JPS59141774A - Multi-stage hydraulic machine - Google Patents

Multi-stage hydraulic machine

Info

Publication number
JPS59141774A
JPS59141774A JP58016812A JP1681283A JPS59141774A JP S59141774 A JPS59141774 A JP S59141774A JP 58016812 A JP58016812 A JP 58016812A JP 1681283 A JP1681283 A JP 1681283A JP S59141774 A JPS59141774 A JP S59141774A
Authority
JP
Japan
Prior art keywords
guide vane
pressure stage
low
opening
stage guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58016812A
Other languages
Japanese (ja)
Inventor
Hisao Kuwabara
尚夫 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58016812A priority Critical patent/JPS59141774A/en
Publication of JPS59141774A publication Critical patent/JPS59141774A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/04Controlling by varying liquid flow of turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To satisfy both of the stabilizing property and the quick response property of a system by a method wherein a low-pressure stage guide vane is not responsive to a small width of variation of the revolving number of the machine but is responsive when the revolving number is varied greatly. CONSTITUTION:When a deviation is existing between a guide vane opening degree commanding signal X2 and a high-pressure stage guide vane opening degree detecting signal X2B2 and an output X2B1 is existing at an adding point 16C, the deviation is integrated in high-pressure stage guide vane amplifying section A to operate the high-pressure stage guide vane into a direction to reduce the deviation. The passive state element 15A of a low-pressure stage guide vane control mechanism 15 does not output a low-pressure stage deviation input X2A2 and secures the sufficient stability of the system as far as the value of a deviation between a signal X2 and a low-pressure stage guide vane opening degree detecting signal X2A3 is between -alpha and +beta, while the element 15A continues to operate the low-pressure stage guide vane into a direction outputting the input X2A2 and nullifying the input X2A2 thereby obtaining and securing the sufficient quick response property.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は多段水力機械に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a multi-stage hydraulic machine.

〔従来技術〕[Prior art]

第1図は多段水力機械の代表例である2段ポンプ水車の
構造を示している。図で、1は主軸、2はケーシング、
3は高圧段ガイドベーン、4I″i高圧段ランナー、5
は中間氷室、6は低圧段ガイドベーン、7は低圧段ラン
ナー、8はトラフト管を示している。
Figure 1 shows the structure of a two-stage pump turbine, which is a typical example of a multi-stage hydraulic machine. In the figure, 1 is the main shaft, 2 is the casing,
3 is a high-pressure stage guide vane, 4I″i high-pressure stage runner, 5
1 indicates an intermediate ice chamber, 6 indicates a low pressure stage guide vane, 7 indicates a low pressure stage runner, and 8 indicates a raft pipe.

この2段ポンプ水車を水車運転する場合には、図示して
いない上池から所定の落差をもった水が導水管をiてケ
ーシング2に導かれ、高圧段ガイドバー73を経て高圧
段ランナー4に導かれて仕事をする。高圧段ランナー4
で仕事をした水は更に流下して中間水室5を経て低圧段
ガイドベーン6を経て低圧段ランナー7に導かれ、ここ
でさらに仕事をする。
When operating this two-stage pump turbine, water with a predetermined head from an upper pond (not shown) is guided to the casing 2 through a water pipe, passes through a high-pressure stage guide bar 73, and then passes through a high-pressure stage runner 4. Work guided by. High pressure stage runner 4
The water that has done work further flows down, passes through an intermediate water chamber 5, passes through a low-pressure stage guide vane 6, and is guided to a low-pressure stage runner 7, where it does further work.

高圧段ランナー4、低圧段ランナー7は共に主軸1に直
結されており、両ランナー4,7がらの合計トルクが主
軸1の上部に直結される発電電動機(図示せず)へ伝え
られ、これを駆動する。そして、この多段水力機械は図
示していないガ六ナーによって調速制御される。このガ
バナーの制御信号は高圧段ガイドベーン3と低圧段ガイ
ドベー76に同時に入力される。
Both the high-pressure stage runner 4 and the low-pressure stage runner 7 are directly connected to the main shaft 1, and the total torque of both runners 4 and 7 is transmitted to a generator motor (not shown) that is directly connected to the upper part of the main shaft 1. drive This multi-stage hydraulic machine is speed-governed by a not-shown galvanizer. This governor control signal is simultaneously input to the high pressure stage guide vane 3 and the low pressure stage guide vane 76.

