtained in the same manner as WH)f.
本実施例では、ワンショットメルター等、溶解重量、溶
解材料の材質及び形状が決まっており、溶解材料の重ω
を計測し、溶M祠料を所定の溶解重量に調整してから溶
解が行なわれるが、温度制御手段7に図示されない設定
器を配設し、溶解材料の重量、その他の初期値をプリセ
ットし、毎サイクルごとに設定器を介してQptJll
[初期値を入力する方法を採用することも可能である。In this example, the melting weight, the material and shape of the melting material are determined using a one-shot melter, etc., and the weight of the melting material is
Melting is performed after measuring and adjusting the melted abrasive material to a predetermined melted weight. However, a setting device (not shown) is provided in the temperature control means 7 to preset the weight of the melted material and other initial values. , QptJll via the setter every cycle.
[It is also possible to adopt a method of inputting initial values.
つぎに、本実施例における溶解炉の温度制御方法につい
て説明する。Next, a method of controlling the temperature of the melting furnace in this embodiment will be explained.
第2図ないし第5図は、本実施例における温度制御方法
の原理を示す特性図を示している。このうち、第5図は
溶解時間と供給電力量の関係を示しており、所定の溶解
時間tc内の適当な時間t、までに初期投入電力ffi
W +−1、が溶解炉に供給される。第4図は溶解炉
に供給される電力と時間の関係を示す図であり、時間O
〜t、までの間の供給電力はWo =WH、/lである
ことを示している。2 to 5 show characteristic diagrams showing the principle of the temperature control method in this embodiment. Of these, FIG. 5 shows the relationship between the melting time and the amount of supplied power.
W +−1, is supplied to the melting furnace. Figure 4 is a diagram showing the relationship between the electric power supplied to the melting furnace and time, and the time O
It is shown that the supplied power between t and t is Wo = WH,/l.
この電力Woが溶解炉に供給された結果、溶解材料の温
度と時間との関係は第2図に示すようになる。ここで、
平均的な例を曲線a、バラツキの範囲内で溶解効率が最
も悪い例を曲線b1同様に最も効率のいい例を曲線Cで
示す。初期供給電力ff1WH,が供給された結果、時
間t、での溶湯温IT、は、それぞれ丁t a 、 T
t b 、 Tt c トなる。As a result of this electric power Wo being supplied to the melting furnace, the relationship between the temperature of the melted material and time becomes as shown in FIG. here,
Curve a represents an average example, curve b represents an example of the lowest dissolution efficiency within the range of variation, and curve C represents an example of the highest efficiency. As a result of supplying the initial supply power ff1WH, the molten metal temperature IT at time t is t a and T , respectively.
t b , Tt c becomes.
ここで明らかなように、初期供給電力1ttWH。As is clear here, the initial supply power is 1ttWH.
は、最も効率の悪い場合でも供給完了時=時間t、での
溶湯温度T、bが溶融完了温度Tutに対してT、b
=T)l +Tα(TCは余裕係数)となる範囲で設定
される。また、最も効率の良い場合でも、初期供給電力
IWH,は時間t、での溶湯温度T、cが目標溶解温度
Tcに対してTt C=TC−TB (TBはイナーシ
ャでTCをオーバーしないための余裕係数)となる範囲
内で設定される。Even in the least efficient case, the molten metal temperature T,b at the time of completion of supply = time t is T,b with respect to the melting completion temperature Tut.
It is set within the range of =T)l +Tα (TC is a margin coefficient). In addition, even in the most efficient case, the initial supplied power IWH, is the molten metal temperature T, c at time t, relative to the target melting temperature Tc: Tt C = TC - TB (TB is inertia and is margin coefficient).
第2図の曲線a、b、cにおいて、時間t、での溶湯温
度はそれぞれT、a 、T、b 、T、cであるから、
目標溶解温度TCとの温度差はそれぞれΔTa =TC
−T、a 、ΔTb =TC−T、b 。In curves a, b, and c in Fig. 2, the molten metal temperatures at time t are T, a, T, b, T, and c, respectively.
