JPH0138165B2 - - Google Patents
Info
- Publication number
- JPH0138165B2 JPH0138165B2 JP3215483A JP3215483A JPH0138165B2 JP H0138165 B2 JPH0138165 B2 JP H0138165B2 JP 3215483 A JP3215483 A JP 3215483A JP 3215483 A JP3215483 A JP 3215483A JP H0138165 B2 JPH0138165 B2 JP H0138165B2
- Authority
- JP
- Japan
- Prior art keywords
- steam
- signal
- turbine
- valve
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 230000006866 deterioration Effects 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 5
- 230000001681 protective effect Effects 0.000 claims description 2
- 230000011664 signaling Effects 0.000 claims description 2
- 241001417501 Lobotidae Species 0.000 description 16
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- -1 steam Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は地熱タービン保護装置に係り、特に水
滴及び不純物からタービン羽根の損傷を保護する
のに好適な地熱タービン保護装置に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a geothermal turbine protection device, and more particularly to a geothermal turbine protection device suitable for protecting turbine blades from damage from water droplets and impurities.
地熱発電プラントは地中から取り出した蒸気を
利用してタービンを廻し発電するもので、近年省
エネルギーの見地から多数建設されるようになつ
てきた。地熱地帯では火山活動により地下深部に
マグマの溜りがあつて周囲の岩石に熱を与えてお
り、そこに地下水が浸透して加熱された熱水とな
つて貯留層に貯えられている。この貯留層へボー
リングを行い、噴気蒸気として地上へ取り出し、
発電に利用するのが地熱発電である。
Geothermal power plants use steam extracted from underground to rotate turbines and generate electricity, and in recent years many have been constructed from the standpoint of energy conservation. In geothermal areas, volcanic activity creates pools of magma deep underground that heat the surrounding rocks, and groundwater seeps into these pools and becomes heated hot water, which is stored in reservoirs. We drill into this reservoir and extract it to the ground as fumarole steam.
Geothermal power generation is used for power generation.
かかる地熱発電プラントの一構成例を第1図の
系統図を用いて説明する。生産井1から取り出さ
れた熱水、蒸気およびガス(以降、熱水等と称す
る)はセパレータ2へ導かれ、蒸気およびガスと
熱水に分離される。分離された蒸気は1次主蒸気
となりタービン3へ送られ、熱水はフラツシヤー
4へ導かれる。フラツシヤー4では器内で熱水を
噴射して蒸気化し、蒸気と熱水に分離する。フラ
ツシヤー4で分離された蒸気は2次主蒸気とな
り、タービン3へ導びかれ、1次主蒸気と共にタ
ービン3を回転させ、発電機5を廻し、電気を発
生させる。フラツシヤー4で分離された熱水は還
元井6により地中に戻される。本構成は蒸気と熱
水を2回分離するため2段フラツシユ方式と呼ば
れているが、この様な方式の他にも1段フラツシ
ユ方式等が知られている。 An example of the configuration of such a geothermal power plant will be explained using the system diagram shown in FIG. Hot water, steam, and gas (hereinafter referred to as hot water) taken out from the production well 1 are led to a separator 2 and separated into steam, gas, and hot water. The separated steam becomes primary main steam and is sent to the turbine 3, and the hot water is led to the flasher 4. In the flasher 4, hot water is injected into the vessel to vaporize it and separate it into steam and hot water. The steam separated by the flasher 4 becomes secondary main steam, which is guided to the turbine 3, rotates the turbine 3 together with the primary main steam, rotates the generator 5, and generates electricity. The hot water separated by the flasher 4 is returned underground by the reinjection well 6. This configuration is called a two-stage flush system because steam and hot water are separated twice, but in addition to this system, one-stage flash systems and the like are also known.