第2図は、この2段ポンプ水車の調速制御システムのブ
ロック線図であり、この図の9はガバナーの制御部、l
Oは低圧段ガイドベーン制御機構、11は高圧段ガイド
ベーン制御機構、12は2段ポンプ水車の出力特性、1
3は水車及び発電機の慣性効果、14は加減速エネルギ
ー導出点を示している。
Figure 2 is a block diagram of the speed governor control system of this two-stage pump turbine, and in this figure 9 is the governor control section, l
O is the low pressure stage guide vane control mechanism, 11 is the high pressure stage guide vane control mechanism, 12 is the output characteristic of the two stage pump water turbine, 1
3 indicates the inertial effect of the water turbine and the generator, and 14 indicates the acceleration/deceleration energy derivation point.

ガバナーの制御部9に回転数Xlが入力するとここから
ガイドベーン開度指令信号X2が出力される。このガイ
ドベーン開度指令信号X2は低圧段ガイドベーン制御機
構10および高圧段ガイドベーン制御機構11の両方に
同時に入力され、低圧段カイトベーン開度X3および高
圧段ガイドベーン開度X4が決まる。低圧段ガイドベー
ン開度X3と高圧段ガイドベーン開度X4とが決まると
、多段水車の出力X5が出力特性12によって決まる。
When the rotational speed Xl is input to the governor control section 9, a guide vane opening command signal X2 is outputted from there. This guide vane opening degree command signal X2 is simultaneously input to both the low pressure stage guide vane control mechanism 10 and the high pressure stage guide vane control mechanism 11, and the low pressure stage kite vane opening degree X3 and the high pressure stage guide vane opening degree X4 are determined. When the low pressure stage guide vane opening degree X3 and the high pressure stage guide vane opening degree X4 are determined, the output X5 of the multistage water turbine is determined by the output characteristic 12.

この水車出力X5と1発電機負荷X6との差(加減速エ
ネルギー)X7がプラスの値であれば、水車および発電
機は加速され、マイナスの値であれば減速されて、回転
数X1が規定値へと修正を受ける。
If the difference between the water turbine output X5 and one generator load X6 (acceleration/deceleration energy) be modified to the value.

しかし、水車出力X5と発電機負荷X6の差X7に同じ
偏差が生じても、水車および発電機の慣性効果13が大
であれば加減速率は低く、ゆっくり加速又はゆっくり減
速することになる。
However, even if the same deviation occurs in the difference X7 between the water turbine output X5 and the generator load X6, if the inertia effect 13 of the water turbine and the generator is large, the acceleration/deceleration rate will be low, resulting in slow acceleration or slow deceleration.

そして、現状では、安定性と連応性の両方が同時に満足
できる多段ポンプ水車の調速制御システ、  ムは実用
化される段階に到っていない。
At present, a speed governor control system for multi-stage pump turbines that can simultaneously satisfy both stability and coordination has not yet reached the stage of being put into practical use.

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題点を除去し、多段ポンプ水車の
調整制御システムの安定2性、連応性の両方が同時に満
足できる多段水力機械を提供することを目的とする。
An object of the present invention is to eliminate such problems and provide a multistage hydraulic machine that can simultaneously satisfy both stability and coordination of a multistage pump turbine adjustment control system.

〔発明の概要〕一 本発明は、複数段のランナーがそれぞれ可動ガイドベー
ンを有し、これらの可動ガイドベーンに開閉変動指令入
力によってほぼ同期して作動する開閉制御装置が設けら
れている多段水力機械において、開閉制御装置の一つの
不動帯の大きさが他の開閉制御装置のそれよりも小さく
なっていることを特徴とするものである。
[Summary of the Invention] The present invention provides a multi-stage hydraulic power plant in which a plurality of stages of runners each have a movable guide vane, and these movable guide vanes are provided with an opening/closing control device that operates almost synchronously in response to an input of an opening/closing fluctuation command. The machine is characterized in that the size of the fixed band of one of the opening/closing control devices is smaller than that of the other opening/closing control devices.