The temperature difference from the target melting temperature TC is ΔTa = TC
−T,a,ΔTb=TC−T,b.
ΔTc =TCT、Cとなり、この温度差分を所定の溶
解時間tcとの時間差Δt=tc−t、で昇温すれば所
定の溶解時間tcで目標溶解温度TCに到達させること
ができる。ここで、温度差ΔT分だけ溶湯温度を1弄さ
せるのに必要な電力量は次式で表わされる。ΔTc=TCT,C, and if the temperature difference is increased by the time difference Δt=tc−t from the predetermined melting time tc, the target melting temperature TC can be reached in the predetermined melting time tc. Here, the amount of power required to increase the molten metal temperature by the temperature difference ΔT is expressed by the following equation.
ΔWH= η ×ρXMX△T+ΔWHに(η:炉の効
率 ρ:溶湯の比熱 M:溶解重量ΔWHに=保温電′
h但)
この場合の必要投入電力Wは、
W=△WH/Δt =η 8ρXMXΔT十Δt
ΔW 1−1K =axΔT+Wに
△t
(a:係数 WK:保温電力)
となる。第3図は、温度差Δ王と必要供給電力Wの関係
を示しており、第2図の曲線a、b、cに対応する温度
差ΔTa、ΔTb、ΔTcに対し供給電力はそれぞれW
a 、 Wb 、WCになることがわかる。ΔWH= η ×ρXMX△T+ΔWH (η: Furnace efficiency ρ: Specific heat of molten metal M: Melt weight ΔWH = Heat insulation
However, the required input power W in this case is W=ΔWH/Δt=η 8ρXMXΔT+Δt ΔW 1−1K =axΔT+W and Δt (a: coefficient WK: heat insulation power). Figure 3 shows the relationship between the temperature difference ΔK and the required power supply W. For the temperature differences ΔTa, ΔTb, and ΔTc corresponding to curves a, b, and c in Figure 2, the supplied power is W, respectively.
It can be seen that a, Wb, and WC.
第4図において、時間t、以降の供給電力のレベルを下
げているのは、急速溶解の場合、昇温速度が速過ぎるた
め、制御系の遅れによるオーバーヒートが発生し易いた
めである。つまり、時間t、以降の供給電力の降下は、
昇温速度を低減し、精度良く目標溶解温度とするための
手段であり、急速溶解の場合は不可欠であり、通常溶解
の場合も精度向上のために有効である。この供給電力の
レベルを下げる方法は、特別な装置は必要ではなく、急
速溶解では初期投入電力量WH,を許される範囲内で大
ぎくし、時間t、を許される範囲で小さく設定すること
で可能となる。また、通常溶解では初期供給電力量WH
,は同様であるが、もともと昇温速度もあまり速くない
ので、時間t。In FIG. 4, the level of power supplied after time t is lowered because in the case of rapid melting, the rate of temperature rise is too fast and overheating is likely to occur due to delay in the control system. In other words, the drop in the supplied power after time t is:
This is a means for reducing the temperature increase rate and achieving the target melting temperature with high accuracy, and is essential in the case of rapid melting, and is also effective for improving accuracy in the case of normal melting. This method of lowering the level of supplied power does not require any special equipment; in the case of rapid melting, the initial input power amount WH, can be increased within the allowable range, and the time t, can be set as small as possible. It becomes possible. In addition, in normal melting, the initial supply power WH
, is the same, but since the rate of temperature increase is not very fast to begin with, the time t.
は大きめに設定する方が初期供給電力が小となり経済的
である。It is more economical to set the value to a larger value because the initial power supply becomes smaller.
第6図は、演算手QとしてのCPtJllにおける情報
処理の手順を示している。FIG. 6 shows the procedure of information processing in CPtJll as operator Q.