かかる系統構成において、セパレータ2及びフ
ラツシヤー4の器内圧は生産井1よりの熱水等の
流量、エンタルピ及びタービン流入量のバランス
により定まつている。従つて、このバランスがく
ずれる様な状態が発生すると両者の器内圧は変動
する。例えば、タービン3が何らかの異常により
トリツプし、蒸気弁7,8が全閉すると、フラツ
シヤー4、セパレータ2、蒸気管9,10の圧力
は上昇する。このような事故からフラツシヤー
4、セパレータ2及び蒸気管9,10を保護する
目的で、一般には蒸気逃し弁11,12が設けら
れている。 In such a system configuration, the internal pressures of the separator 2 and the flasher 4 are determined by the balance between the flow rate of hot water etc. from the production well 1, enthalpy, and the flow rate into the turbine. Therefore, if a situation occurs in which this balance is disrupted, the internal pressures of both chambers will fluctuate. For example, when the turbine 3 trips due to some abnormality and the steam valves 7 and 8 are fully closed, the pressures in the flasher 4, separator 2, and steam pipes 9 and 10 increase. In order to protect the flasher 4, separator 2, and steam pipes 9, 10 from such accidents, steam relief valves 11, 12 are generally provided.
逆に、タービンの蒸気弁7,8が急開すると圧
力は降下する。また、セパレータ2及びフラツシ
ヤー4は容量の関係で複数個設けられることが多
く、複数台の内の何台かが蒸気元弁13または1
4を全閉することによつてしや断された場合に
も、蒸気供給量不足により圧力低下が生じる。こ
の様な圧力低下が発生すると、セパレータ2およ
びフラツシヤー4の器内の発生蒸気量が増加し、
器内流速も速くなる。 Conversely, when the steam valves 7 and 8 of the turbine are suddenly opened, the pressure drops. Further, in many cases, a plurality of separators 2 and flashers 4 are provided due to capacity, and some of the separators 2 and flashers 4 are connected to the steam source valve 13 or the steam source valve 13.
Even when the steam is cut off by fully closing the steam valve 4, a pressure drop occurs due to insufficient steam supply. When such a pressure drop occurs, the amount of steam generated within the separator 2 and flasher 4 increases,
The flow rate inside the vessel also becomes faster.
ちなみに、第2図は器内圧力と流速の関係を示
した特性図であるが、流量小の時は実線b、流量
大の時は実線cに従つて変化する。 Incidentally, FIG. 2 is a characteristic diagram showing the relationship between the internal pressure and the flow rate, which changes according to the solid line b when the flow rate is small and the solid line c when the flow rate is large.
ところで、器内流速が増加しある点を越える
と、タービンに送られる蒸気中に含まれる水分お
よび泥等の不純物が急激に増加することが知られ
ている。一般に、この流速のことを限界流速と呼
び、第2図に破線aで示される境界を形成する。 By the way, it is known that when the flow velocity in the vessel increases and exceeds a certain point, impurities such as water and mud contained in the steam sent to the turbine rapidly increase. Generally, this flow velocity is called the critical flow velocity, and forms the boundary shown by the broken line a in FIG.
ここで、セパレータ2またはフラツシヤー4器
内が限界流速を越え、水分を含んだ湿り蒸気およ
び不純物がタービン3に流入した場合の影響を述
べる。地熱タービンはそもそも飽和蒸気で駆動さ
れるため、ある程度の湿り蒸気に対しては考慮さ
れた設計となつている。ところが、水滴及び不純
物が多量に流入するとこれらはタービン3の羽根
に当り、それ自体がタービンに傷をつけるばかり
でなく羽根が異常振動を起こし破損等に至る可能
性が高い。
Here, we will discuss the effect when the flow velocity inside the separator 2 or the flasher 4 exceeds the critical flow velocity and wet steam containing water and impurities flow into the turbine 3. Geothermal turbines are originally driven by saturated steam, so they are designed with some degree of wet steam in mind. However, if a large amount of water droplets and impurities flow in, they will hit the blades of the turbine 3, and not only will they themselves damage the turbine, but there is a high possibility that the blades will cause abnormal vibrations, leading to damage.
従来からタービンの保護装置としては、タービ
ンの入口圧力を監視し、圧力低下により蒸気弁を
絞り圧力降下を防止する構成のものが知られてい
るが、第2図に示した様に、限界流速は蒸気圧力
だけで決まるものではなく、圧力低下に対処する
だけでは不充分である。更に、タービン3が小流
量で運転している時は限界流速に達する蒸気圧力
は低く、単純に一定圧力で蒸気弁を閉めることは
得策ではない。 Traditionally, turbine protection devices have been known to monitor the turbine inlet pressure and throttle the steam valve to prevent a pressure drop when the pressure drops. is not determined solely by steam pressure, and it is insufficient to deal with the pressure drop alone. Furthermore, when the turbine 3 is operating at a small flow rate, the steam pressure that reaches the critical flow velocity is low, and it is not a good idea to simply close the steam valve at a constant pressure.