すなわち、可動ガイドベーンの内一部の可動ガイドベー
ンは小さな開閉変動指令入力に対しては ゛応動じない
ようにし、この範囲の小幅入力に対しては応動しないよ
うにし、この範囲の小幅指令入力に対しては実質的に可
動ガイドベーンの数が限定され、他方この小変動幅を超
える大変動幅指令・入力に対しては全て又はより多くの
可動ガイドベーンが応動するように構成されている。
In other words, some of the movable guide vanes in the movable guide vanes are designed not to respond to small opening/closing fluctuation command inputs, and are designed not to respond to small width inputs in this range, and to prevent small width command inputs in this range. , the number of movable guide vanes is substantially limited, and on the other hand, all or more movable guide vanes are configured to respond to commands/inputs with a large variation range exceeding this small variation range. .

本発明は第2図の2段ポンプ水車の調速制御システムの
安定化について検討した結果得られたものである。第2
図の構成の調速制御システムの安定化のためには、ルー
プゲインを降下させる必要があるが、このループゲイン
は、(ガバナーの制御部9のゲイン)×(低圧段ガイド
ベーンの制御機610のゲイン+高圧段ガイドベーンの
制御機構11のゲイン)×(多段水車の出力特性12の
ゲイン)×(慣性効果13のゲイン)となる。従って、
システムの安定#:を改善するためには、理論的にはど
のブロックのゲインを下げてもよい訳であるが、多段水
車の出力特性12のゲインは、いわけこの2段ポンプ水
車固有の特性で調整はできない。慣性効果13のゲイン
はGD2 (ここで、Gは重量、Dは平均回転直径)を
増せば下けられる。一方、多段ポンプ水車は各段部の分
担水頭を単段としての可能限界近くに選び段数をできる
だけ少くすることが原価面から必要で、回転数をできる
だけ高くすることが望まれるが、回転数を上げると発電
機側に充分なGD2を付けることはできなくなるため、
実現は極めて難しい。さらに、低圧段ガイドベーン制御
機構10や高圧段ガイドベーン制御機構11は指令通り
の開度に制御する機構そのものを示しておシ調整すべき
ものではない。その結果、実際的にはガバナーの制御部
9のゲインF1を下けて対処することになる。
The present invention was obtained as a result of studies on stabilizing the speed governing control system of the two-stage pump turbine shown in FIG. Second
In order to stabilize the governor control system with the configuration shown in the figure, it is necessary to lower the loop gain. gain + gain of control mechanism 11 of high-pressure stage guide vane) x (gain of output characteristic 12 of multi-stage water turbine) x (gain of inertial effect 13). Therefore,
In order to improve the stability of the system, it is theoretically possible to lower the gain of any block, but the gain of output characteristic 12 of the multi-stage water turbine is a characteristic unique to this two-stage pump water turbine. cannot be adjusted. The gain of the inertial effect 13 can be reduced by increasing GD2 (where G is the weight and D is the average rotating diameter). On the other hand, in a multi-stage pump turbine, it is necessary from a cost standpoint to select the shared water head of each stage close to the possible limit for a single stage and to minimize the number of stages, and it is desirable to increase the rotation speed as high as possible. If you raise it, you will not be able to attach enough GD2 to the generator side,
Realization is extremely difficult. Furthermore, the low-pressure stage guide vane control mechanism 10 and the high-pressure stage guide vane control mechanism 11 are mechanisms themselves that control the opening degree according to a command, and do not need to be adjusted. As a result, the practical solution is to lower the gain F1 of the governor control section 9.

しかしゲインFlを下げると信号X1に対するガイドベ
ーン開度指令X2の応答が、換言すれは、実際のガイド
ベーン開度X3やX4の応答が鈍くなることに他ならず
、システムの連応性を下げることになる。
However, if the gain Fl is lowered, the response of the guide vane opening command X2 to the signal X1, in other words, the response of the actual guide vane openings X3 and X4, will become slower, which will reduce the coordination of the system. become.

すなわち、ゲインF、の調整による方法では、システム
の連応性と安定性は、一方を立てれば、他方が立たず矛
盾関係に陥り、両者を同時に満足させるような設定は難
しい。
That is, in the method of adjusting the gain F, the connectivity and stability of the system are in a contradictory relationship because if one is set, the other is not set, and it is difficult to set up a system that satisfies both at the same time.