ステップ30に示すように、溶解準備完了によりスター
トし、ステップ31で初期供給電力Woが電力1,11
御手段13を介して溶解炉1側に出力され、溶解炉]内
の溶解材料が高周波加熱コイルによってハ[1熱される
。ステップ32ではタイマーの作動が開始し、ステップ
33で作動U)間がt、になったか否かを判定し、その
結果がt、≧主になるまでこの動作を繰返す。つまり、
溶解材料が完全に溶融さ机たか否かを時間によって判定
する。ステップ33において↑≧↑、になると、ステッ
プ34に進み、湿度測定手段5の昇降手段6に下降指令
が出力され、温度測定手段5が溶湯4の中へ浸漬される
。As shown in step 30, the process starts when the preparation for melting is completed, and in step 31, the initial supply power Wo is changed to 1, 11.
The material is output to the melting furnace 1 side via the control means 13, and the melted material in the melting furnace is heated by the high-frequency heating coil. In step 32, the timer starts operating, and in step 33, it is determined whether the operating interval has reached t, and this operation is repeated until the result is t≧main. In other words,
Determine whether the melted material is completely melted by time. If ↑≧↑ in step 33, the process proceeds to step 34, where a descending command is output to the lifting/lowering means 6 of the humidity measuring means 5, and the temperature measuring means 5 is immersed into the molten metal 4.
そして、溶湯温度TがA/D変換器6を介してCPtJ
llによって読み込まれる。ステップ37ではCPU1
1により目標溶解温度TCとの温度差ΔT=Tc−Tが
算出され、ステップ38で投入電力W=a・ΔT +W
にが算出される。ステップ39では、その結果を電力制
御手段13に出力し、高周波加熱コイル3への通電量が
切り替えられる。Then, the molten metal temperature T is changed to CPtJ via the A/D converter 6.
Read by ll. In step 37, CPU1
1, the temperature difference ΔT=Tc−T from the target melting temperature TC is calculated, and in step 38, the input power W=a・ΔT +W
is calculated. In step 39, the result is output to the power control means 13, and the amount of current applied to the high frequency heating coil 3 is switched.
急速溶解等で温度測定手段5の溶湯4への浸漬動作時間
及び測温開始までの安定化時間が長ずぎて問題となる場
合は、タイマーを2段にして、上記時間分だけt、より
早目にタイムアツプするタイマーで温度センサー4の下
降指令を出力するか、−旦保温電力WKにレベルを落と
しておく方法をとるのがよい。If the immersion time of the temperature measurement means 5 into the molten metal 4 and the stabilization time until the start of temperature measurement are too long due to rapid melting, etc., the timer is set to two stages and the timer is set to 2 steps for the above-mentioned time. It is best to use a timer that times up quickly to output a command to lower the temperature sensor 4, or to reduce the level to the heat-retaining power WK.
通電mを切り替えた後は、ステップ40、旧に進んで溶
湯4の湿度が監視される。そして、溶湯4の温度が目標
溶解湿度Tcになると、ステップ42に進み、溶解完了
信号を出力するとともに、供給電力を保温型fJWKと
し、高周波加熱コイル3の通電mを切り替えられ、処理
は終了する。After switching the energization m, the process proceeds to step 40, where the humidity of the molten metal 4 is monitored. When the temperature of the molten metal 4 reaches the target melting humidity Tc, the process proceeds to step 42, where a melting completion signal is output, the power supply is set to the heat retention type fJWK, the energization m of the high frequency heating coil 3 is switched, and the process ends. .
第2実施例
第7図ないし第9図は、本発明の第2実施例を示してい
る。本実施例が第1実施例と異なるところは、溶解時間
と溶解材料の温度との関係、および溶解時間と供給電力
の関係であり、その他は第1実施例の構成に準じるので
、準じる部分に第1実施例と同一の符号を付すことによ
り、準じる部分の説明は省略する。Second Embodiment FIGS. 7 to 9 show a second embodiment of the present invention. This example differs from the first example in the relationship between the melting time and the temperature of the melted material, and the relationship between the melting time and the supplied power. By assigning the same reference numerals as in the first embodiment, explanations of corresponding parts will be omitted.
