JPS59136970A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59136970A
JPS59136970A JP1182183A JP1182183A JPS59136970A JP S59136970 A JPS59136970 A JP S59136970A JP 1182183 A JP1182183 A JP 1182183A JP 1182183 A JP1182183 A JP 1182183A JP S59136970 A JPS59136970 A JP S59136970A
Authority
JP
Japan
Prior art keywords
section
wiring
contact
film
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1182183A
Other languages
Japanese (ja)
Inventor
Shigekazu Endo
遠藤 繁和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1182183A priority Critical patent/JPS59136970A/en
Publication of JPS59136970A publication Critical patent/JPS59136970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To lower the resistivity of a wiring, to reduce layer resistance in a contact section and to adapt the titled device for fine processing by silicifying both a wiring section and a contact section between the wiring and a diffusion layer. CONSTITUTION:A thermal oxide Si film 2 in a section as a gate section is removed, a gate oxide Si film 3 is formed through a thermal oxidation method, and a contact section 4 between a diffusion layer and a wiring is formed. A molybdenum film 5 is formed through a sputtering, and an SiO2 film 6 is formed through a CVD method. When the SiO2 film is removed so that a wiring section 7 and Mo in the regions of contact sections 8 are exposed through a photoetching method and Si ions 9 are implanted, silicified contact sections 10 as well as a silicified wiring section 7a are obtained. When boron ions 11 are implanted lastly, a source section 12 and a drain section 13 in a P channel MOS type transistor are changed into P type diffusion layers. The source section 12, the drain section 13, the wiring section 7a and a gate section 7b are all changed into silicides through heat treatment.

Description

【発明の詳細な説明】 本発明は、配線部と、配線と拡散層との接触部とがシリ
サイドである。栄導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, the wiring portion and the contact portion between the wiring and the diffusion layer are made of silicide. This relates to Sakae conductor equipment.

従来、浅い拡散層を形成するために、イオン注入法が使
用さnでいる。最近の半導体果績回路装置では、拡散の
深さを浅くすると、層抵抗が高くなってしまう。例えは
、ホウ素イオン注入法でN型シリコン基板に、拡散の深
さ0.5μmのP型拡散層を、形成しよりとすると、拡
散層の層抵抗は単純に100Ω/口と高くなってしまう
。イオン注入条件を最適化し、イオン注入法の電気的溶
性化のだめの熱処理条件を低温短時間化しても、層抵抗
は50Ω/口 程度しか低下しない。又、従来、配線層
はA1が使用されてお9、多層配線化のためには、多結
晶シリコンが用いられてきた。多結晶シリコンを配線と
して使用する場合、画濃度のリンを添加したものでも比
抵抗はi x i o−3Ω・副と商くなってし甘い、
配線4延の問題がうり、又、多結晶シリコンのため、微
細加工の9えで、不適当てあった。
Conventionally, ion implantation is used to form shallow diffusion layers. In modern semiconductor circuit devices, shallower diffusion depths result in higher layer resistances. For example, if a P-type diffusion layer with a diffusion depth of 0.5 μm is formed on an N-type silicon substrate by boron ion implantation, the layer resistance of the diffusion layer will simply be as high as 100Ω/hole. . Even if the ion implantation conditions are optimized and the heat treatment conditions for electrical solubility in the ion implantation method are lowered and shortened, the layer resistance will only decrease by about 50Ω/hole. Furthermore, conventionally, A1 has been used for wiring layers9, and polycrystalline silicon has been used for multilayer wiring. When polycrystalline silicon is used as wiring, even when phosphorus is added to the picture density, the specific resistance is ix io-3Ω.
There was a problem with the length of the wiring, and since it was made of polycrystalline silicon, there was an inappropriate fit in the 9th step of microfabrication.

不発明は、上記欠点を解決じたものでリラ、配線御と配
縁と拡散層の接触部(以下、コンタクト部と呼ぶ)の両
方をシリサイド化し、配線の比抵抗を下げ、コンタクト
部の層抵抗を下げた、微細加工に適した半導体装置であ
る。
The invention solves the above-mentioned drawbacks by siliciding both the wiring control and the contact area between the wiring and the diffusion layer (hereinafter referred to as the contact area), lowering the specific resistance of the wiring, and reducing the contact area layer. This is a semiconductor device with low resistance that is suitable for microfabrication.