なお、第2図の調速制御システムは回転数を一定にする
調速制御を対象にしているが、他に流量、水圧等を一定
にするような制御を対象にする場合も同様に考えられる
Note that the speed governor control system in Figure 2 is intended for speed governor control that keeps the rotation speed constant, but it can also be considered for other types of control that keep the flow rate, water pressure, etc. constant. .

本発明はこのような検討結果に基づき、回転数の変化幅
が僅かな間は低圧段ガイドベーンを応動させず、充分々
システム安定性を確保しておき、回転数が大きく変化し
た時には、低圧段ガイドベーンも応動させて充分な連応
性を確保するようにしたものである。
Based on these study results, the present invention is based on the fact that the low-pressure stage guide vanes do not react while the rotational speed changes only slightly to ensure sufficient system stability, and when the rotational speed changes significantly, the low-pressure stage guide vanes do not respond. The stage guide vanes also react in response to ensure sufficient coordination.

〔発明の実施例〕[Embodiments of the invention]

第3図は、本発明の一実施例として2段ポンプ水車の速
度制御システムを示すブロック線図である。この速度制
御システムは、低圧段ガイドベーン制御機構15と高圧
段カイトベーン制御機構16とよりなり、低圧段ガイド
ベーン制御機構15において、15Aは不動帯要素、1
5Bは低圧段ガイドベーン油圧増幅部、15cは低圧段
ガイドベーン開度復元部、15Dは加え合せ点を示し、
高圧段ガイドベーン制御機構16において、16Aは高
圧段ガイドベーン油圧増幅部、16Bは高圧段ガイドベ
ーン復元部、16cは加え合せ点を示している。
FIG. 3 is a block diagram showing a speed control system for a two-stage pump water turbine as an embodiment of the present invention. This speed control system consists of a low pressure stage guide vane control mechanism 15 and a high pressure stage kite vane control mechanism 16. In the low pressure stage guide vane control mechanism 15, 15A is a stationary band element;
5B is a low-pressure stage guide vane hydraulic pressure amplifying part, 15c is a low-pressure stage guide vane opening restoring part, 15D is a summing point,
In the high-pressure guide vane control mechanism 16, 16A indicates a high-pressure guide vane hydraulic amplification section, 16B indicates a high-pressure guide vane restoring section, and 16c indicates an addition point.

この2段ポンプ水車では、カイトベーン開度指令信号x
2と高圧段ガイドベーン開度検出信号X2 B 2と、
の間に偏差がある場合、すなわち、加え合廿点16cの
出力X2n1が生ずる場合には、高圧段ガイドベーン油
圧増幅部16A゛はすれ・を積分U続け、この偏差を小
さくする方向に高圧段ガイドベーン盆操作する。この刻
々変化する高圧段ガイドベーン開度X4は高圧段ガイド
ベーン後元部16Bを介して絶えずフィードバックされ
、加え合せ点16cで指令信号X2と低圧段ガイドベー
ン開度X4の照合が計られる。
In this two-stage pump turbine, the kite vane opening command signal x
2 and high pressure stage guide vane opening detection signal X2 B 2,
If there is a deviation between them, that is, if the output X2n1 of the addition point 16c is generated, the high-pressure stage guide vane hydraulic amplifying section 16A' continues to integrate the deviation U, and increases the high-pressure stage in the direction of reducing this deviation. Operate the guide vane tray. This ever-changing high-pressure stage guide vane opening degree X4 is constantly fed back through the high-pressure stage guide vane rear portion 16B, and the command signal X2 and the low-pressure stage guide vane opening degree X4 are compared at a summing point 16c.

換言すれば、高圧段ガイドベーン油圧増幅部16^、高
圧段ガイドベーン復元部16B1加え合せ点16cは1
つの一次遅れ要素を形成し、エネルギーレベルの低いガ
イドベーン開度指令信号X2に対し忠実に応動して高い
エネルギーレベルの出力信号に変換するものであり、こ
の場合、外部で空気の圧縮エネルギー等の形で蓄えられ
ていたエネルギーが油圧を介して、高圧段ガイドベーン
油圧増幅部16Aに導かれ、増幅エネルギーとして消費
される。
In other words, the addition point 16c of the high pressure stage guide vane hydraulic amplifying section 16^ and the high pressure stage guide vane restoring section 16B1 is 1.
This system forms two first-order delay elements, and faithfully responds to the guide vane opening command signal X2, which has a low energy level, and converts it into an output signal with a high energy level. The energy stored in the form is guided to the high-pressure stage guide vane hydraulic amplification section 16A via hydraulic pressure and is consumed as amplification energy.