第7図は、時間と溶解材料の温度の関係を、第8図は時
間と投入電力の関係を示している。本実施例では、L−
tc間をn個に区分し、それぞれの区間量に溶湯温度T
iを測温し、その結果と目標溶解温度−「Cとの温度差
△Ti =Tc −Tにより供給電力Wiを算出するこ
とにより、より細かいピッチで所定の溶解時間tcに目
標溶解温度下Cとなるよう修正を加えていくものである
。FIG. 7 shows the relationship between time and the temperature of the melted material, and FIG. 8 shows the relationship between time and input power. In this example, L-
tc is divided into n sections, and the molten metal temperature T is set for each section amount.
By measuring the temperature of i and calculating the supplied power Wi from the temperature difference between the result and the target melting temperature - "C", △Ti = Tc - T, the temperature difference between the temperature and the target melting temperature - "C" is calculated. Modifications will be made to ensure that.
第7図においては、時間t、のとき溶湯温度はT、であ
るので、温度差へT、=Tc T1、時間差△t、=
tc tlより溶解炉に供給する供給電力W、が1q
られる。次の測温タイミングt2のとき、t3のときと
同様の処理を行ない、ti=t−cになるまでこの処理
が繰り返えされる。In FIG. 7, the temperature of the molten metal is T at time t, so the temperature difference is T, = Tc T1, and the time difference Δt, =
The power supply W supplied to the melting furnace from tc tl is 1q
It will be done. At the next temperature measurement timing t2, the same process as at t3 is performed, and this process is repeated until ti=t−c.
第9図は、本実施例のCPUIIにおける情報処理のフ
ローチャートを示している。第1実施例と異なるのは、
ステップ34で溶湯温度T1を読み込んだ後、ステップ
35でTiを目標溶解温度Tcと比較し、Ti≦TCの
ときステップ36に進み、時間tiと所定の溶解時間t
cを比較することであり、ti≦tcのとき第1実施例
のステップ37〜39と同様の処理をステップ37′〜
39′で行ない、ステップ34に戻ることである。ステ
ップ36でti>tcとなるのは、所定の溶解時間te
で目標溶解温度に達しなかった場合であり、この場合は
すぐにステップ34に戻りl’−1−Tcになるまで同
じ処理が繰り返えされる。この時の供給電力は、t、>
tcとなる直前の電力Wiに固定されている。FIG. 9 shows a flowchart of information processing in the CPU II of this embodiment. The difference from the first embodiment is that
After reading the molten metal temperature T1 in step 34, Ti is compared with the target melting temperature Tc in step 35, and when Ti≦TC, the process proceeds to step 36, and the time ti and the predetermined melting time t are determined.
When ti≦tc, the same processing as steps 37 to 39 in the first embodiment is performed in steps 37' to 39.
39' and return to step 34. The reason why ti>tc in step 36 is that the predetermined dissolution time te
In this case, the process immediately returns to step 34 and the same process is repeated until l'-1-Tc is reached. The supplied power at this time is t, >
The power Wi is fixed to the power Wi immediately before reaching tc.
ステップ35でTi =TCとなるとステップ42に進
み、電力制御手段13を介して保温電力WKが出力され
、処理を終了する。When Ti = TC in step 35, the process proceeds to step 42, where the warming power WK is outputted via the power control means 13, and the process ends.
なお、第7図、第8図では、説明をわかり易くするため
、ある時間単位に区分して表示しであるが、CPU11
のステップ34〜39までの処理サイクル毎に処理すれ
ば良く、第9図の処理フローは後者で表記しである。In addition, in FIGS. 7 and 8, in order to make the explanation easier to understand, the display is divided into certain time units, but the CPU 11
It is sufficient to perform the processing in each processing cycle from steps 34 to 39, and the processing flow in FIG. 9 is expressed in the latter manner.