従つて、本発明の目的はかかる従来技術の問題
点を解消し、セパレータまたはフラツシヤーが限
界流速に到るのを防止し、タービン羽根を傷や破
損から保護する事を可能ならしめた地熱タービン
保護装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide a geothermal turbine protection system that eliminates the problems of the prior art, prevents the separator or flasher from reaching its critical flow velocity, and protects the turbine blades from scratches and damage. The goal is to provide equipment.
上記目的を達成するために、本発明は、地下熱
水から蒸気を発生してこれをタービンに供給する
蒸気発生手段から送出される蒸気量を検出する流
量検出手段と、タービン入口の蒸気弁の上流側の
圧力を検出する圧力検出手段と、この圧力検出手
段および流量検出手段の各出力信号に基いて蒸気
弁の開度を演算する演算手段と、蒸気弁に対する
最終負荷信号を発生する手段と、演算手段の出力
信号および前記最終負荷信号のうちタービンの許
容条件を満足する側の信号を選択して、この信号
に基き蒸気弁を制御する制御手段とを備えた事を
特徴とする地熱タービン保護装置を提供するもの
である。
In order to achieve the above object, the present invention includes a flow rate detection means for detecting the amount of steam sent out from a steam generation means that generates steam from underground hot water and supplies it to a turbine, and a steam valve at the turbine inlet. A pressure detection means for detecting the pressure on the upstream side, a calculation means for calculating the opening degree of the steam valve based on each output signal of the pressure detection means and the flow rate detection means, and a means for generating a final load signal for the steam valve. A geothermal turbine, comprising: a control means for selecting a signal satisfying turbine permissible conditions from among the output signal of the calculation means and the final load signal, and controlling a steam valve based on this signal. It provides a protective device.
以下、図面を参照しながら本発明の実施例を説
明する。
Embodiments of the present invention will be described below with reference to the drawings.
第3図は本発明の一実施例に係る地熱タービン
保護装置のブロツク図である。同図構成に於いて
タービン3の回転数は速度検出器15により検出
される。検出された速度信号は速度設定器16で
設定される設定速度信号と比較部17で比較さ
れ、その偏差量は調定率演算部18に伝えられ
る。調定率演算部18では、予め設定された速度
調定率に相当したゲインを偏差量に掛算して加算
部19に送出する。加算部19では負荷設定器2
0で設定された信号を加え負荷信号をつくる。負
荷信号は負荷制限器21で設定された負荷制限値
と低値優先回路22で比較され、低い方の信号が
最終負荷信号となる。 FIG. 3 is a block diagram of a geothermal turbine protection device according to an embodiment of the present invention. In the configuration shown in the figure, the rotation speed of the turbine 3 is detected by a speed detector 15. The detected speed signal is compared with a set speed signal set by the speed setter 16 in a comparison section 17, and the amount of deviation is transmitted to an adjustment rate calculation section 18. The adjustment rate calculation unit 18 multiplies the deviation amount by a gain corresponding to a preset speed adjustment rate and sends the result to the addition unit 19 . In the adder 19, the load setter 2
Add the signal set at 0 to create a load signal. The load signal is compared with the load limit value set by the load limiter 21 in the low value priority circuit 22, and the lower signal becomes the final load signal.