低圧段ガイドベーン制御機構15の動作も高圧段ガイド
ベーン制御機構と同様であるが、不動帯要素15Aが追
加されている。この不動帯要素15Aは、ガイドベーン
開度指令信号X2と低圧段ガイドベーン開度検出信号X
2A3の偏差が(−α〜十β)の間にある限り出力側に
低圧段偏差人力XzA2に出さないように作動する。す
なわち、ゼロ信号を出すようになっており、換言すれば
、偏差がこの範囲を超えたらその超えた分だけの信号を
出力信号として出すようになっている。
The operation of the low-pressure stage guide vane control mechanism 15 is also similar to that of the high-pressure stage guide vane control mechanism, but a stationary band element 15A is added. This stationary band element 15A receives a guide vane opening command signal X2 and a low pressure stage guide vane opening detection signal X.
As long as the deviation of 2A3 is between (-α to 10β), it operates so as not to output the low pressure stage deviation manual power XzA2 to the output side. In other words, if the deviation exceeds this range, a signal corresponding to the excess is output as an output signal.

そして、この低圧段偏差人力X2A2がある限り低圧段
ガイドベーン油圧増幅部15nは積分操作を行い続は沁
ム2をゼロにする方向に低圧段ガイドベーンを操作し続
ける。
As long as this low-pressure stage deviation manual power X2A2 exists, the low-pressure stage guide vane hydraulic amplifying section 15n performs an integral operation and continues to operate the low-pressure stage guide vane in the direction of zeroing the pressure 2.

その結果、低圧段ガイドベーン開度X3とガイドベーン
開度指令信号X2とは完全に一致しない。
As a result, the low-pressure stage guide vane opening degree X3 and the guide vane opening degree command signal X2 do not completely match.

すなわち、最大α又はβの誤差を許すことになる。That is, a maximum error of α or β is allowed.

従ってとのαやβの値を適当に選んでおけば、高圧段ガ
イドベーン開度X4と低圧段ガイドベーン開度X3のア
ンバランス量は余り大きくせすに済む。なお、不動帯の
大きさは、差がガイドベーン開度で±1〜251i程度
になるように選ばれる。
Therefore, if the values of α and β are appropriately selected, the amount of imbalance between the high-pressure stage guide vane opening X4 and the low-pressure stage guide vane opening X3 can be prevented from becoming too large. Note that the size of the stationary band is selected so that the difference in guide vane opening is about ±1 to 251i.

結局、ガイドベーン開度指令信号X2がαやβの値より
も僅かに変動する程度であれば低圧段ガイドベーンは応
動せず、果買的には高圧段ガイドベーンのみが含まれる
制御システムを作ることができ、この状態であれば、カ
バチー制御部伝達関数IF11をかなり大きく選んでも
システム安定性を確保することができる。まだ、ガイド
ベーン開度指令信号X2が大きく変動した場合(すなわ
ち、〈−βか又は〉十αの場合)には、低圧段ガイドベ
ーンも速やかに制御に参入し、所期のシステム速応性は
確保することができる。
In the end, if the guide vane opening command signal X2 fluctuates only slightly more than the values of α and β, the low-pressure stage guide vane will not respond. In this state, system stability can be ensured even if the coverage control section transfer function IF11 is selected to be quite large. However, if the guide vane opening command signal X2 fluctuates significantly (i.e., <-β or >10α), the low-pressure stage guide vanes will also immediately participate in the control, and the expected system speed response will not be achieved. can be secured.

第4図は他の実施例として2段ポンプ水車の速度制御シ
ステムを示すブロック線図で、第3図と同一の部分には
同一の符号を付し、対応する部分には同一の符号にダラ
シを付しである。この実施例が第3図の実施例と異なる
点は、第3図の実施例は可動ガイドベーンを開閉変動指
令入力によってほぼ同期して作動させる開閉制御装置が
、ガイドベーンの開」変動指令入力に対して連列に設け
られているのに対して、この実施例では、開閉制御装量
がガイドベーンの開閉変動指令入力に対して直列に設け
られ、不動帯の大きさが後段の開閉制御装置の方が大き
くなっている点である。
FIG. 4 is a block diagram showing a speed control system for a two-stage pump-turbine as another embodiment. The same parts as in FIG. 3 are given the same symbols, and corresponding parts are given the same symbols. It is attached. The difference between this embodiment and the embodiment shown in FIG. 3 is that in the embodiment shown in FIG. In contrast, in this embodiment, the opening/closing control device is provided in series with the opening/closing fluctuation command input of the guide vane, and the size of the fixed band is determined by the opening/closing control of the subsequent stage. The difference is that the device is larger.