第3実施例
第10図および第11図は、本発明の第3実施例を示し
ている。本実施例は、過大な供給電力により溶湯の中央
部が盛り上がり、溶湯が炉外へはね出たりして安全性そ
の他から供給電力に限界が生じるのを防ぐのに適用でき
る例である。Third Embodiment FIGS. 10 and 11 show a third embodiment of the present invention. This embodiment is an example that can be applied to prevent the central part of the molten metal from rising due to excessively supplied power, causing the molten metal to splash out of the furnace, and thereby limiting the power supply from safety and other reasons.
初期投入電力ffi W Hlの設定の方法は、第1実
施例と同じであるが、図に示すように、溶解開始までと
、それ以降で供給電力を変更し、溶融開始以降は比較的
小さな電力に切り替え、急速溶解での危険を防ぐように
している。The method for setting the initial input power ffi W Hl is the same as in the first embodiment, but as shown in the figure, the supplied power is changed before and after the start of melting, and after the start of melting, a relatively small power is used. to prevent the danger of rapid melting.
[発明の効果]
以上説明したように、本発明に係る溶解炉の湿度制御方
法およびその装置によるときは、溶解材料の重量および
特性値とから溶解炉に投入される溶解材I+が完全に溶
融づるのに必要な電力母を予め演算手段により求め、こ
の電力苗に基づいた電力の供給によって溶解材料を溶融
さ−U、溶vR−材利の溶融完了後に溶湯の温度を湿度
測定手段により自動測定し、自動測定された溶湯の湿度
と溶湯の目標温度との温度差から必要とされる供給電力
母を求め、必要とされる供給電力量と予め設定された溶
解時間とから溶湯を目標湿度に1弄させるための供給電
力を演n手段により算出するようにしたので、以下の効
果が得られる。[Effects of the Invention] As explained above, when the melting furnace humidity control method and device according to the present invention are used, the melting material I+ charged into the melting furnace is completely melted based on the weight and characteristic values of the melting material. The amount of power required for the molten material is determined in advance by a calculation means, and the molten material is melted by supplying power based on this power source. The required power supply is determined from the temperature difference between the automatically measured humidity of the molten metal and the target temperature of the molten metal, and the molten metal is heated to the target humidity based on the required amount of power supply and the preset melting time. Since the power to be supplied for increasing the power consumption is calculated by the calculation means, the following effects can be obtained.
K)溶解材料の溶融完了を作業者によって監視する必要
がなくなり、溶解作業の自動化、無人化が可能となる。K) There is no need for an operator to monitor the completion of melting of the melted material, and melting work can be automated and unmanned.
I 溶解材料の投入時から温度を測定する従来方法では
、溶解材料の温度を計測しているのか、材料間の雰囲気
温度を計測しているのかがわからず、部分的に溶融が始
まった場合では、計測ミスが発生しやすいが、本発明で
は完全溶融後に、温度測定を開始するので、このような
計測ミスは確実に防止できる。I With the conventional method of measuring the temperature from the time the melted material is introduced, it is unclear whether it is measuring the temperature of the melted material or the ambient temperature between the materials, and if melting has started partially, Although measurement errors are likely to occur, in the present invention, temperature measurement is started after complete melting, so such measurement errors can be reliably prevented.
Q)温度制御の遅れがないため、制御上は供給電力に制
限がなく急速溶解にも対応することができる。Q) Since there is no delay in temperature control, there is no limit to the power supply and it can handle rapid melting.
■ 初期供給電力口を投入完了時点のg度と目標溶解温
度との湿度差及び所定溶解時間との時間差により供給電
力を決めるため、所定の溶解時間で溶解が精度よく完了
し、サイクルタイムが決っている場合は、残りの時間を
保温するというエネルギーのロスを防止できる。ざらに
、サイクルタイムに間に合わないということもなくなり
、これに起因する生産性の低下が防止できる。■ Since the power supply is determined based on the humidity difference between the g degree at the time when the initial power supply port is turned on and the target melting temperature, as well as the time difference between the predetermined melting time, melting is completed accurately within the predetermined melting time, and the cycle time is fixed. If the temperature is too high, you can prevent the energy loss of keeping warm for the rest of the time. In addition, there is no longer a problem of not being able to meet the cycle time, and a decrease in productivity caused by this can be prevented.