一方、1次蒸気に関しては、1次蒸気圧力検出
器28でその圧力が検出され、1次蒸気流量検出
器29でその流量が検出される。各検出器28,
29の出力は演算器30に入力され、蒸気条件が
悪化した時に悪化した量に応じて1次蒸気弁7を
閉じるべく信号が演算され低値優先回路31に送
出される。ちなみに、低値優先回路31には低値
優先回路22からの最終負荷信号が併せて入力さ
れている。低値優先回路31の出力信号は流量信
号として1次蒸気弁7の弁位置を制御する。つま
り、この流量信号は比較部23で弁位置フイード
バツク信号と比較され、その偏差信号は調節制御
部24により弁駆動信号に変えられて弁駆動ユニ
ツト25により1次蒸気弁7を調整する。ちなみ
に、1次蒸気弁7の動きは位置検出器26により
検出され、位置変換部27を経て比較部23にフ
イードバツクされ、弁位置制御に用いられる。 On the other hand, regarding the primary steam, the primary steam pressure detector 28 detects its pressure, and the primary steam flow rate detector 29 detects its flow rate. Each detector 28,
The output of 29 is input to a calculator 30, and when the steam condition deteriorates, a signal is calculated to close the primary steam valve 7 according to the amount of deterioration and is sent to a low value priority circuit 31. Incidentally, the final load signal from the low value priority circuit 22 is also input to the low value priority circuit 31. The output signal of the low value priority circuit 31 controls the valve position of the primary steam valve 7 as a flow rate signal. That is, this flow rate signal is compared with the valve position feedback signal in the comparison section 23, and the deviation signal is converted into a valve drive signal by the adjustment control section 24, and the primary steam valve 7 is adjusted by the valve drive unit 25. Incidentally, the movement of the primary steam valve 7 is detected by the position detector 26, and is fed back to the comparison section 23 via the position conversion section 27, and is used for valve position control.
一方、2次蒸気に関しては、2次蒸気圧力検出
器32でその圧力が検出され、2次蒸気流量検出
器33でその流量が検出される。各検出器32,
33の出力は演算器34に入力され、蒸気条件が
悪化した時に悪化した量に応じて2次蒸気弁8を
閉じるべく信号が演算され、低値優先回路35に
送出される。ちなみに、低値優先回路35には低
値優先回路22からの最終負荷信号が併せて入力
されている。低値優先回路35の出力信号は流量
信号として2次蒸気弁8の弁位置を制御する。つ
まり、この流量信号は比較部43で弁位置フイー
ドバツク信号と比較され、その偏差信号は調節制
御部44により弁駆動信号に変えられて弁駆動ユ
ニツト45により2次蒸気弁8を調整する。ちな
みに、2次蒸気弁8の動きは位置検出器46によ
り検出され、位置変換部47を経て比較部43に
フイードバツクされ、弁位置制御に用いられる。 On the other hand, regarding secondary steam, a secondary steam pressure detector 32 detects its pressure, and a secondary steam flow rate detector 33 detects its flow rate. Each detector 32,
The output of 33 is input to a calculator 34, and when the steam condition deteriorates, a signal is calculated to close the secondary steam valve 8 according to the amount of deterioration, and is sent to a low value priority circuit 35. Incidentally, the final load signal from the low value priority circuit 22 is also input to the low value priority circuit 35. The output signal of the low value priority circuit 35 controls the valve position of the secondary steam valve 8 as a flow rate signal. That is, this flow rate signal is compared with the valve position feedback signal in the comparison section 43, and the deviation signal is converted into a valve drive signal by the adjustment control section 44, and the secondary steam valve 8 is adjusted by the valve drive unit 45. Incidentally, the movement of the secondary steam valve 8 is detected by the position detector 46, and is fed back to the comparison section 43 via the position conversion section 47, and is used for valve position control.
かかる構成に於いて、次にその動作を説明す
る。なお、1次蒸気弁の制御回路と2次蒸気弁の
制御回路の作用は全く同一のため、ここでは1次
蒸気弁の制御回路についてその動作を述べる。 The operation of this configuration will be explained next. The operation of the control circuit for the primary steam valve and the control circuit for the secondary steam valve is exactly the same, so the operation of the control circuit for the primary steam valve will be described here.