次に7本発明を図囲Cヒより詳細に説明する。説19」
を簡潔にするため、半導体装置の中で、PチャネルMO
S 4jl トランジスタ装置について説明する。
Next, the present invention will be explained in detail from Figure C. Theory 19”
In order to simplify the process, P-channel MO
The S 4jl transistor device will be explained.

矛1図において、N型Si基板1に、熱酸化5i11@
2 ’T 5000 ALv族厚で形成1−る。次に、
従来の7オトエンチング法で、MO8ffi)ランジス
タのゲート部となる部分の熱酸化Sし膜を除去し、熱師
化法で、1度厚500Aのケート秦化S1膜6を形jj
yする。」72図において、フォトエンチング法で、最
終的にソース・ドレーンとなる拡散層と配線との接触部
4(コンタクト部)を形成する。
In Figure 1, the N-type Si substrate 1 is thermally oxidized 5i11@
Formed with 2'T 5000 ALv thickness. next,
Using the conventional etching method, remove the thermally oxidized S film on the part that will become the gate part of the MO8ffi transistor, and then form the Kate Qin Chemical S1 film 6 with a thickness of 500A once using the thermal sterilization method.
Do y. 72, a contact portion 4 (contact portion) between the wiring and the diffusion layer, which will eventually become the source/drain, is formed by photo-etching.

次に、到・61ネ]において、高融点戦域の1つである
モリブテンMo膜5を、厚さ2110oX、スパッタで
形成する。MOの形成はCVD法でも可能でめる。ざら
に、CVD法で5102膜6を、厚さ3QOOX形成す
る。この5102膜は、仄の工程で欧明惰るように、S
iイオン注入する時のマスク材料となるものでるる。次
に、矛4図に示すように、フォトエツチング法で。シワ
サイド化テベき配線部7とコンタクト部8の領域のMO
が露田するように、CjVDの5i02膜を除去づ−る
。配線部7の一部分に、PチャネルMO8型トランジス
タのケート部分でもあ冷。次に、矛5図に示すように、
Siオン9ケ、エネルギー40KoV、  ドーズ量b
 X 10” /c4  の条件でイオン注入する。こ
;LLによって、シリサイド化でれた配線部7a(Pチ
ャネルMO8型トランジスタのゲート部7bを苫む)と
、同じく、シソサイド化されたコンタクト部10とが得
らnる。176図のように、マスクBiO26を除去し
たあとで、マスクB i Q2の下にめったMo層を除
去することによりシリサイド化した配線部7a(ゲート
部7bを含む)と、コンタクト部10を形成するととが
でさる。最後に、オフ図に示すように、ホウ素イオン1
1を、エネルギー20KeV、  ドーズ量5 X 1
0”/crdの条件でイオン注入づ−ると、Pチャネル
M OS型トランジスタのンース都12とドレーン都1
6とかP型拡故層に変化する。この後で、熱処理を行な
い、ソース郁12.ドレーン部16と、自己線部7a、
ゲート部7bすべてが、完全なシリサイドとなる。
Next, in [61], a molybdenum Mo film 5, which is one of the high melting point films, is formed by sputtering to a thickness of 2110°. MO can also be formed by CVD. Roughly, a 5102 film 6 with a thickness of 3QOOX is formed using the CVD method. This 5102 membrane is made of S.
This material is used as a mask material for i-ion implantation. Next, as shown in Figure 4, photo-etching was performed. MO in the area of the wrinkled tapered wiring part 7 and the contact part 8
The CjVD 5i02 film is removed so that it is exposed. A portion of the wiring section 7 is also cooled at the gate of the P-channel MO8 type transistor. Next, as shown in Figure 5,
9 pieces of Si-on, energy 40KoV, dose amount b
Ion implantation is performed under the condition of X 10''/c4. By LL, the wiring portion 7a which has been made into a silicide (the gate portion 7b of the P-channel MO8 type transistor is torn) and the contact portion 10 which has also been made into a silicide. As shown in Fig. 176, after removing the mask BiO26, the Mo layer below the mask B i Q2 is removed to form the silicided wiring part 7a (including the gate part 7b). , when the contact portion 10 is formed, a sharp edge appears.Finally, as shown in the off-line diagram, boron ions 1
1, energy 20KeV, dose 5 x 1
When ions are implanted under the condition of 0''/crd, the source capital 12 and drain capital 1 of a P-channel MOS transistor are
6 or P-type spreading layer. After this, heat treatment is performed to prepare the sauce.12. a drain part 16, a self-line part 7a,
The entire gate portion 7b becomes complete silicide.

この結果、ソース・ドレインのコンタクト部の層抵抗は
10Ω/口以下と低くなり、PチャネルMOSトランジ
スタのゲート部、配線部の比抵抗もlX10−’Ω副と
1炊くなる。
As a result, the layer resistance of the source/drain contact portion is as low as 10 Ω/or less, and the specific resistance of the gate portion and wiring portion of the P-channel MOS transistor is also reduced to 1 × 10−′ Ω.

このように、本発明によれば、拡散層がイオン注入法等
による浅い接合深δのものであっても、[広散層と配線
のコンタクト部の層抵抗は、従来のものより一佑低く、
又、配線部の比抵抗も、従来のものより一桁低くするこ
とが可能となる。
As described above, according to the present invention, even if the diffusion layer has a shallow junction depth δ formed by ion implantation, the layer resistance of the contact portion between the diffusion layer and the wiring is a little lower than that of the conventional one. ,
Furthermore, the specific resistance of the wiring portion can be lowered by one order of magnitude compared to the conventional one.

ここでは、PチャネルM OS型トランジスタVCつい
て、費明したが、NチャネルMO8型トランジスタ、又
、バイポーラ型トランジスタであっても同様の効果が得
ら九るものである。
Although a P-channel MOS type transistor VC has been explained here, similar effects cannot be obtained with an N-channel MO8 type transistor or a bipolar type transistor.

ざらに、シリサイド化さnる材料としてMOを代表例と
じて示したが、その他のシリサイド化可能な元素′T:
あれは、同一の効果が得られることはに9甘でもない。
In general, MO is shown as a typical example of a material that can be silicided, but other elements that can be silicided:
It's not at all likely that you'll be able to get the same effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はゲート酸化膜ブレ成後の断■図、2・2図はコ
ンタクト形成後の断■図、オ15図はMo 。 OVD  SiO□形成後の断■図、第4図はシリサイ
ド化するためのマスク形fjX、佐のIBo1図、真・
5図はS1イオン注入によるシリサイド形成後の断面図
、矛6図はマスタ5i02.Mo  除去後の断面図、
オフ図は、シリサイドPチャネルMO8型トランジスタ
の断面図である。 1・・・N型S1基板、  2・・・熱酸化膜、6・・
・ゲート酸化膜、  4・・・コンタクト部、5 ・−
Mo ?IA、      6 ・・・OV D 5i
Oz膜。 7・・・配ms、      8・・・MOのコンタク
ト部、9・・・S1イオン・ 7a・・・シリサイド化配線部、 7b・・・シソサイド化ゲート部、 10・・・シリサイド化コンタクト部、11・・・ホウ
素イオン、 12・・・MO8型トランジスタの′ノース、16・・
・M OS型トランジスタのドレーン。 第2図 第3図
Figure 1 is a cross-sectional view after forming a gate oxide film, Figures 2 and 2 are cross-sectional views after forming a contact, and Figure 15 is a cross-sectional view of Mo. A cross-sectional view after OVD SiO
Figure 5 is a cross-sectional view after silicide is formed by S1 ion implantation, and Figure 6 is a cross-sectional view of the master 5i02. Cross-sectional view after Mo removal,
The off view is a cross-sectional view of a silicide P-channel MO8 type transistor. 1...N-type S1 substrate, 2...thermal oxide film, 6...
・Gate oxide film, 4... Contact part, 5 ・-
Mo? IA, 6...OV D 5i
Oz membrane. 7... Connections, 8... MO contact part, 9... S1 ion, 7a... Silicided wiring part, 7b... Silicided gate part, 10... Silicided contact part, 11...Boron ion, 12...'north of MO8 type transistor, 16...
・MOS type transistor drain. Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)  シリコン基板中に拡散層をイする半導体装置
において、配線部をシリ−サイドとすると共に、配線と
拡散層の接触部をもシソサイドとしたことを%徴とする
半導体装置。
(1) A semiconductor device in which a diffusion layer is formed in a silicon substrate, in which the wiring portion is made of silicide, and the contact portion between the wiring and the diffusion layer is also made of silicide.
(2)  前記配線部と接触部のシリサイドを7オトエ
ンチング法によるマスクを用いたシリコンイオン注入法
で形成したシリサイドとすることを特徴とする特許請求
の範囲矛1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the silicide of the wiring portion and the contact portion is silicide formed by a silicon ion implantation method using a mask using a 7-oto-etching method.
(3)配線部のシリサイドの一部φEMQS型トランジ
スタのゲート’fibとして動作することを特徴とする
特許請求の範囲矛2項記載の半導体装置。
(3) A semiconductor device according to claim 2, characterized in that a portion of the silicide in the wiring portion operates as a gate fib of a φEMQS type transistor.
JP1182183A 1983-01-27 1983-01-27 Semiconductor device Pending JPS59136970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182183A JPS59136970A (en) 1983-01-27 1983-01-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182183A JPS59136970A (en) 1983-01-27 1983-01-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59136970A true JPS59136970A (en) 1984-08-06

Family

ID=11788441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182183A Pending JPS59136970A (en) 1983-01-27 1983-01-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59136970A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239623A (en) * 1985-04-17 1986-10-24 Agency Of Ind Science & Technol Formation of electrode of semiconductor device
JPS6255930A (en) * 1985-09-05 1987-03-11 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH02165628A (en) * 1988-12-20 1990-06-26 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125648A (en) * 1979-03-22 1980-09-27 Nec Corp Semiconductor integrated circuit
JPS56158454A (en) * 1980-05-12 1981-12-07 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125648A (en) * 1979-03-22 1980-09-27 Nec Corp Semiconductor integrated circuit
JPS56158454A (en) * 1980-05-12 1981-12-07 Mitsubishi Electric Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239623A (en) * 1985-04-17 1986-10-24 Agency Of Ind Science & Technol Formation of electrode of semiconductor device
JPS6255930A (en) * 1985-09-05 1987-03-11 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH02165628A (en) * 1988-12-20 1990-06-26 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2558931B2 (en) Semiconductor device and manufacturing method thereof
JPS58176975A (en) Method of producing integrated mos field effect transistor circuit
JPS60254766A (en) Method of producing gage electrode
JP3181695B2 (en) Method for manufacturing semiconductor device using SOI substrate
JPS6233466A (en) Manufacture of semiconductor device
KR930003558B1 (en) Manufacturing method of semiconductor device
JPS6046831B2 (en) Manufacturing method of semiconductor device
JP4846167B2 (en) Manufacturing method of semiconductor device
JPS63219152A (en) Manufacture of mos integrated circuit
JPS59136970A (en) Semiconductor device
JPS6360549B2 (en)
JPS6226573B2 (en)
JPS60193371A (en) Manufacture of semiconductor device
JPH1098186A (en) Semiconductor device and its manufacture
JPH047822A (en) Manufacture of semiconductor device
JPS59112641A (en) Semiconductor device and manufacture thereof
JPH06163576A (en) Manufacture of semiconductor device
JPS59115554A (en) Semiconductor device and manufacture thereof
JPH0431193B2 (en)
JPS6074478A (en) Manufacture of semiconductor device
JPH04348531A (en) Manufacture of field effect transistor
JPH0391245A (en) Thin-film semiconductor device and manufacture thereof
JPS5988868A (en) Manufacture of semiconductor device
JPS62281351A (en) Manufacture of semiconductor device
JPH0658899B2 (en) Method for manufacturing semiconductor device