(ホ)初期供給電力母投入完了後の供給電力レベルが低
くなるよう初期供給電力口と完了タイミングで調整でき
るので、溶融完了までは大電力で急速に加熱、溶解し、
それ以降は溶湯湿度による制御でも十分な加熱速度とす
ることができ精度の良い制御が可能となる。(E) Since the initial power supply port and the completion timing can be adjusted so that the power supply level after the initial supply power is completed is low, the initial power supply port and the completion timing can be adjusted to quickly heat and melt with high power until the melting is completed.
After that, a sufficient heating rate can be achieved even by controlling the molten metal humidity, making it possible to control with high precision.
第1図は本発明の第1実施例に係る溶解炉の温度制御方
法に用いられる装置の概略構成図、第2図は第1図の装
置における溶解材料の温度と時間との関係を示す特性図
、
第3図は第1図の装置における算出された温度差と必要
投入電力との関係を示す特性図、第4図は第1図の装置
における供給電力と時間との関係を示す特性図、
第5図は第1図の装置における溶解時間と供給電力量と
の関係を示す特性図、
第6図は第1図の装置の演算手段における情報処理の手
順を示したフローチャート、
第7図は、本発明の第2実施例に係る溶解炉の温度制御
方法における溶解時間と溶解材料の温度との関係を示す
特性図、
第8図は第7図の特性に基づく溶解時間と供給電力との
関係を示す特性図、
第9図は第7図および第8図の特性を利用した場合の演
算手段における情報処理の手順を示したフローチャート
、
第10図は本発明の第3実施例に係る溶解炉の温度制御
方法における溶解時間と溶解材料の温度との関係を示す
特性図、
第11図は第10図の特性に基づく溶解時間と供給電力
との関係を示す特性図、
である。
1・・・・・・溶解炉
3・・・・・・高周波加熱コイル
4・・・・・・溶湯
5・・・・・・温度測定手段
6・・・・・・昇降手段
11・・・・・・演n手段
13・・・・・・電力制御手段
特
許
出
願
人
トヨタ自動車株式会社
第1
図
第6図
第9図
時間 (t)FIG. 1 is a schematic configuration diagram of an apparatus used in the melting furnace temperature control method according to the first embodiment of the present invention, and FIG. 2 is a characteristic showing the relationship between the temperature of melted material and time in the apparatus of FIG. 1. Figure 3 is a characteristic diagram showing the relationship between the calculated temperature difference and required input power in the device shown in Figure 1, and Figure 4 is a characteristic diagram showing the relationship between supplied power and time in the device shown in Figure 1. , FIG. 5 is a characteristic diagram showing the relationship between melting time and amount of supplied power in the device shown in FIG. 1, FIG. 6 is a flowchart showing the procedure of information processing in the calculation means of the device shown in FIG. 1, and FIG. 8 is a characteristic diagram showing the relationship between the melting time and the temperature of the melted material in the melting furnace temperature control method according to the second embodiment of the present invention, and FIG. FIG. 9 is a flowchart showing the procedure of information processing in the calculation means when the characteristics of FIGS. 7 and 8 are used; FIG. 10 is a characteristic diagram showing the relationship between FIG. 11 is a characteristic diagram showing the relationship between the melting time and the temperature of the melted material in the melting furnace temperature control method; FIG. 11 is a characteristic diagram showing the relationship between the melting time and the supplied power based on the characteristics of FIG. 10. 1... Melting furnace 3... High frequency heating coil 4... Molten metal 5... Temperature measuring means 6... Lifting means 11... ...Performance means 13...Power control means Patent applicant Toyota Motor Corporation Fig. 1 Fig. 6 Fig. 9 Time (t)
Claims (1)
制御方法において、前記溶解材料の重量および特性値と
から溶解炉に投入される溶解材料が完全に溶融するのに
必要な電力量を予め求め、該電力量に基づいた電力の供
給によって溶解材料を溶融させ、該溶解材料の溶融完了
後に溶湯の温度を自動測定し、該自動測定された溶湯の
温度と溶湯の目標温度との温度差から必要とされる供給
電力量を求め、該必要とされる供給電力量と予め設定さ
れた溶解時間とから溶湯を目標温度に上昇させるための
供給電力を算出することを特徴とする溶解炉の温度制御
方法。 2、溶解炉内の溶湯の温度を自動測定する温度測定手段
と、 前記溶解材料の重量および特性値とから溶解炉に投入さ
れる溶解材料が完全に溶融するのに必要な電力量を求め
るとともに、前記温度測定手段によつて測定された溶湯
の温度と溶湯の目標温度との温度差から必要とされる供
給電力量を求め、該供給電力量と予め設定された溶解時
間とから溶湯を目標温度に上昇させるための供給電力を
算出する演算手段と、前記演算手段からの信号に基づい