この2段ポンプ水車では、不動帯要素15八′の有無に
係わらず、まず高圧段ガイドベーンを制御し、この高圧
段ガイドベーンの実際の開度に追従して低圧段ガイドベ
ーンが応動するように構成されている。この場合も、ガ
イドベーン開度指令信号X2の僅かな変動にはX3′を
応動させないようにしている点、すなわら、高圧段ガイ
ドベーンは敏感に回転数の変動に応動するのに対して、
低圧段ガイドベーンの回転数の変動が所定の幅に留まる
限り応動させないようにしている点は同様であるが、こ
の実施例は高圧段ガイドベーン制御機構と低圧段ガイド
ベーン制御機構が直列に設けられているので安全上の信
頼性は高い。
In this two-stage pump turbine, regardless of the presence or absence of the stationary band element 158', the high-pressure stage guide vane is first controlled, and the low-pressure stage guide vane responds to the actual opening degree of the high-pressure stage guide vane. It is composed of In this case as well, X3' is not made to respond to slight fluctuations in the guide vane opening command signal X2, whereas the high-pressure stage guide vane responds sensitively to fluctuations in rotational speed. ,
This embodiment is similar in that it does not react as long as the fluctuation in the rotational speed of the low-pressure stage guide vane remains within a predetermined range, but in this embodiment, the high-pressure stage guide vane control mechanism and the low-pressure stage guide vane control mechanism are installed in series. The reliability of safety is high.

なお、これらの実施例では、速度制御の場合を例として
説明したが、流量や圧力等の自動制御を行う場合にも適
用可能である。
In addition, in these embodiments, the case of speed control has been described as an example, but it is also applicable to cases where automatic control of flow rate, pressure, etc. is performed.

〔発明の効果〕〔Effect of the invention〕

本発明は、システムの安定性、連応性の両方が同時に満
足できる多段水力機械の提供を可能とするもので、産業
上の効果の犬なるものである。
The present invention makes it possible to provide a multi-stage hydraulic machine that satisfies both system stability and coordination, and is an industrially effective dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2段ポンプ水車の説明図、第2図は第1図の2
段ポンプ水車の速度制御システムのフロック線図、第3
図及び第4図は、本発明の多段水力機械のそれぞれ異な
る実施例の速度制御システムのブロック線図である。 9・・・カバナーの制御部、15・・・低圧段ガイドベ
ーン制御機構、15A・・・不動帯要素、15B・・・
低圧段カイトベーン油圧増幅部、15c・・・低圧段ガ
イドベーン開度復元部、15D・・・加え付せ点、16
 。 ・・・高圧段カイドベー7制−111J磯構、16A・
・・高圧段ガイドベーン油圧増幅部、16B・・・高圧
段ガイド(ほか1名) 茅1 日 ( 茅2 固 lθ 茅3 目 ノte
Figure 1 is an explanatory diagram of a two-stage pump turbine, and Figure 2 is the 2nd diagram in Figure 1.
Flock diagram of speed control system of stage pump turbine, Part 3
4 and 4 are block diagrams of speed control systems of different embodiments of the multi-stage hydraulic machine of the present invention. 9... Control unit of the cover, 15... Low pressure stage guide vane control mechanism, 15A... Fixed band element, 15B...
Low pressure stage kite vane hydraulic amplification section, 15c...Low pressure stage guide vane opening restoring section, 15D...Additional point, 16
. ...High pressure stage Kaidobe 7 system-111J Isokai, 16A・
...High pressure stage guide vane hydraulic amplification part, 16B...High pressure stage guide (1 other person) Kaya 1st (Kaya 2 Hard lθ Kaya 3rd note)

Claims (1)

【特許請求の範囲】 1、複数段のランナーがそれぞれ可動ガイドベーンを有
し、これらの可動ガイドベーンに開閉変動指令入力によ
ってほぼ同期して作動する開閉制御装置が設けられてい
る多段水力機械において、前記開閉制御装置の一つの不
動帯の大きさが他の前記開閉制御装置のそれよシも小さ
くなっていることを特徴とする多段水力機械。 2、前記同期して作動する開閉制御装置が、前記可動ガ
イドベーンの開閉変動指令入力に対して並列に設けられ
ている特許請求の範囲第1項記載の多段水力機械。 3、前記同期して作動する開閉制御装置が、前記可動カ
イトベーンの開閉変動指令入力に対して直列に設けられ
、前記不動帯の大きさが後段の開閉制御装置の方が大き
くなっている特許請求の範囲第1項記載の多段水力機械
。 4、前記同期して作動する開閉制御装置が、高圧段では
低圧段よりも前記不動帯の大きさが小さくなっている特
許請求の範囲第1項又は第2項又は第3項記載の多段水
力機械。
[Claims] 1. A multi-stage hydraulic machine in which a plurality of stages of runners each have a movable guide vane, and these movable guide vanes are provided with an opening/closing control device that operates almost synchronously by inputting an opening/closing fluctuation command. , a multi-stage hydraulic machine characterized in that the size of the fixed band of one of the opening/closing control devices is smaller than that of the other opening/closing control devices. 2. The multistage hydraulic machine according to claim 1, wherein the opening/closing control device that operates synchronously is provided in parallel to the opening/closing fluctuation command input of the movable guide vane. 3. A patent claim in which the opening/closing control device that operates synchronously is provided in series with respect to the opening/closing fluctuation command input of the movable kite vane, and the size of the stationary band is larger in the opening/closing control device at the subsequent stage. A multi-stage hydraulic machine according to item 1. 4. The multistage hydraulic power plant according to claim 1, 2, or 3, wherein in the opening/closing control device that operates synchronously, the size of the fixed band is smaller in the high pressure stage than in the low pressure stage. machine.
JP58016812A 1983-02-02 1983-02-02 Multi-stage hydraulic machine Pending JPS59141774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58016812A JPS59141774A (en) 1983-02-02 1983-02-02 Multi-stage hydraulic machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58016812A JPS59141774A (en) 1983-02-02 1983-02-02 Multi-stage hydraulic machine

Publications (1)

Publication Number Publication Date
JPS59141774A true JPS59141774A (en) 1984-08-14

Family

ID=11926567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58016812A Pending JPS59141774A (en) 1983-02-02 1983-02-02 Multi-stage hydraulic machine

Country Status (1)

Country Link
JP (1) JPS59141774A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114651A (en) * 1978-02-28 1979-09-06 Toshiba Corp Running control in multi-stage hydraulic machines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114651A (en) * 1978-02-28 1979-09-06 Toshiba Corp Running control in multi-stage hydraulic machines

Similar Documents

Publication Publication Date Title
JPS6090991A (en) Method and device for control of variable speed hydraulic machine
US4146270A (en) Control device for turbines with speed and load control
JPS59141774A (en) Multi-stage hydraulic machine
US4255078A (en) Method of controlling operation of multistage hydraulic machines
JPS6187902A (en) Overspeed preventive device for turbine control
JPS58140482A (en) Control of guide vane for multistage hydraulic machine
JPS5849647B2 (en) Hatsudenshiyo no Uten Seigiyosouchi
JP2509612B2 (en) Bypass controller
SU808702A1 (en) System for protection of compressor unit
JPS6487807A (en) Turbine trip protector
JPS6357802A (en) Control device for expansion turbine
JPS54156905A (en) Controller of steam turbine
JPH0138165B2 (en)
GB1349162A (en) Nuclear power plant
JPS58170862A (en) Operation control method of multistage hydraulic machine
JPH0577841B2 (en)
JPS5915608A (en) Controller of steam turbine
JPS62197601A (en) Steam turbine controller
JPS5818567A (en) Operation of hydraulic turbine
JPS59231104A (en) Controlling system of feed water pump in power plant
JPS6214684B2 (en)
JPS58174169A (en) Governor control for hydraulic power plant
JPS56167861A (en) Controller for multistage type reversible pump-turbine
JPH02114199A (en) Boiling water reactor output controller
JPS6415404A (en) Steam controller for steam turbine power plant