演算器30は1次蒸気圧力検出器28と1次蒸
気流量検出器29の信号を受け、蒸気条件が悪化
した時に悪化した量に応じて1次蒸気弁7を閉じ
る信号を低値優先回路31に伝える。低値優先回
路31では、低値優先回路22よりの最終負荷信
号に基く弁位置信号と演算器30との信号を比較
し、両者の低い方が選択される。すなわち、演算
器30の出力信号が低い時には1次蒸気弁7が絞
られタービンを保護する役目を果し、逆に高い時
には1次蒸気弁7の開度は最終負荷信号により決
められる事となる。なお、弁制御は低値優先回路
31の出力信号を基準とし、比較部23、調節制
御部24、弁駆動ユニツト25、位置検出器2
6、位置変換部27の閉ループ制御系によつて実
施される。 The calculator 30 receives the signals from the primary steam pressure detector 28 and the primary steam flow rate detector 29, and sends a signal to close the primary steam valve 7 according to the amount of deterioration when the steam condition deteriorates to a low value priority circuit 31. tell. The low value priority circuit 31 compares the valve position signal based on the final load signal from the low value priority circuit 22 with the signal from the arithmetic unit 30, and selects the lower one of the two. That is, when the output signal of the computing unit 30 is low, the primary steam valve 7 is throttled to protect the turbine, and when it is high, the opening degree of the primary steam valve 7 is determined by the final load signal. . Note that the valve control is based on the output signal of the low value priority circuit 31, and is controlled by the comparison section 23, the adjustment control section 24, the valve drive unit 25, and the position detector 2.
6. Executed by the closed loop control system of the position conversion unit 27.
次に、演算器30の演算内容を第4図及び第5
図の特性図を用いて説明する。ちなみに、第4図
は第2図で説明したセパレータ2またはフラツシ
ヤー4の器内圧力と流速との限界流速の破線aを
蒸気圧力と蒸気流量に置き換えた限界曲線dと定
格運転点eおよび演算器30の出力が1次蒸気弁
7の定格開度を下まわる限界曲線fと1次蒸気弁
7が全閉となる条件gを示したものである。一
方、第5図は蒸気条件と演算器30の出力すなわ
ち1次蒸気弁7の弁開度の関係を示したものであ
り、第4図で示した限界曲線fおよびg並びに定
格運転点eを示してある。 Next, the calculation contents of the calculator 30 are shown in FIGS. 4 and 5.
This will be explained using the characteristic diagram shown in the figure. Incidentally, Fig. 4 shows the limit curve d, the rated operating point e, and the computing unit, in which the dashed line a of the limit flow rate between the internal pressure and flow velocity of the separator 2 or the flasher 4 explained in Fig. 2 is replaced with steam pressure and steam flow rate. 30 shows a limit curve f under which the output of No. 30 falls below the rated opening degree of the primary steam valve 7, and a condition g under which the primary steam valve 7 is fully closed. On the other hand, FIG. 5 shows the relationship between the steam conditions and the output of the calculator 30, that is, the valve opening of the primary steam valve 7, and the limit curves f and g and the rated operating point e shown in FIG. It is shown.
タービン3が限界曲線fで示した蒸気条件より
良好な蒸気で運転されている場合は、演算器30
の出力は1次蒸気弁7の定格弁開度以上であり、
前に説明した低値優先回路31の効果により最終
負荷信号が1次蒸気弁7に伝えられる。蒸気条件
が限界曲線fで示した条件より悪化した場合は、
第5図に示す如く悪化の度合いに応じて弁開度を
減じる信号が演算器30より出力される。このよ
うにして1次蒸気弁の開度を減少することによ
り、セパレータ2またはフラツシヤー4の噴出蒸
気量を減らし、さらに圧力を回復させセパレータ
2またはフラツシヤー4が限界流速点に到達する
のを防ぐことができる。1次蒸気弁7を閉め込ん
で来ても蒸気条件が回復しない時は、全閉条件g
に示す位置で1次蒸気弁7は全閉となり、タービ
ンを完全に保護する事が出来る。 When the turbine 3 is operated with steam better than the steam condition shown by the limit curve f, the calculator 30
The output of is more than the rated valve opening of the primary steam valve 7,
The final load signal is conveyed to the primary steam valve 7 due to the effect of the low value priority circuit 31 described above. If the steam conditions become worse than the conditions shown by the limit curve f,
As shown in FIG. 5, a signal is output from the computing unit 30 to reduce the valve opening depending on the degree of deterioration. By reducing the opening degree of the primary steam valve in this way, the amount of steam ejected from the separator 2 or the flasher 4 is reduced, and the pressure is further restored to prevent the separator 2 or the flasher 4 from reaching the critical flow velocity point. Can be done. If the steam condition does not recover even after closing the primary steam valve 7, set the fully closed condition g.
At the position shown in , the primary steam valve 7 is fully closed and the turbine can be completely protected.
2次蒸気弁に関しても全く同様な制御が行なわ
れる事は勿論である。 Of course, the secondary steam valve is also controlled in exactly the same way.
上述の如く制御することにより、駆動蒸気条件
の悪化からタービンを保護するとともに、セパレ
ータ、フラツシヤーの機能回復を行う事が期待で
きるが、タービンを保護する目的だけに限定すれ
ば、第4図に限界曲線fで示す蒸気条件で警報を
発し同図のgの蒸気条件でタービンをトリツプす
るだけで充分な効果を得ることが出来る。 By controlling as described above, it can be expected to protect the turbine from deterioration of driving steam conditions and restore the functions of the separator and flasher, but if the purpose is limited to protecting the turbine, the limit shown in Figure 4 will be reached. A sufficient effect can be obtained simply by issuing an alarm under the steam condition shown by curve f and tripping the turbine under steam condition g in the figure.
以上述べた如く、本発明によれば、比較的簡単
な構成に於いて地熱タービンを水滴や不純物の流
入による傷や破損から保護出来、地熱タービンの
効率的な運用を可能ならしめた地熱タービン保護
装置を得る事が出来るものである。
As described above, according to the present invention, the geothermal turbine can be protected from scratches and damage caused by the inflow of water droplets and impurities with a relatively simple configuration, and the geothermal turbine can be efficiently operated. It is possible to obtain equipment.
第1図は従来の地熱発電プラントの系統図、第
2図は器内圧力と流速の関係を示した特性図、第
3図は本発明の一実施例に係る地熱タービン保護
装置のブロツク図、第4図は蒸気圧力と蒸気流量
の関係を示した特性図、第5図は蒸気条件と蒸気
弁開度の関係を示した特性図である。
2……セパレータ、3……タービン、4……フ
ラツシヤー、7……1次蒸気弁、8……2次蒸気
弁、15……速度検出器、18……調定率演算
部、22,31,35……低値優先回路、28…
…1次蒸気圧力検出部、29……1次蒸気流量検
出器、30,34……演算器、32……2次蒸気
圧力検出器、33……2次蒸気流量検出器。
FIG. 1 is a system diagram of a conventional geothermal power plant, FIG. 2 is a characteristic diagram showing the relationship between internal pressure and flow velocity, and FIG. 3 is a block diagram of a geothermal turbine protection device according to an embodiment of the present invention. FIG. 4 is a characteristic diagram showing the relationship between steam pressure and steam flow rate, and FIG. 5 is a characteristic diagram showing the relationship between steam conditions and steam valve opening. 2...Separator, 3...Turbine, 4...Flushier, 7...Primary steam valve, 8...Secondary steam valve, 15...Speed detector, 18...Adjustment rate calculation unit, 22, 31, 35...Low value priority circuit, 28...
...Primary steam pressure detector, 29...Primary steam flow rate detector, 30, 34...Arithmetic unit, 32...Secondary steam pressure detector, 33...Secondary steam flow rate detector.
Claims (1)
に供給する蒸気発生手段から送出される蒸気量を
検出する流量検出手段と、タービン入口の蒸気弁
の上流側の圧力を検出する圧力検出手段と、この
圧力検出手段および前記流量検出手段の各出力信
号に基いて前記蒸気弁の開度を演算する演算手段
と、前記蒸気弁に対する最終負荷信号を発生する
手段と、前記演算手段の出力信号および前記最終
負荷信号のうちタービンの許容条件を満足する側
の信号を選択して、この信号に基き前記蒸気弁を
制御する制御手段とを備えた事を特徴とする地熱
タービン保護装置。 2 前記制御手段が前記演算手段の出力信号およ
び前記最終負荷信号の中で前記蒸気弁を閉じ側に
制御する信号を優先出力する回路を含む事を特徴
とする特許請求の範囲第1項に記載の地熱タービ
ン保護装置。 3 前記制御手段が前記演算手段の出力信号に基
き蒸気条件の悪化を検出して警報を発生する手段
を含む事を特徴とする特許請求の範囲第1項に記
載の地熱タービン保護装置。 4 前記制御手段が前記演算手段の出力信号に基
き蒸気条件の悪化を検出してタービンの運転を停
止する手段を含む事を特徴とする特許請求の範囲
第1項に記載の地熱タービン保護装置。[Scope of Claims] 1. Flow rate detection means for detecting the amount of steam sent out from the steam generation means that generates steam from underground hot water and supplies it to the turbine, and a pressure detecting means for detecting; a calculating means for calculating the opening degree of the steam valve based on each output signal of the pressure detecting means and the flow rate detecting means; a means for generating a final load signal for the steam valve; A geothermal turbine comprising: a control means for selecting a signal that satisfies permissible conditions for the turbine from among the output signal of the calculation means and the final load signal, and controlling the steam valve based on this signal. Protective device. 2. According to claim 1, the control means includes a circuit that outputs a signal for controlling the steam valve to the closing side with priority among the output signal of the calculation means and the final load signal. geothermal turbine protection equipment. 3. The geothermal turbine protection device according to claim 1, wherein the control means includes means for detecting deterioration of steam conditions based on the output signal of the calculation means and generating an alarm. 4. The geothermal turbine protection device according to claim 1, wherein the control means includes means for detecting deterioration of steam conditions based on the output signal of the calculation means and stopping operation of the turbine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3215483A JPS59158302A (en) | 1983-02-28 | 1983-02-28 | Geothermal turbine protector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3215483A JPS59158302A (en) | 1983-02-28 | 1983-02-28 | Geothermal turbine protector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59158302A JPS59158302A (en) | 1984-09-07 |
JPH0138165B2 true JPH0138165B2 (en) | 1989-08-11 |
Family
ID=12350996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3215483A Granted JPS59158302A (en) | 1983-02-28 | 1983-02-28 | Geothermal turbine protector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59158302A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285199A (en) * | 2006-04-17 | 2007-11-01 | Toshiba Corp | Geothermal electric power generating equipment, geothermal electric power generation monitor and control device, and geothermal electric power generation monitor control method |
-
1983
- 1983-02-28 JP JP3215483A patent/JPS59158302A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285199A (en) * | 2006-04-17 | 2007-11-01 | Toshiba Corp | Geothermal electric power generating equipment, geothermal electric power generation monitor and control device, and geothermal electric power generation monitor control method |
Also Published As
Publication number | Publication date |
---|---|
JPS59158302A (en) | 1984-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6411828B2 (en) | ||
JPH0138165B2 (en) | ||
JP4937822B2 (en) | Condenser vacuum degree control system and power plant including the system | |
US6651440B2 (en) | Steam cooling apparatus for gas turbine | |
JP3615077B2 (en) | Operation method of steam turbine plant | |
US4080790A (en) | Safety system for a steam turbine installation | |
JP3435450B2 (en) | Turbine bypass valve control device | |
JPH06273077A (en) | Apparatus and method for preventing water hammer of coolant pipe of condenser of steam turbine plant | |
JPH0565805A (en) | Control method for steam turbine and control device thereof | |
JP4551168B2 (en) | Steam turbine power generation facility and operation method thereof | |
JP4560481B2 (en) | Steam turbine plant | |
JPH074603A (en) | Refuse incinerating power-plant | |
JPH048802A (en) | Steam turbine for power generation | |
JP2746935B2 (en) | Heater drain pump-up device in steam turbine plant | |
JP2544050B2 (en) | Drain tank water level control device | |
JPS63192905A (en) | Main steam pressure control method for power generating plant | |
JPH045404A (en) | Compound electric power generating plant and method and device for preventing overspeed thereof | |
JP2557930B2 (en) | Circulating water pump blade opening control device for steam turbine exhaust cooling | |
JP2523493B2 (en) | Turbin bypass system | |
JPH0539901A (en) | Method and device for automatically controlling boiler | |
JPS6158903A (en) | Turbine controller for nuclear reactor | |
JPS6242128B2 (en) | ||
JPS63192903A (en) | Main steam pressure control method for power generating plant | |
JPS603638B2 (en) | Turbine generator protection device in nuclear power plants | |
JPH11311105A (en) | Steam supplying device for steam turbine exhaust chamber |