て前記溶解炉への通電量を制御する電力制御手段と、 を具備したことを特徴とする溶解炉の温度制御装置。[Claims] 1. In a temperature control method for a melting furnace in which melting material is melted by supplying electric power, it is determined that the melting material charged into the melting furnace is completely melted based on the weight and characteristic values of the melting material. The required amount of electricity is determined in advance, the molten material is melted by supplying electricity based on the amount of electricity, the temperature of the molten metal is automatically measured after the melting of the molten material is completed, and the automatically measured temperature of the molten metal and the temperature of the molten metal are The required power supply amount is determined from the temperature difference with the target temperature, and the power supply for raising the molten metal to the target temperature is calculated from the required power supply amount and a preset melting time. Features: Melting furnace temperature control method. 2. Temperature measuring means for automatically measuring the temperature of the molten metal in the melting furnace, and determining the amount of electricity required to completely melt the melting material introduced into the melting furnace from the weight and characteristic values of the melting material. , the required amount of power to be supplied is determined from the temperature difference between the temperature of the molten metal measured by the temperature measuring means and the target temperature of the molten metal, and the amount of power to be supplied to the molten metal is determined based on the amount of supplied power and the preset melting time. A melting furnace comprising: a calculation means for calculating the power supplied to raise the temperature; and a power control means for controlling the amount of electricity supplied to the melting furnace based on a signal from the calculation means. Temperature control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1291111A JP2748611B2 (en) | 1989-11-10 | 1989-11-10 | Melting furnace temperature control method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1291111A JP2748611B2 (en) | 1989-11-10 | 1989-11-10 | Melting furnace temperature control method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03152390A true JPH03152390A (en) | 1991-06-28 |
JP2748611B2 JP2748611B2 (en) | 1998-05-13 |
Family
ID=17764598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1291111A Expired - Fee Related JP2748611B2 (en) | 1989-11-10 | 1989-11-10 | Melting furnace temperature control method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2748611B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013124849A (en) * | 2011-12-16 | 2013-06-24 | Sinfonia Technology Co Ltd | Cold-crucible melting furnace |
JP2013167920A (en) * | 2012-02-14 | 2013-08-29 | Azbil Corp | Power estimation device and control device and method |
JP2018098153A (en) * | 2016-12-16 | 2018-06-21 | 北芝電機株式会社 | Induction melting furnace |
CN112433262A (en) * | 2018-12-29 | 2021-03-02 | 珠海优特智厨科技有限公司 | Detection method and detection device for food material throwing state |
CN114804868A (en) * | 2022-04-29 | 2022-07-29 | 吉林电力股份有限公司长春热电分公司 | Preparation method of tungsten trioxide ceramic skeleton crucible |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101864842B1 (en) * | 2016-11-23 | 2018-06-05 | 주식회사 포스코 | Method for supplying power of electric furnace |
