JPS59136333A - Manufacture of polyolefin molded article having high bonding property - Google Patents

Manufacture of polyolefin molded article having high bonding property

Info

Publication number
JPS59136333A
JPS59136333A JP1191283A JP1191283A JPS59136333A JP S59136333 A JPS59136333 A JP S59136333A JP 1191283 A JP1191283 A JP 1191283A JP 1191283 A JP1191283 A JP 1191283A JP S59136333 A JPS59136333 A JP S59136333A
Authority
JP
Japan
Prior art keywords
treatment
corona discharge
ratio
film
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1191283A
Other languages
Japanese (ja)
Other versions
JPH059459B2 (en
Inventor
Tsutomu Isaka
勤 井坂
Hiromu Nagano
煕 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1191283A priority Critical patent/JPS59136333A/en
Priority to FR8316034A priority patent/FR2534262B1/en
Priority to US06/540,144 priority patent/US4563316A/en
Priority to GB08326915A priority patent/GB2131030B/en
Priority to KR1019830004764A priority patent/KR890002565B1/en
Publication of JPS59136333A publication Critical patent/JPS59136333A/en
Publication of JPH059459B2 publication Critical patent/JPH059459B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To improve the corona treating effect, and to improve the bonding strength of a polyolefin molded article with various other materials, by passing the molded article continuously through a corona discharge treatment apparatus having oppositely placed electrodes, and specifying the ratios of O/C and N/C of the treating surface before and after the treatment. CONSTITUTION:A polyolefin molded article (e.g. film, etc. of polypropylene, etc.) is passed continuously through a corona discharge treatment apparatus having at least a pair of oppositely placed electrodes to effect the corona treatment of the surface. In the above process, the surface to be treated is blasted with a simple gas or a mixed gas (e.g. an inert gas such as N2, H2, etc.) having a composition other than the composition of air, to adjust the ratio of the differences of (O/C) and (N/C) in the thin layer within 100Angstrom from the surface before and after the treatment [DELTA(O/C)/DELTA(N/C)] at -3.5-0, and the (N/C) ratio in the thin layer within 100Angstrom from the surface after the treatment at >=3.

Description

【発明の詳細な説明】 本発明は高接着性ポリオレフィン成形物の製造方法に関
し、詳細には、コロナ放電処理効果を実生産レベルで十
分に高め、各種素材に対する接着性の改善されたポリオ
レフィン成形物を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly adhesive polyolefin molded product, and more specifically, to a polyolefin molded product that has sufficiently enhanced corona discharge treatment effects at a practical production level and has improved adhesion to various materials. The present invention relates to a method for manufacturing.

プラスチック製フィルムや成形物のコロナ放電処理は古
くから行なわれておυ、特にポリエチレンやボリプ四ピ
レン等のポリオレフィンフィルムの表面改質には欠くこ
とのできない技術であって、その適用範囲は益々拡大し
ていくものと期待されている。こうした状況に対処して
行く為にはコロナ放電による処理効率自体を向上しその
可能性を探求する必要があシ、これまでにも広範囲に亘
る改良研究が展開されているが、未だ十分とは言えない
状況にある。
Corona discharge treatment of plastic films and molded materials has been carried out for a long time, and is an indispensable technique for surface modification of polyolefin films such as polyethylene and polypyrene, and its scope of application is increasingly expanding. It is expected that this will continue. In order to deal with this situation, it is necessary to improve the processing efficiency of corona discharge itself and explore its possibilities, and although extensive improvement research has been conducted so far, it is still not sufficient. I'm in a situation where I can't say anything.

例えばプラスチック成形品のコロナ放電処理法として、
特公昭48−17747号にみられる如く、放電部に有
機溶剤を供給することによって放電面の化学変化を促進
させる技術があるが、残留溶剤が問題となる成形物への
適用は困難である。
For example, as a corona discharge treatment method for plastic molded products,
As seen in Japanese Patent Publication No. 48-17747, there is a technique for promoting chemical changes on the discharge surface by supplying an organic solvent to the discharge section, but it is difficult to apply this to molded products where residual solvent is a problem.

又Journal Of Applied pol y
mer Sc:tence 。
Also Journal Of Applied Poly
mer Sc:tence.

you 、 15、?、1365〜1375(1971
)には、不活性ガス雰囲気下でコロナ放電処理を行なう
技術が記載され、処理雰囲気による活性化又は劣化等の
影響が示唆されるに及び大気算囲気を例えば低酸累算囲
気に置き換えて処理を行なう技術も提案される様になっ
てきた。しかしこの種の従来法、例えば特公昭!56−
18381号の方法では、大量の不活性ガスを必要とす
るのでコスト高になるという問題があわ、又特開昭57
−23634号の方法(走行フィルムに対する不活性算
囲気下のコロナ放電技術)では、フィルムに随伴して巻
込まれる大気を遮断する為に特殊なシールド構造が必要
で装置まわりが複雑になり、それでも伺完全乃至略完全
な不活性雰囲気が保障される訳ではなく低処理レベルに
甘んじなければならなかった。
you, 15,? , 1365-1375 (1971
) describes a technique of performing corona discharge treatment in an inert gas atmosphere, and if the effect of activation or deterioration due to the treatment atmosphere is suggested, the treatment may be performed by replacing the atmospheric ambient air with, for example, a low-acid cumulative atmosphere. Techniques for doing this have also begun to be proposed. However, this type of conventional method, such as Tokkosho! 56-
The method of No. 18381 required a large amount of inert gas, which caused the problem of high cost.
The method of No. 23634 (corona discharge technology under an inert ambient atmosphere for running film) requires a special shield structure to block the atmosphere that is entrained by the film, making the equipment complex, and still A completely or almost completely inert atmosphere was not guaranteed and one had to settle for a low treatment level.

この様に従来の改善処理法で十分な成果を挙げることが
できない理由は次の様に考えることができる。即ち処理
効率を高める為のポイントは、放電処理部におけるガス
雰囲気にあると考えられるが、従来の改善法では単に処
理系内やチャンバー内のガス雰囲気のみを問題としてお
シ、被処理物表層部の随伴流(外気)による遮弊障害を
考慮していない為と思われる。その為、バッチ式により
静止状態で処理を行なえば前述の様な障害は軽減される
であろうが、それでは工業生産性が著しく低下して市場
価格が高騰するので、限られた用途にしか実用化するこ
とができない。しかも前述の様な連続処理で高い処理効
果を得ようとするといきおい処理速度は低下せざるを得
なくなるが、それでは被処理物表面が損傷されて外観不
良、接着性不良、ブロッキング増大等の問題が派生して
くる。尚従前の大気算囲気下でのコロナ放電処理では、
被処理物の表面が酸化を受けて表面に酸化劣化物が生成
するので、処理度合を進めても接着性を一部レベル以上
に向上させることはできない。
The reason why conventional improvement processing methods cannot achieve sufficient results can be considered as follows. In other words, the key to increasing processing efficiency is thought to be the gas atmosphere in the discharge processing section, but conventional improvement methods only consider the gas atmosphere in the processing system or chamber as a problem, and do not focus on the surface layer of the object to be processed. This seems to be because the obstruction caused by the accompanying flow (outside air) is not taken into account. Therefore, if the processing was carried out in a stationary state using a batch method, the above-mentioned problems would be alleviated, but this would significantly reduce industrial productivity and raise market prices, so it is only practical for limited applications. cannot be converted into Moreover, in order to obtain a high processing effect through continuous processing as described above, the processing speed must be reduced, but this will damage the surface of the processed object and cause problems such as poor appearance, poor adhesion, and increased blocking. It's derived. In the conventional corona discharge treatment under atmospheric conditions,
Since the surface of the object to be treated undergoes oxidation and oxidized deterioration products are generated on the surface, adhesion cannot be improved beyond a certain level even if the degree of treatment is increased.

本発明者等はこうした事情に着目し、ポリオレフィン成
形品に対し工業的生産レベルで高度の接着性を与えるこ
とのできる様なコロナ放電処理法の開発を期して研究を
進めてきた。本発明はこう[−た研究の結果なされたも
のであって、その構成は、少なくとも1対の電極を対向
させてなるコロナ放電処理装置にポリオレフィン成形品
を連続的に通してコロナ放電処理を行なうに当り、処理
面に対して空気組成以外の組成からなる単独又は混合気
体を吹付け、被処理表面の100λ以内の薄100人以
内の薄層におけるコロナ放電処理後の本発明方法が適用
されるポリオレフィン成形品としては、フィルムやシー
ト及び繊維、パイプ、テープ、織物、不織布等の長尺物
を含むもので、これ−ら成形物を構成するポリオレフィ
ンとしては公知の種々のものが挙げられるが、フィルム
用或いはシート用の代表的なポリオレフィンとしては、
ポリエチレン、ポリプロピレン、ポリブテン−1、ポリ
−4−メチルペンテン−1、ポリヘキセン等の単独重合
体、プロピレン構成単位を70重量俤程度以上含有する
各種共重合体、プロピレン構成単位を40重−1tq6
程度以上含有するポリオレフィンブレンド物等が挙げら
れる。またこれらのポリオレフィンによ多構成される成
形物中には、必要に応じて安定剤、滑剤、耐ブロッキン
グ剤、防曇剤、紫外線吸収剤、難燃剤、透明化剤、酸化
防止剤、耐光剤、帯電防止剤、染料、顔料等の添加剤が
含有されていてもよく、コロナ放電の実施に悪影響を及
tチさないものは単独及び複合の如何を問わず全て本発
明の対象として含まれる。
The present inventors have focused on these circumstances and have been conducting research with the aim of developing a corona discharge treatment method that can provide polyolefin molded products with a high degree of adhesion at an industrial production level. The present invention was made as a result of such research, and has a structure in which a polyolefin molded product is continuously passed through a corona discharge treatment device comprising at least one pair of electrodes facing each other to perform corona discharge treatment. In this process, the method of the present invention is applied by spraying a single gas or a mixture of gases having a composition other than air onto the surface to be treated, and after corona discharge treatment in a thin layer of 100 or less within 100λ of the surface to be treated. Polyolefin molded products include films, sheets, fibers, pipes, tapes, woven fabrics, non-woven fabrics, and other elongated products, and the polyolefins that make up these molded products include various known polyolefins. Typical polyolefins for films or sheets include:
Homopolymers such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, polyhexene, various copolymers containing about 70 weight units or more of propylene constituent units, 40 weight-1 tq6 propylene constituent units
Examples include polyolefin blends containing a certain amount or more. In addition, stabilizers, lubricants, anti-blocking agents, antifogging agents, ultraviolet absorbers, flame retardants, clarifying agents, antioxidants, and light-fastening agents are added to molded products made of these polyolefins as necessary. , antistatic agents, dyes, pigments, and other additives may be included, and all additives that do not adversely affect the implementation of corona discharge are included in the scope of the present invention, regardless of whether they are used singly or in combination. .

本発明では上記ポリオレフィン成形物を処理対象とし、
少なくとも1対の電極を対向させてなるコロナ放電処理
装置に前記成形物を連続的に通して表面処理を行なうが
、この処理に当たり処理面に空気組成以外の組成からな
る単独又は混合気体〔具体的には空気から空気組成の一
部を適当量除いたものや、空気へ空気組成の一部を適当
量追加したもの、更にはN、 、Hl 、Ar% co
、 、o、、O8、Xθ、Kr等不活性ガスやイオン性
ガスの単独又は混合ガス等を包含するが(但し空気は除
く)以下便宜上不活性ガスと略記する〕を吹付ける。
In the present invention, the above-mentioned polyolefin molded product is treated,
Surface treatment is carried out by continuously passing the molded article through a corona discharge treatment device comprising at least one pair of electrodes facing each other. For example, air with an appropriate amount removed from it, or air with an appropriate amount added to it, as well as N, , Hl, Ar% co
, , o, , O8, Xθ, Kr, etc., including inert gases and ionic gases alone or in combination (but excluding air), hereinafter abbreviated as inert gas for convenience.] is sprayed.

吹付速度は特に限定されないが、好ましくは前記ポリオ
レフィン成形物の送シ込み速度の1%以上とする。そし
て後に詳述する如く、被処理表面の100人以内の薄層
におけるコロナ放電処理前・によって、各種素材(例え
ば金M+各種インキ、殊にセルロース系インキ、水性イ
ンキ等;樹脂、例えば塩化ビニリデン系単独又は共重合
体や官能基含有樹脂等)との接着性に極めて優れたポリ
オレフィン成形物を得ることができる。
The spraying speed is not particularly limited, but is preferably 1% or more of the feeding speed of the polyolefin molded product. As will be detailed later, before and after the corona discharge treatment in a thin layer of 100 or less on the surface to be treated, various materials (for example, gold M + various inks, especially cellulose-based inks, water-based inks, etc.; resins, such as vinylidene chloride-based Polyolefin molded articles with extremely excellent adhesion to resins (alone or copolymers, functional group-containing resins, etc.) can be obtained.

以下実施例図面に準拠しつつ本発明の構成及び作用効果
を明らかにしていくが、図面に示す放電側電極の構造や
配列、更にはカバーの形状等は代表例であるに過ぎず、
又図面ではプラスチックフィルムへの適用例を示したに
過ぎないから、これらの説明の趣旨に反しないという条
件の下で設計を変更することは本発明の技術的範囲に含
まれる。
The structure and effects of the present invention will be clarified below based on the drawings of the embodiments, but the structure and arrangement of the discharge side electrodes, the shape of the cover, etc. shown in the drawings are only representative examples.
Further, since the drawings merely show an example of application to a plastic film, it is within the technical scope of the present invention to change the design on the condition that it does not go against the spirit of these descriptions.

第1図は本発明の実施概念を示す要部断面図、第2図は
放電側電極の一部を示す斜視図であって、図中の1は金
属ドラム、2は電極カバー、3は放電側電極、4はガス
供給管、5はガス噴出口、6は走行フィルムを示す。即
ちフィルム6は矢印A方向に回転する金属ドラム1に対
して矢印B方向から導入され、更に矢印C方向へ引出さ
れて行くが、図示し2ない高電圧発生機に接続されてい
る放電側電極3と、ポリエステル、エポキシ樹脂、セラ
ミック、クロルスルホン化ポリエチレン、EPラバー等
でカバーされた金属ドラム1との間に数百KC/Sの高
周波で数千ないし数百■の高電圧をかけることによって
発生する高圧コロナの影響を受け、例えば自然の大気中
であればオゾンや酸化窒素が生成してフィルム6の表面
にカルボニル基やカルボキシル基を生ぜしめることによ
り表面が極性化される。一方従来例であれば、大気中の
酸素によってフィルム表面に接着性を阻害する酸化劣化
物が生成して表面を遮弊する。1−かじ本図例であれば
、コロナ放電の雰囲気全体を電極カバー2によって大気
から遮断すると共に、放電側電極3にガス噴出口5を設
はフィルム6の表面に向けて不活性ガスを成句ける様に
構成しているので、前述の障害が解消され、フィルム6
表層部へのコロナ放電効果を最大限に高めることができ
る。
FIG. 1 is a sectional view of a main part showing the implementation concept of the present invention, and FIG. 2 is a perspective view showing a part of the discharge side electrode, in which 1 is a metal drum, 2 is an electrode cover, and 3 is a discharge side electrode. A side electrode, 4 a gas supply pipe, 5 a gas outlet, and 6 a running film. That is, the film 6 is introduced from the direction of arrow B into the metal drum 1 rotating in the direction of arrow A, and is further pulled out in the direction of arrow C. 3 and a metal drum 1 covered with polyester, epoxy resin, ceramic, chlorosulfonated polyethylene, EP rubber, etc. by applying a high voltage of several thousand to several hundred ■ at a high frequency of several hundred KC/S. Under the influence of the generated high-pressure corona, for example, in the natural atmosphere, ozone and nitrogen oxide are generated, and carbonyl groups and carboxyl groups are generated on the surface of the film 6, thereby polarizing the surface. On the other hand, in the conventional example, oxygen in the atmosphere generates oxidized deterioration products on the film surface that inhibit adhesion, thereby blocking the surface. 1 - In the example shown in this figure, the entire corona discharge atmosphere is isolated from the atmosphere by the electrode cover 2, and a gas outlet 5 is provided on the discharge side electrode 3 to direct inert gas toward the surface of the film 6. Since the above-mentioned problem is solved and the film 6
The corona discharge effect on the surface layer can be maximized.

この状況を更に詳述すれば、矢印B方向に治って相当の
高速度で進入してくるフィルム6の表面には、若干なが
ら随伴空気層が形成されており、コロナ放電部の雰囲気
が不活性ガスによって置換されても、フィルム6の表面
自体は相変らず大気算囲気になっている。従って本発明
を実施するに当っては、第3図に示す如く不活性ガスを
フィルム表面へ強く吹付け、随伴空気層7を噴気流8に
よシ破壊分散させることによって、フィルム表面を不活
性ガスでほぼ完全に置換する。随伴空気層7を破壊分散
させるのに必要な噴気流8の流速は被処理物の形状や寸
法及び処理装置への搬入速度等によって変わるので一律
に決めることはできないが、実験の結果随伴空気層7の
進入速度(換言すれば被処理物の搬入速度)を基準にし
て定めるのが最も好ましいことが分かった。即ち不活性
ガスの噴気流速を被処理物の搬入速度の1%以上、好ま
しくは10q6以上、更に好ましくは40チ以上にして
やれば、随伴空気層7を実質上の不都合が々い程度にま
でなくすことができる。同板処理物の搬入速度は一般に
1〜500 m/分程度である。
To explain this situation in more detail, a slight accompanying air layer is formed on the surface of the film 6, which heals in the direction of arrow B and enters at a fairly high speed, making the atmosphere in the corona discharge area inert. Even if the gas is replaced, the surface of the film 6 itself remains surrounded by the atmosphere. Therefore, in carrying out the present invention, as shown in FIG. Almost completely replaced with gas. The flow velocity of the jet stream 8 required to destroy and disperse the entrained air layer 7 cannot be uniformly determined because it varies depending on the shape and size of the object to be treated, the speed of conveyance to the processing equipment, etc., but as a result of experiments, It has been found that it is most preferable to set the value based on the entry speed of No. 7 (in other words, the transport speed of the object to be processed). That is, by setting the inert gas jet velocity to 1% or more of the conveyance speed of the material to be treated, preferably 10q6 or more, and more preferably 40q6 or more, the entrained air layer 7 can be eliminated to the extent that it is practically inconvenient. be able to. The speed at which the plate to be processed is carried in is generally about 1 to 500 m/min.

この様な条件を採用することによって随伴空気層を破壊
分散させることができる様になり、且つ同時にコロナ放
電部の近傍を不活性ガス雰囲気で保護することが可能と
なるので、第1図に示した電極カバー2は、雰囲気保持
用としての機能よシも、むしろ電極3を機械的な衝撃か
ら保護するという機能と随伴流を少しでも抑制する機能
の方が強く期待される様になる。従って本発明の実施に
当っては、時に電極カバー2を取外すこともあり得るが
、不活性ガスの消費量を抑制する為には、雰囲気保持用
としての機能を改めて見直すことが望ましく、例えば第
4図に示す如くカバー2の下端(フィルム側)を絞ると
同時に、導管10から不活性ガスをカバー2内へ導入す
れば、該ガスは斜面9の内面に沿って収束される様に矢
印方向へ流し、カバー2の入口においてガスカーテン効
果が発揮される。即ち随伴空気層の侵入が入口側で遮断
され、電極カバー2の価値が一段と向上する。
By adopting such conditions, it becomes possible to destroy and disperse the accompanying air layer, and at the same time, it becomes possible to protect the vicinity of the corona discharge part with an inert gas atmosphere, as shown in Figure 1. The electrode cover 2 is expected not only to function as an atmosphere retainer, but also to protect the electrode 3 from mechanical impact and to suppress accompanying flow even to the slightest extent. Therefore, when implementing the present invention, the electrode cover 2 may be removed from time to time, but in order to suppress the amount of inert gas consumed, it is desirable to reconsider its function as an atmosphere-maintaining device. As shown in FIG. 4, by squeezing the lower end (film side) of the cover 2 and at the same time introducing inert gas into the cover 2 from the conduit 10, the gas flows in the direction of the arrow so that it is converged along the inner surface of the slope 9. The gas curtain effect is exerted at the inlet of the cover 2. That is, the intrusion of the entrained air layer is blocked on the inlet side, and the value of the electrode cover 2 is further improved.

但しフィルム6の出口側(第4図の右側)についてはカ
バー2内のガスが走行フィルム6に随伴して排出されて
いくので、シール性ないし大気侵入遮断性については入
口側はどの配慮をする必要性は無いが、前述の様に不活
性ガス消費量を少なくするという意味においては入口側
と同様の配慮を払うことは有意義である。同カバー2の
入口側及び出口側における上述のシール機能を最低限度
において発揮する為には、フィルムの走行速度に対して
少なくとも0.2q6以上、好ましくは1096以上の
速度でフィルム面に放出させることが望まれる。同不活
性ガスの噴出速度については、ガス噴出口5及びカバー
2の出入口のいずれについても下限側のみを述べたが上
限については実質上制限を設ける必要はなく、経済性と
最終製品の要求品質との兼ね合いで適当に決めればよい
However, on the exit side of the film 6 (the right side in Figure 4), the gas inside the cover 2 is discharged along with the running film 6, so what considerations should be taken on the entrance side regarding sealing performance or air infiltration barrier properties. Although it is not necessary, it is meaningful to take the same consideration as on the inlet side in terms of reducing the amount of inert gas consumed as described above. In order to exert the above-mentioned sealing function on the inlet and outlet sides of the cover 2 to the minimum extent, it is necessary to release the liquid onto the film surface at a speed of at least 0.2q6 or more, preferably 1096 or more relative to the film running speed. is desired. Regarding the ejection speed of the inert gas, only the lower limit side has been described for both the gas ejection port 5 and the inlet/outlet of the cover 2, but there is no practical need to set an upper limit on the ejection speed, and it is necessary to improve economic efficiency and the required quality of the final product. It should be decided appropriately based on the balance.

以上の様な処理条件を設定することによってコロナ放電
の処理効果が高められ、接着性が大幅に改善されるが、
こうした効果を常時安定して発揮させる為には、被処理
物の処理前・後における表面特性諸元を定量的に把握し
ておく必要があると考え更に研究を進めた。その結果、
■被処理物表ム表面100A以内の薄層におけるコロナ
放電処高度の接着性を保障し得ることが判明した。即ち
〜0となる様、また前記■については処理後の(及び処
理界囲気を厳密にコン)El−ルすることにより、例え
ば金属、各種印刷インキ(特にセルロース系インキや水
性インキ等)、塩化ビニリデン系単独又は共重合樹脂や
官能基含有樹脂等の各種合成樹脂等との接着性を飛躍的
に高めることができる。尚」二記の様な表面特性の測定
法は種々あるが、最も適しているのはESCA法である
By setting the treatment conditions as described above, the treatment effect of corona discharge is enhanced and the adhesion is significantly improved.
In order to consistently and stably exhibit these effects, we conducted further research based on the belief that it was necessary to quantitatively understand the surface characteristics of the treated object before and after treatment. the result,
(2) It has been found that the adhesiveness of a thin layer within 100A of the surface of the object to be treated can be guaranteed at a corona discharge treatment level. In other words, by controlling the El- after treatment (and strictly controlling the surrounding atmosphere), for example, metals, various printing inks (especially cellulose-based inks, water-based inks, etc.), chloride Adhesion to various synthetic resins such as vinylidene-based single or copolymer resins and functional group-containing resins can be dramatically improved. Although there are various methods for measuring surface properties as described above, the most suitable one is the ESCA method.

いう要件を満たすポリオレフィン成形物は、従来の処理
条件でも時として得ることができ、又公知の窒素ガス雰
囲気下でのコロナ放電処理によっても実現可能である。
Polyolefin molded articles satisfying the above requirements can sometimes be obtained under conventional treatment conditions, and can also be realized by known corona discharge treatment under a nitrogen gas atmosphere.

しかしながら先に説明した如く少なくとも連続処理を対
象とする従来法で上記の様な高レベルの(−)比を確保
する為には太規模な設備を要するので、工業的規模での
実用化は困難であった。これに対し本発明の方法を採用
す上まで高めることができる。一方プラスチック材の各
種素材との接着性が、ESCA法で求められるNの生成
割合(Cに対する)により単純に決まってくるという報
告もある。しかしかかる報告は接着性に影響を及ばす一
側面のみをとらえたものにすぎない。ちなみに素材に対
してN成分をブレある帯電防止剤や滑剤を混合するだけ
では接着性は向上せず、むしろ低下するという事実を考
えれば、(−)比の増大が接着性と直ちに結びつくもの
でないことは明白である。そこで接着性に影響を与える
他の要因についても検討を行なったとこる値がコロナ放
電処理効果、即ち接着性向上効果をほぼ正確に表わし、
これが1.8以下となる様な処理を受けたものは目的に
かなう高レベルの接着性を発揮するという事実が確認さ
れた。ちなみにか不十分で高レベルの接着性を得ること
ができガい。こうした意味から、原発間では図示した様
な処理法を採用し、且つ前記(5)比が3以上、〔ON Δ(d)/Δ(d)〕が1.8以下となる様に処理条件
をコントロールすることが必須となる。
However, as explained earlier, in order to secure such a high level of (-) ratio as mentioned above, large-scale equipment is required in the conventional method, which targets at least continuous processing, so it is difficult to put it into practical use on an industrial scale. Met. On the other hand, the method of the present invention can be used to improve the performance. On the other hand, there is also a report that the adhesion of plastic materials to various materials is simply determined by the production ratio of N (relative to C) determined by the ESCA method. However, such reports capture only one aspect that affects adhesion. By the way, considering the fact that simply mixing an antistatic agent or lubricant with a varying N component to the material does not improve adhesion, but rather reduces it, an increase in the (-) ratio does not immediately correlate with adhesion. That is clear. Therefore, we also examined other factors that affect adhesion, and found that the values almost accurately represent the effect of corona discharge treatment, that is, the effect of improving adhesion.
It has been confirmed that those treated in such a way that this value becomes 1.8 or less exhibit a high level of adhesion that meets the purpose. By the way, it is not possible to obtain a high level of adhesion even if it is insufficient. In this sense, the treatment method shown in the figure is adopted between nuclear power plants, and the treatment conditions are set so that the ratio (5) above is 3 or more and [ON Δ(d)/Δ(d)] is 1.8 or less. It is essential to control.

ON ところが〔Δ(5)/Δ(−5,)〕について更に研究
を進めていたこころ、上記の比がマイナスとなる領域、
即ちフィルム中の構成酸素原子(コロナ放電処理雰囲気
から持ちこまれる酸素原子や酸素含有の各種添加剤、更
には必要によシ混合される酸素含有高分子化合物に由来
する酸素原子)が、たとえわずかであるにせよ放出除去
されたシネ活性ガス中の窒素原子によって置換除去され
結果的に窒素原子が多くなる場合には、前述の効果が更
に顕著となシ、特に−3,5〜0の領域では、耐ブロッ
キング性が一層向上し、又接着力の経時変化が極めて少
なくなるという特性が得られる。同この様なマイナス領
域の形成は窒素算囲気の形成程度によるというよりは、
むしろ前述の如きフィルム中の酸素原子比率や酸素原子
存在形態によるところが大きいことが分かった。こうし
て本発明でON は、〔Δ(d)/Δ(d)〕を−3,5〜0と定めたが
、実質的には、3.5よシ更に小さい領域を得ることは
極めて困難であった。
ON However, as I was further researching [Δ(5)/Δ(-5,)], I realized that the region where the above ratio is negative,
In other words, even if the constituent oxygen atoms in the film (oxygen atoms brought in from the corona discharge treatment atmosphere, various oxygen-containing additives, and oxygen atoms derived from oxygen-containing polymer compounds that are mixed as necessary) are However, if the nitrogen atoms in the released and removed cine active gas are replaced and removed, and as a result, the number of nitrogen atoms increases, the above-mentioned effect becomes even more pronounced, especially in the range of -3.5 to 0. , the blocking resistance is further improved, and the change in adhesive strength over time is extremely reduced. Similarly, the formation of such a negative region is not due to the degree of formation of nitrogen gas, but rather,
Rather, it was found that it largely depends on the ratio of oxygen atoms in the film and the form of oxygen atoms present as described above. Thus, in the present invention, ON has determined [Δ(d)/Δ(d)] to be -3.5 to 0, but in reality, it is extremely difficult to obtain an area even smaller than 3.5. there were.

本発明は概略以上の様に構成されておシ、コロナ放電処
理条件を規定すると共に、処理前・後にON おける表層部の(j)比及び(υ)比の変化量から処理
効果を常時把握する様にしたので、各種素材との接着性
に優れたポリオレフィン成形物を確実に得ることが可能
になった。
The present invention is roughly configured as described above, and in addition to stipulating the corona discharge treatment conditions, the treatment effect can be constantly grasped from the amount of change in the (j) ratio and (υ) ratio of the surface layer when turned on before and after the treatment. As a result, it has become possible to reliably obtain polyolefin molded products with excellent adhesiveness to various materials.

次に実験例を示す。Next, an experimental example will be shown.

同実験例で採用した表面特性の評価法は次の通シである
The method for evaluating surface properties adopted in this experimental example is as follows.

(1)ヘイズ+JTS−に−6714によシ測定(2)
印刷インキ接着力 市販のセロファン用印刷インキを用い、グラビア印刷機
で赤色及び白色の印刷を行なう。
(1) Measurement using haze + JTS-6714 (2)
Printing Ink Adhesion Using a commercially available printing ink for cellophane, red and white printing was performed using a gravure printing machine.

印刷後通常の方法で同時乾燥し、市販セロファンテープ
にチバン社製→によるテープ剥離試験を行なった。
After printing, it was simultaneously dried in the usual manner, and a tape peeling test was conducted using a commercially available cellophane tape manufactured by Chiban Co., Ltd.

〔テープ剥離試験評価基準〕[Tape peel test evaluation criteria]

5I全く剥離せず 4;インキ剥離面積が約5チ未満 3Iインキ剥離面積5〜10% 2Iインキ剥離面積10〜50係 1;インキ剥離面積50%以上 (3)ラミネート強度 セロファンインキを用いて印刷した後ポリエチレンイミ
ンをコーティングし、乾燥後290℃の低密度ポリエチ
レンを厚さが30μmとなる様に溶融押出法でラミネー
トする。
5I No peeling 4; Ink peeling area less than about 5 inches 3I Ink peeling area 5-10% 2I Ink peeling area 10-50 1; Ink peeling area 50% or more (3) Lamination strength Printing using cellophane ink After that, it is coated with polyethyleneimine, dried, and then laminated with low density polyethylene at 290° C. to a thickness of 30 μm using a melt extrusion method.

次いで24時間二一ジングした後、フィルムとポリエチ
レン層の間を剥離し、その接着強度を測定する。尚剥離
条件は、180度剥離、速度200+++m/分とする (4)その他の接着性 アルミニウムの蒸着性及び塩化ビニリデン樹脂との接着
性を(2)項と同様の方法で調べる。
Then, after 24 hours of aging, the film and polyethylene layer were peeled off and the adhesive strength was measured. The peeling conditions were 180 degree peeling and a speed of 200+++ m/min. (4) Other Adhesive Properties The vapor deposition properties of aluminum and the adhesion to vinylidene chloride resin were examined in the same manner as in section (2).

(5)ESCA法による( N/C)比及び(0/C)
比:ESCAスペクトロメーターE S −200型(
国際電気株式会社製)を用い、フィルム表面の炭素の1
8軌道スペクトルから求めた積分強度と、窒素のIS軌
道スペクトルから有機性窒素の結合エネルギーに対応す
るピークより求めた積分強度との比を算出し、その積分
比に基づいて炭素数100個当シの窒素数を求め、この
値を(N/C)比と定義して表わした。又フィルム表面
の炭素と酸素の比についても、同様に炭素数100個当
シの酸素数を(0/C)比として表わした。力木明細書
における( N/C)比及び(0/C”)比はすべでこ
の定義によるものである。
(5) (N/C) ratio and (0/C) by ESCA method
Ratio: ESCA spectrometer ES-200 type (
(manufactured by Kokusai Denki Co., Ltd.), one of the carbon atoms on the film surface was
The ratio of the integrated intensity obtained from the 8-orbital spectrum and the integrated intensity obtained from the peak corresponding to the binding energy of organic nitrogen from the IS orbital spectrum of nitrogen is calculated, and based on the integral ratio, the The nitrogen number was determined, and this value was defined and expressed as the (N/C) ratio. The ratio of carbon to oxygen on the film surface was similarly expressed as the number of oxygen per 100 carbon atoms as the (0/C) ratio. The (N/C) ratio and (0/C'') ratio in the strength wood specification are all based on this definition.

実施例 アイソタクチックポリプロピレンに、ポリオキシエチレ
ン(n=20)ステアリン酸エステル(対樹脂全量基準
で0.4重量係)及びステアリン酸モノグリセ2イド(
同;0,2重量係)を混合して製膜用原料組成物を得、
常法によって25μm厚の2軸延伸フイルムを製造した
。これを被処理フィルムとし、酸素含有率o、ooos
容量係の窒素ガスを5m/秒の吹付速度で噴射しながら
コロナ放電処理を行なった。同使用電力は4800ジユ
ール/ m2とし、処理速度は20m/分であって、処
理雰囲気の酸素濃度は0.008容量係になっていた。
Example Isotactic polypropylene, polyoxyethylene (n=20) stearate (0.4 weight ratio based on the total amount of resin) and stearic acid monoglyceride (
0.2 weight ratio) to obtain a raw material composition for film forming,
A biaxially stretched film having a thickness of 25 μm was produced by a conventional method. This is used as the film to be processed, and the oxygen content is o, ooos
Corona discharge treatment was performed while injecting a volumetric amount of nitrogen gas at a spraying speed of 5 m/sec. The power used was 4800 joules/m2, the processing speed was 20 m/min, and the oxygen concentration in the processing atmosphere was 0.008% by volume.

伺比較の為処理雰囲気を単に窒素ガスで置換しただけの
ものについて、同じ様なコロナ放電処理を行ない、特性
を比較した。本発明例及び比較例についての実験結果は
第1表に併記した。尚同表の(−)比及び<−5)比は
、フィルムの表層部100λ以内における値である。
For comparison purposes, a similar corona discharge treatment was performed on a sample in which the treatment atmosphere was simply replaced with nitrogen gas, and the characteristics were compared. The experimental results for the invention examples and comparative examples are also listed in Table 1. Note that the (-) ratio and <-5) ratio in the same table are values within 100λ of the surface layer of the film.

実施例 アイソタクチツクボリプ四ピレンに、オレイン酸ソルビ
タンエステル(対樹脂全量基準で0.4 li量%)を
混合し、実験例1と同様に製膜した。窒素ガスの吹付速
度を10m/秒とした他は実験例1と同じ条件でコロナ
放電処理を行ない、得られたフィルムを同様に比較した
ところ、第4表に併記する結果が得られた。
Example A film was formed in the same manner as in Experimental Example 1 by mixing isotactic polypyrene with sorbitan oleate (0.4 li% based on the total amount of resin). Corona discharge treatment was carried out under the same conditions as in Experimental Example 1, except that the nitrogen gas spraying speed was 10 m/sec, and the obtained films were compared in the same manner, and the results shown in Table 4 were obtained.

第1表から理解できる様に、本発明例の接着性は従来に
なく強まっており、有機添加剤を用いても極めて優秀で
あった。
As can be understood from Table 1, the adhesiveness of the examples of the present invention was stronger than ever before, and was extremely excellent even when an organic additive was used.

4、追加の関係 はフィルム添加物中の酸素原子が放出されて酸素原子量
が減少し、上記で与えられる比が更にマイナヌ側へ寄っ
た領域、具体的には、−8,5〜0の範囲になる部分を
対象とすることによシ、接着性の一層の数倍を図ってい
る。即ち本発明は、原発明の構成に欠くことができない
事項の主要部を、その構成(欠くことができない事項の
主要部としており、且つ原発明と同一の目的全達成する
ものであって、特許法第81条第1号に該当する発明で
ある。
4. An additional relationship is the region where the oxygen atoms in the film additive are released and the oxygen atomic weight decreases, and the ratio given above is further shifted to the minus side, specifically, in the range of -8.5 to 0. By targeting the area where the adhesive will become, we aim to increase the adhesion several times as much. In other words, the present invention uses the main parts of the essential features of the original invention as its main parts (the main parts of the essential features), and achieves all the same objectives as the original invention, and is patentable. This invention falls under Article 81, Item 1 of the Act.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施状況を示す概念図、第2図は本発
明で用いられる放!側tit=例示する見取り図、第8
図は隨伴窒気層の破壊状況會示す説明図、第4図はt&
カバーの一例を示す説明図である。 l・・・金屑ドラム     2・・・vIL極カバカ
バー8・放’#((ttl+電極    5・・・ガス
噴出口6…フイルム 出願人  鬼洋紡績株式会社 第1図 第4図 第2図
FIG. 1 is a conceptual diagram showing the implementation status of the present invention, and FIG. 2 is a conceptual diagram showing the implementation status of the present invention. Side tit = Exemplary sketch, No. 8
The figure is an explanatory diagram showing the destruction situation of the accompanying nitrogen layer, and Figure 4 is t&
It is an explanatory view showing an example of a cover. l...Gold scrap drum 2...vIL pole cover cover 8・Release'#((ttl+electrode 5...Gas outlet 6...Film applicant Kiyobo Co., Ltd. Figure 1 Figure 4 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも1対の電極を対向させてなるコロナ放
電処理装置にポリオレフィン成形物を連続的に通してコ
ロナ放電処理を行なうに当り、処理面に対して空気組成
以外の組成からなる単独又は混ロナ放電処理前・後にお
ける変化量の比〔じく被処理物表面100人以内の薄層
におけるコとを特徴とする高接着性ポリオレフィン成形
物の製造方法。
(1) When carrying out corona discharge treatment by continuously passing a polyolefin molded article through a corona discharge treatment apparatus comprising at least one pair of electrodes facing each other, a single or mixed composition other than air is applied to the treatment surface. A method for producing a highly adhesive polyolefin molded product, characterized by the ratio of the amount of change before and after Rona discharge treatment (in a thin layer of less than 100 layers on the surface of the object to be treated).
JP1191283A 1982-10-08 1983-01-26 Manufacture of polyolefin molded article having high bonding property Granted JPS59136333A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1191283A JPS59136333A (en) 1983-01-26 1983-01-26 Manufacture of polyolefin molded article having high bonding property
FR8316034A FR2534262B1 (en) 1982-10-08 1983-10-07 CORONA DISCHARGE TREATMENT PROCESS FOR IMPROVING SURFACE ADHESION OF A POLYOLEFIN MOLDED PRODUCT
US06/540,144 US4563316A (en) 1982-10-08 1983-10-07 Production of polyolefin shaped product
GB08326915A GB2131030B (en) 1982-10-08 1983-10-07 Surface modification of polyolefin shaped product
KR1019830004764A KR890002565B1 (en) 1982-10-08 1983-10-07 Method for preparing high adhesive polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191283A JPS59136333A (en) 1983-01-26 1983-01-26 Manufacture of polyolefin molded article having high bonding property

Publications (2)

Publication Number Publication Date
JPS59136333A true JPS59136333A (en) 1984-08-04
JPH059459B2 JPH059459B2 (en) 1993-02-05

Family

ID=11790920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191283A Granted JPS59136333A (en) 1982-10-08 1983-01-26 Manufacture of polyolefin molded article having high bonding property

Country Status (1)

Country Link
JP (1) JPS59136333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093282A1 (en) * 2010-01-29 2011-08-04 日本パーカライジング株式会社 Surface treatment membrane, metal surface treatment agent and metal surface treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723634A (en) * 1980-07-17 1982-02-06 Tokuyama Soda Co Ltd Discharge treating apparatus of plastic film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723634A (en) * 1980-07-17 1982-02-06 Tokuyama Soda Co Ltd Discharge treating apparatus of plastic film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093282A1 (en) * 2010-01-29 2011-08-04 日本パーカライジング株式会社 Surface treatment membrane, metal surface treatment agent and metal surface treatment method
JP2011157586A (en) * 2010-01-29 2011-08-18 Nippon Parkerizing Co Ltd Surface treatment film, metal surface treatment agent and metal surface treatment method
CN102741455A (en) * 2010-01-29 2012-10-17 日本帕卡濑精株式会社 Surface treatment membrane, metal surface treatment agent and metal surface treatment method
TWI473908B (en) * 2010-01-29 2015-02-21 Nihonparkerizing Co Ltd A surface treatment film, a metal surface treatment agent, and a metal surface treatment method

Also Published As

Publication number Publication date
JPH059459B2 (en) 1993-02-05

Similar Documents

Publication Publication Date Title
KR890002565B1 (en) Method for preparing high adhesive polyolefin
US3620825A (en) Extrusion-coated, biaxially oriented polypropylene film having improved adhesion characteristics
US6613394B2 (en) Method of surface treating or coating of materials
US3676181A (en) Electrical discharge treatment of tetrafluoroethylene/hexafluoropropylene copolymer in acetone
US7824600B2 (en) Biaxially oriented polyolefing film having improved surface properties
US20020018897A1 (en) Plasma-treated materials
US20180363142A1 (en) Method for simultaneous plasma edge encapsulation of at least two adhesive tape sides
JPH05504991A (en) A method of depositing a thin layer of silicon oxide that is adhered to a support consisting of a polymeric material.
US4897305A (en) Plasma treatment with organic vapors to promote a meal adhesion of polypropylene film
JPS59136333A (en) Manufacture of polyolefin molded article having high bonding property
JPS5966430A (en) Preparation of highly adhesive molded polyolefin article
JP2010059308A (en) Surface-modified resin film and method for modifying surface of resin film
JPS59191741A (en) Production of highly adhesive, laminar polyester molding
EP2960054B1 (en) Surface-treated films with polypropylene base
JPS6017342B2 (en) Surface treatment method for propylene polymer molded articles
JPS59191739A (en) Production of highly adhesive polyester blend molding
US4387135A (en) Metalized bonded sheets comprising a polyolefinic film and a polychlorovinyl film
JPS6034970B2 (en) Method for treating the surface of propylene polymer moldings
JPS59191737A (en) Production of highly adhesive polyester molding
JPS63304033A (en) Method for treating molded product of fluoropolymer
JPS59217731A (en) Surface treatment of molded article of fluoroolefin polymer
JPS61204239A (en) Surface-treatment of polypropylene resin
JPH08244127A (en) Production of laminate
JP2001199023A (en) Easy cutting laminate and method of manufacturing the same
JPH03162420A (en) Production of multi-layer laminate