CN114178504B (en) * | 2021-12-13 | 2022-09-02 | 北京航星机器制造有限公司 | Intelligent temperature control method for low-pressure casting aluminum alloy melt |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6432916A (en) * | 1987-07-30 | 1989-02-02 | Mazda Motor | Suspension device of vehicle |
JPH0213787A (en) * | 1988-06-30 | 1990-01-18 | Shinko Electric Co Ltd | Automatic operation device for crucible type smelting furnace |
-
1989
- 1989-11-10 JP JP1291111A patent/JP2748611B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6432916A (en) * | 1987-07-30 | 1989-02-02 | Mazda Motor | Suspension device of vehicle |
JPH0213787A (en) * | 1988-06-30 | 1990-01-18 | Shinko Electric Co Ltd | Automatic operation device for crucible type smelting furnace |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013124849A (en) * | 2011-12-16 | 2013-06-24 | Sinfonia Technology Co Ltd | Cold-crucible melting furnace |
JP2013167920A (en) * | 2012-02-14 | 2013-08-29 | Azbil Corp | Power estimation device and control device and method |
JP2018098153A (en) * | 2016-12-16 | 2018-06-21 | 北芝電機株式会社 | Induction melting furnace |
CN112433262A (en) * | 2018-12-29 | 2021-03-02 | 珠海优特智厨科技有限公司 | Detection method and detection device for food material throwing state |
CN114804868A (en) * | 2022-04-29 | 2022-07-29 | 吉林电力股份有限公司长春热电分公司 | Preparation method of tungsten trioxide ceramic skeleton crucible |
CN114804868B (en) * | 2022-04-29 | 2023-06-09 | 吉林电力股份有限公司长春热电分公司 | Preparation method of tungsten trioxide ceramic skeleton crucible |
Also Published As
Publication number | Publication date |
---|---|
JP2748611B2 (en) | 1998-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0091930B1 (en) | Method and device for controlling the curing rate of concrete | |
US8847121B2 (en) | Smart layered heater surfaces | |
CA1167089A (en) | Solid plate heating unit | |
JP2732417B2 (en) | Method and apparatus for indicating an abnormal thermal stress state on a heated surface made of glass ceramic or similar material | |
JP5320076B2 (en) | Method and apparatus for identifying a temperature sensor coupled to a control unit | |
JPS60176614A (en) | Cooking process monitor apparatus | |
EP0187629B1 (en) | A method of controlling the heating of an aqueous load in a cooking utensil | |
JP3988942B2 (en) | Heater inspection apparatus and semiconductor manufacturing apparatus equipped with the same | |
JPH03152390A (en) | Method and device for temperature control of fusion furnace | |
JPH11150885A (en) | Method for charging secondary battery | |
JP3231601B2 (en) | Electric furnace temperature control method and apparatus | |
CN111458047A (en) | Contact type temperature measuring system of casting sheet furnace | |
JP2000088247A (en) | Preheating display system for chicken cooking pan | |
US5926390A (en) | Programmed temperature controller | |
JPH04174292A (en) | Alarm system of crystal growth furnace | |
RU2132097C1 (en) | Radioactive waste melting device | |
JP6954556B2 (en) | Induction melting furnace | |
EP4339571A1 (en) | Method for determining an output temperature of a fluid | |
JPS58145084A (en) | Temperature control system for heater | |
JP4239419B2 (en) | Heat treatment furnace and its heating control device | |
JPS61201303A (en) | Program controller | |
JPH0128571B2 (en) | ||
JP3441663B2 (en) | Method and apparatus for preventing excessive temperature rise of induction furnace and temperature measuring sensor | |
TW202304249A (en) | Abnormality determination device, abnormality determination method, and abnormality determination system | |
SU343717A1 (en) | ALL-UNION! DT? IgnP-tg? G; yh --- ^ d ^ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |