JPS59133952A - Production of ferritic stainless steel plate - Google Patents

Production of ferritic stainless steel plate

Info

Publication number
JPS59133952A
JPS59133952A JP831183A JP831183A JPS59133952A JP S59133952 A JPS59133952 A JP S59133952A JP 831183 A JP831183 A JP 831183A JP 831183 A JP831183 A JP 831183A JP S59133952 A JPS59133952 A JP S59133952A
Authority
JP
Japan
Prior art keywords
powder
molten steel
stainless steel
steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP831183A
Other languages
Japanese (ja)
Inventor
Masao Koike
小池 正夫
Toshiaki Mase
間瀬 俊朗
Yutaka Ogawa
裕 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP831183A priority Critical patent/JPS59133952A/en
Publication of JPS59133952A publication Critical patent/JPS59133952A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To make efficient and inexpensive mass production of a titled steel plate having high resistance to ridging by casting continuously a molten steel while adding a specific amt. of metallic powder having a specific grain size to the molten steel flow from a tundish, then subjecting successively the billet to hot rolling, annealing and cold rolling. CONSTITUTION:A molten steel is cast continuously while metallic powder having 5-3,000mu grain size is added at a rate of 0.1-5% by weight of the molten steel to the molten steel flow from a tundish thereby forming a continuously cast billet. The billet is subjected successively to hot rolling, annealing and cold rolling and is made into a steel plate. The stainless steel powder having the same component as the component of an intended ferritic stainless steel plate is preferably used for the metallic powder and the similar effect is obtainable as well by using carbon steel powder of a low cost.

Description

【発明の詳細な説明】 この発明は、耐リジング性にすぐれたフェライト系ステ
ンレス鋼板の製造方法に関するものである〇 一般に、5US430に代表されるフェライト系ステン
レス鋼板は、耐食性が良好で長期にわたつて美しい金属
光沢を保持し続ける上、良好な加工性を有しており、し
かも比較的安価であることから、厨房器具、家具什器、
家電器具等の家庭用製品や自動車部品等として広い用途
を有しているものであるが、このように装飾性を必要と
する用途に供されることが多いため、最近では、耐食性
やイレス成形性はもとより、成形後の表面性状の美麗さ
にも厳しい要求がなされるようになってきた0 しかしながら、フェライト系ステンレス鋼板は、成形加
工に際してその板表面にリジング(Ridging)又
はロービング(Rop ing)と呼ばれているシわ2
”を発生するという厄介な問題を抱えるものであった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a ferritic stainless steel sheet with excellent ridging resistance. In general, ferritic stainless steel sheets represented by 5US430 have good corrosion resistance and can be used for a long period of time. It maintains a beautiful metallic luster, has good workability, and is relatively inexpensive, making it suitable for kitchen utensils, furniture fixtures,
It has a wide range of uses such as household products such as home appliances and automobile parts, but since it is often used for applications that require decorative properties, recently it has been Strict requirements have come to be placed not only on the properties of the surface but also on the beauty of the surface after forming. However, when forming ferritic stainless steel sheets, there is no ridging or roving on the surface of the sheet. Wrinkle 2
It had the troublesome problem of causing ``.

この、鋼板表面に発生するうね状の起伏(リジング)は
、該うねが必ず圧延方向と平行に発生することからスト
レッチャ・ストレインやオレンジピール(肌荒れ)と明
白に区別されるものであるが、フ0レス成形品にリジン
グが発生するとその美観を損なうこととなるので表面研
磨等によってこれ全除去せねばならず、多くのユーザー
を困らせているのが現状であった。また、その程度がひ
どい場合には、これが原因となって成形中に割れを生ず
ることもあるので、プレス成形用としてのフェライト系
ステンレス鋼板製品の評価には、絞り性や張出し性と同
様・:′ζ、耐リジング性も重要な因子として認識され
るようになってきた。
This ridge-like undulation (ridging) that occurs on the steel plate surface is clearly distinguishable from stretcher strain and orange peel (rough skin) because the ridges always occur parallel to the rolling direction. When ridging occurs on a rimless molded product, it impairs its aesthetic appearance, so it must be completely removed by surface polishing, etc., which has caused problems for many users. In addition, if the degree of cracking is severe, this may cause cracking during forming, so when evaluating ferritic stainless steel sheet products for press forming, it is necessary to evaluate the drawability and stretchability. 'ζ, ridging resistance has also come to be recognized as an important factor.

もちろん、従来から前記リジングを軽減する方法に関す
る多くの報告がなされてきているが、と)“tらいずれ
の方法も鋼板製造工程の複雑化やコストアップにつなが
るものであり、なおかつ前記問題全完全に解決できるも
のではなかったのである0そして、リジングの発生は鋼
塊丼’C比べて連続鋳造材に顕著に現われることから、
連紐鋳造化の進んだ今日、前記問題は更に大きなものと
してとらえられるようになってきた。
Of course, there have been many reports on methods to reduce the above-mentioned ridging, but all of these methods lead to complication of the steel plate manufacturing process and increase in cost, and they do not completely solve the above-mentioned problem. However, since the occurrence of ridging is more noticeable in continuous cast materials than in steel ingots,
Nowadays, as continuous string casting has progressed, the above problem has come to be perceived as even more serious.

ところで、リジング現象の特徴として、■ 起伏の高さ
は加工率の増加とともに大きくなる、 ■ 方向は、引張り方向の如何にかかわらず圧延方向と
平行に発生する、 ■ 起伏のプロフィルは、鋼板の表面と裏面とが対応し
たものとなる、 等が観察されることから、[鋼板内に圧延方向に沿って
平行に並んだ細長い単位領域(塑性変形能又は塑性変形
の異方性を同じくする領域〕が存在し、それらが塑性加
工に対して互に異なる変形挙動を示す」ことがりソング
の発生機構であると考えられている0そして、このよう
な、結晶粒の集団が単結晶のような変形挙動を示す゛′
単位領域″の形成は、連続鋳造スラブの場合、[連続鋳
造スラブに形成される柱状晶凝固組織が、その冷却過程
で相変態を経ずに鋳造組織として存在し、熱延、冷延金
経ても結晶方位的に固有の集合組織を形成したまま完全
には破壊されずに根強く残存するためになされる」と考
えれば、実際の現象と比較的良く一致する。
By the way, the characteristics of the ridging phenomenon are: ■ The height of the undulations increases as the working rate increases; ■ The direction is parallel to the rolling direction regardless of the tensile direction; ■ The profile of the undulations follows the surface of the steel sheet. and the back surface correspond to each other, etc. Therefore, [elongated unit regions arranged in parallel along the rolling direction in the steel sheet (regions having the same plastic deformability or plastic deformation anisotropy)] It is thought that this is the generation mechanism of "Kotori song" which shows different deformation behavior in response to plastic working. show behavior゛′
In the case of continuous casting slabs, the formation of "unit areas" is caused by the columnar crystal solidification structure formed in the continuous casting slab existing as a casting structure without undergoing phase transformation during the cooling process, and forming after hot rolling and cold rolling. If we consider that this is done in order to persist without being completely destroyed while forming a unique texture in terms of crystal orientation, this corresponds relatively well with the actual phenomenon.

そこで、リジング防止対策としてつぎ04つの方法が考
えられるのである。即ち、 ■ 凝固組織の微細化(等軸晶化、細粒化〕連続鋳造鋳
片の電磁攪拌、低温鋳込法、微細化元素の添加等によっ
て、鋼板の素材である鋳片の組織を微細化する方法。
Therefore, the following four methods can be considered as measures to prevent ridging. That is, ■ Refinement of the solidified structure (equiaxed crystallization, grain refinement) The structure of the slab, which is the material of the steel sheet, is made finer by electromagnetic stirring of the continuously cast slab, low-temperature casting, addition of refinement elements, etc. How to make it.

■ 熱延及び冷延後の再結晶による微汚田化(圧延によ
る歪蓄積と焼鈍による再結晶促進)熱延工程での再結晶
(は、一般((、炭素鋼に比べてステンレス鋼の方が緩
慢に進行するが、逆にこれを利用して、低温加熱、低温
へりシ延の条件で熱延中の歪蓄積を増大し、その残留歪
によって熱延板焼鈍工程での再り方晶を促進させる方法
が有効でちるが、その他、高伸度フェライト系ステンレ
ス鋼にNbを添加して一層の再結晶遅延効果を狙ったり
、熱同加工と焼鈍工程を繰返したり、連続鋳造スラブを
2ヒートで熱延したり、或いは熱延の短時間中断も有効
であると考えられる。
■ Micro-staining due to recrystallization after hot rolling and cold rolling (strain accumulation due to rolling and promotion of recrystallization due to annealing) Recrystallization during the hot rolling process However, by utilizing this fact, the strain accumulation during hot rolling is increased under the conditions of low temperature heating and low temperature edge rolling, and the residual strain causes recrystallization during the hot rolled sheet annealing process. However, other methods include adding Nb to high-elongation ferritic stainless steel to further retard recrystallization, repeating hot-coat processing and annealing, and continuously casting slabs. It is thought that hot rolling with heat or short interruption of hot rolling is also effective.

[相] 二相組織による微細化(γポテンシャルを増す
ような成分コントロール又は熱延後の高温焼鈍により、
α十M、ll織とし冷延で微細化を図る) Fe−Cr系状態図に示されるところの、高温で一部存
在するオーステナイト相を利用し、冷却時のγ→M変態
によって結晶粒の微細化並びにランダム化を図る方法で
、N添加など(7) 成分コントロールによる方法と熱
延後に2相域温度まで加熱後急冷する方法とが考えられ
る。
[Phase] Refinement by two-phase structure (component control to increase γ potential or high-temperature annealing after hot rolling,
Using the austenite phase that partially exists at high temperatures, as shown in the Fe-Cr phase diagram, the crystal grains are transformed by γ→M transformation during cooling. Possible methods for achieving fineness and randomization include a method of controlling components such as N addition (7) and a method of heating to a temperature in the two-phase region after hot rolling and then rapidly cooling.

■ 圧延での剪断変形加工による微細化異径ロールを用
いた上下非対象圧延や、シマ状ロールを用いる圧延等に
よって素材に剪断変形を与え、微細化を図る方法。
■ Refinement by shear deformation during rolling A method of refining the material by applying shear deformation to the material by vertically asymmetric rolling using rolls of different diameters, rolling using striped rolls, etc.

しかし、これらの方法を採用しよりとしても、実施上の
多くの問題があり、5結局は前述のようにリジングを完
全に防止するに有効な手段とはなり得ないものでおった
However, even if these methods were adopted, there were many problems in implementation, and in the end, they could not be effective means for completely preventing ridging as described above.

本発明者等は、上述の明点から、フェライト系ステンレ
ス鋼冷延鋼板の耐リジング性の大幅な改善を図るにはリ
ジング発生の根本原因である連続鋳造組織の微細化(等
軸晶化)が必要不可欠な条件であるとの認識に立って、
通常の2回冷延のフエライト系ステンレス鋼板の品質改
善はもちろんのこと、1回冷延材においても2回冷延材
と同等或いはそれ以上の品質が実現できるフェライト系
ステンレス鋼板の製造方法を見出すべく研究を続けたと
ころ、従来の連続鋳造スラブの凝固組織微細化技術とし
ての電磁攪拌の適用、鋳込温度の低下、及びTi 、Z
r +Nb 、 Aε等の炭窒化物形成元素の添加には
つぎのような問題の存在することが確認された。
Based on the above-mentioned points, the present inventors have determined that in order to significantly improve the ridging resistance of cold-rolled ferritic stainless steel sheets, refinement of the continuous casting structure (equiaxed crystallization), which is the root cause of ridging, is necessary. Recognizing that this is an essential condition,
In addition to improving the quality of conventional twice-cold-rolled ferritic stainless steel sheets, we will also find a method for manufacturing ferritic stainless steel sheets that can achieve quality equivalent to or better than twice-cold-rolled materials even in once-cold-rolled materials. As a result of continued research, we found that the application of electromagnetic stirring as a technique for refining the solidification structure of conventional continuously cast slabs, the lowering of the casting temperature, and the improvement of Ti, Z
It has been confirmed that the following problems exist in the addition of carbonitride-forming elements such as r + Nb and Aε.

(イ)電磁攪拌の適用 スラブ外皮が凝固した後攪拌を行うため、電磁攪拌によ
り得られる等軸晶率に限界かあ、る(高々50係程度に
しかならず、通常操業では20〜30係程度である)。
(b) Application of electromagnetic stirring Because stirring is performed after the slab shell has solidified, there is a limit to the equiaxed crystallinity that can be obtained by electromagnetic stirring (at most it is only about 50 parts, and in normal operation it is about 20 to 30 parts). be).

(ロ)鋳込温度の低下 操業上、ノズル閉塞等のトラブルを生じ、過熱度△T(
ΔT−鋳込溶鋼温度−凝固温度)を小さくすることには
限度がある上、表面品質劣化の問題もある。
(b) Decrease in casting temperature, which may cause problems such as nozzle clogging during operation, resulting in superheat degree △T (
There is a limit to reducing ΔT - temperature of molten steel poured - solidification temperature), and there is also the problem of surface quality deterioration.

(ハ)炭窒化物形成元素の添加 鋼成分が変わる恐れがあり、コスト上昇にもつながる。(c) Addition of carbonitride-forming elements There is a risk that the steel composition may change, leading to an increase in costs.

そこで、連続鋳造組織微細化のだめの更に有効な手段を
模索しつつ、耐リジング性にすぐれたフェライト系ステ
ンレス鋼板を工業的に能率良く製造する方法について更
に研究を重ねた結果、(a)  鋼塊のポロシティ−軽
減などの鋼質改善対策として知られている懸濁鋳造法(
例えば、特開昭53−130234号公報参照)をフェ
ライト系ステンレス鋼の連続鋳造に特定の条件下で適用
すれば、高効率で該連続鋳造スラブの凝固組織微細化が
図れること、 (b)  このようにして得られた微細組織鋳片を、常
法によって順次熱間圧延、焼鈍、冷間圧延すれば、1回
冷延のみでも、従来の2回冷延材と同等以上の耐リジン
グ特性を備えたフェライト系ステンレス鋼板が得られ、
2回冷延とすれば更に向上した品質の試板となること、 以上(a)〜(b)に示す如き知見を得るに至ったので
ある。
Therefore, while searching for a more effective means to refine the structure of continuous casting, we conducted further research on a method for industrially and efficiently manufacturing ferritic stainless steel sheets with excellent ridging resistance, and as a result, (a) steel ingots were developed. Suspension casting method (known as a measure to improve steel quality such as reducing porosity)
(For example, see Japanese Patent Application Laid-Open No. 53-130234), if applied to the continuous casting of ferritic stainless steel under specific conditions, it is possible to refine the solidification structure of the continuously cast slab with high efficiency; (b) this If the microstructured slab obtained in this way is sequentially hot-rolled, annealed, and cold-rolled using conventional methods, it will be possible to obtain ridging resistance properties equivalent to or better than conventional twice-cold-rolled material even after only one cold-rolling. A ferritic stainless steel plate with
We have come to the knowledge shown in (a) and (b) above that if the steel sheet is cold-rolled twice, the quality of the sample sheet will be further improved.

この発明は、上記知見に基づいてなされたものであり、 タンディシュからのフェライト系ステンレス鋼溶鋼流へ
、粒径:5〜3000μmの金属粉を溶鋼重量の0.1
〜5%の割合で添加しながら連続鋳造を実施して連続鋳
造部片を得た後、該鋳片に順次熱間圧延、焼鈍、冷間圧
延を施すことにより、耐リジング性にすぐれたフェライ
ト系ステンレス鋼板を得ることに特徴を有するものであ
る。
This invention was made based on the above findings, and involves adding metal powder with a particle size of 5 to 3000 μm to a flow of molten steel of ferritic stainless steel from a tundish by 0.1 of the weight of the molten steel.
Continuous casting is carried out while adding ~5% to obtain a continuously cast piece, and then the piece is sequentially hot-rolled, annealed, and cold-rolled to produce ferrite with excellent ridging resistance. This method is characterized by obtaining a stainless steel sheet.

金属粉の粉体添加により連続鋳造鋳片要因組織が微細化
されるメカニズムの詳細(は明らかではないが、前記粉
末が冷却材として作用することによって過熱度△Tが小
ざくなるとともに、凝固核の数が増加することが微細化
に大きく寄与しているものと推測てれる。
The details of the mechanism by which the continuous casting slab structure is refined by adding metal powder are not clear, but as the powder acts as a coolant, the degree of superheating △T decreases, and the solidification core It is presumed that the increase in the number of ions greatly contributes to the miniaturization.

粉体の種類は、目的とするフェライト系ステンレス鋼板
と同一成分のステンレス鋼粉が望ましいが、コストの安
い炭素鋼粉を用いても同様の効果を得ることができる。
As for the type of powder, stainless steel powder having the same composition as the target ferritic stainless steel sheet is preferable, but the same effect can be obtained by using carbon steel powder, which is less expensive.

なお、炭素鋼粉を用いた場合には、鋼板の耐食性や延性
を確保するためにも、未溶解粉を残さないことが肝要で
あり、また炭素鋼粉による溶鋼成分の希釈を計算して予
め溶鋼の成分調整を行っておく必要がある。
When using carbon steel powder, it is important not to leave any undissolved powder in order to ensure the corrosion resistance and ductility of the steel plate, and it is also important to calculate the dilution of molten steel components by the carbon steel powder in advance. It is necessary to adjust the composition of molten steel.

炭素銅粉の成分については、未溶解を防止するため、次
の考えに基づき鋼粉灰分を決めた。
Regarding the components of the carbon copper powder, the ash content of the steel powder was determined based on the following considerations in order to prevent unmelting.

即ち、5US430溶鋼の融点(1496°C)よシ鋼
粉の融点を低くするために1lllj、Si 二0.2
重量係、Mn:0.6重量襲とした場合、式、TLLC
液相線温度)−1538−155[:チC〕+80〔係
C〕+ 13.OCチSi〕+4−8(ハ信月(C<0
.5C1普通鋼に対する平居等の式)から、C貴は0.
41重量%以上含有する必要のあることが判った。そし
て、その結果、C: 0.77重畑係以上の高炭素銅粉
を用いた。
That is, in order to lower the melting point of steel powder than the melting point of 5US430 molten steel (1496°C), 1lllj, Si20.2
Weight section, Mn: When assuming 0.6 weight section, formula, TLLC
Liquidus temperature) -1538-155[:C]+80[C]+13. OC Chi Si〕+4-8(Ha Shingetsu(C<0
.. From the formula of Hirai et al. for 5C1 ordinary steel, C nobleness is 0.
It was found that the content must be 41% by weight or more. As a result, high carbon copper powder with C: 0.77 or higher was used.

粉体の添加方法としては、例えば第1図に示されるよう
な中空ストツノや−1を用いて、粉体2をM等の不活性
がスにて力V圧しながらタンディシュ3からの溶鋼流4
へ添加するのが良い。第1図における符号5はモールド
を示すものである。
As a method of adding the powder, for example, using a hollow tool such as the one shown in FIG.
It is good to add it to. Reference numeral 5 in FIG. 1 indicates a mold.

そして、粉体の粒径が5〜3000μmの範囲内であれ
ば良好な結果を得ることができるが、粒径が5μm未満
で1.ハ粉体同士が凝着してスムーズな添加状態を確保
することができず、他方3000μmを越えるとどうし
ても未溶解状態で粉体が残ってしまい、製品鋼板の品質
、特に延性を害することとなる。
Good results can be obtained if the particle size of the powder is within the range of 5 to 3000 μm, but if the particle size is less than 5 μm, 1. C) Powder particles adhere to each other, making it impossible to ensure a smooth addition state, and on the other hand, if the diameter exceeds 3000 μm, powder will inevitably remain in an undissolved state, which will impair the quality of the product steel sheet, especially the ductility. .

また、粉体の添加量(d、溶鋼重量に対して0.1係未
満であると良好な等細菌の鋳片を得ることができず、他
方5%を越えて添加することは鋼板のコストアップを招
くこととなるので、溶鋼重量の0.1〜5%が適当であ
る。
In addition, if the amount of powder added (d) is less than 0.1% relative to the weight of molten steel, it will not be possible to obtain a slab with good bacteria, while if it is added in excess of 5%, it will increase the cost of the steel plate. Therefore, 0.1 to 5% of the weight of molten steel is appropriate.

第2図は、第1図に示されるよりな手段を用いて、第1
表に示される条件での鋳造を行った際の、粉体添加量と
インゴットの等軸筋率並びに製品の耐リジング性との関
係を示す線図である。なお、削りノング性は、熱延二1
ヒー)(Tf=760〜800℃)、焼鈍:ベル焼鈍、
冷延:1回冷延、板厚’、0−8v、rrtの条件の鋼
板について評価したものである。
FIG. 2 shows that the first
FIG. 2 is a diagram showing the relationship between the amount of powder added, the equiaxed muscle modulus of the ingot, and the ridging resistance of the product when casting is performed under the conditions shown in the table. In addition, the non-shaving property is hot rolled 21
Heat) (Tf=760-800°C), annealing: Bell annealing,
Cold rolling: A steel plate under the conditions of one cold rolling, plate thickness, 0-8V, rrt was evaluated.

第2図からも、粉体の種類に関係なくほぼ3%第1表 以上の添加で等軸筋率が100係となり、耐リジング性
が高い値を示すことがわかる。
It can also be seen from FIG. 2 that irrespective of the type of powder, when approximately 3% or more of Table 1 is added, the equiaxed muscle modulus becomes 100, and the ridging resistance shows a high value.

第3図は、粉体添加材と無添加材の凝固組織の1例を示
すマクロ組織図であるが、第3図からも粉体添加の効果
が明瞭であるO なお、等細菌化したスラブを圧延して良好な耐リジング
性を得るには、特に熱延条件が重要であり、せっかく細
粒化した凝固組織を熱延工程で粗大化しないように注意
する必要系ある。このためにも、仕上温度が600〜8
50℃の低温熱延全行うことが望ましい。
Figure 3 is a macrostructure diagram showing an example of the coagulation structure of a powder-added material and an additive-free material, and the effect of powder addition is clear from Figure 3. In order to obtain good ridging resistance by rolling, the hot rolling conditions are particularly important, and care must be taken not to coarsen the fine-grained solidified structure during the hot rolling process. For this reason, the finishing temperature is 600~8
It is desirable to carry out the entire low-temperature hot rolling at 50°C.

第4図は、等細菌率100茅のスラブを用いて、熱延開
始温度を変化させることによってその終止温度を種々に
変え、終止温度の影響全600〜1000℃の範囲で遊
べた結果を示す、粉体添加スラブからの1回冷延材の耐
リジング性と熱延終止温度との関係図であるが、第4図
からV;、、粉体無添加スラブの2回冷延材と同等以上
の耐リジング性を得るには、熱延終止温度Tfを850
°C以下にした方が好ましいということがわかる。
Figure 4 shows the results of using a slab with an equal bacterial content of 100 grass and varying the end temperature by changing the hot rolling start temperature, and being able to play with the effect of the end temperature in the range of 600 to 1000°C. , is a diagram showing the relationship between the ridging resistance and the end hot rolling temperature of the once-cold-rolled material made from the powder-added slab; In order to obtain the above ridging resistance, the hot rolling end temperature Tf must be set to 850
It can be seen that it is preferable to keep the temperature below °C.

ついで、この発明を実施例により比較例と対比しながら
具体的に説明する。
Next, the present invention will be specifically explained using Examples and comparing with Comparative Examples.

実施例 通常の連続鋳造設備にて5US430鋼を連続、鋳造す
るに際して、第1図に概略図で示した如き中空ストッパ
ーを用いることにより、タンディシュからの溶鋼流へS
US 430粉(平均粒径:45μm)又は炭素鋼粉(
0,77%C1平均粒径: 100μ’m)を添加し、
得られた厚さ150鉗の連続鋳造スラブの等軸筋率を調
査した。
EXAMPLE When continuously casting 5US430 steel using ordinary continuous casting equipment, by using a hollow stopper as shown in the schematic diagram in Figure 1, S to the molten steel flow from the tundish is controlled.
US 430 powder (average particle size: 45 μm) or carbon steel powder (
0.77% C1 average particle size: 100μ'm) was added,
The equiaxed reinforcement of the obtained continuously cast slab with a thickness of 150 mm was investigated.

つぎに、該スラブ’(i:1200℃に加熱後、厚さが
4.5麗(になるまで熱延し、粗圧延と仕上圧延間のデ
ィレィテーブル上で温度調整をして仕上温度の調整を行
った。続いて、得られた熱延コイルを冷延、焼鈍したが
、その条件は第5図に示される通りであった。そして、
このようにして得られた冷延材について耐リジング性を
評価した。耐リジング性の評価は、A 、−A’、 B
 、 B’、 C、C’の6段階で行い、Aを最良、C
′を劣悪とした。
Next, the slab' (i: after heating to 1200 ° C., it is hot rolled to a thickness of 4.5 mm, and the finishing temperature is adjusted by adjusting the temperature on a delay table between rough rolling and finishing rolling. Subsequently, the obtained hot rolled coil was cold rolled and annealed under the conditions shown in Fig. 5.Then,
The ridging resistance of the cold-rolled material thus obtained was evaluated. Evaluation of ridging resistance is A, -A', B
, B', C, C', with A being the best and C
' was considered poor.

上述のようにして得られた結果を、従来法における結果
とともに第2表に示した。
The results obtained as described above are shown in Table 2 together with the results obtained by the conventional method.

各種試験の結果、粉体添加したものは、5US430粉
及び炭素鋼粉のいずれの場合でも、高温熱延に続く1回
冷延法のみで、従来の2回冷延法によるものと同等(B
グレード)の耐リジング特性を有する鋼板が得られるこ
とが明らかとなった上、熱延を低温熱延(Tf、<85
0°C)とすることにより、A′というように1回冷延
法でも従来材以第  2  表 上の耐リジング性を備えたフェライト系ステンレス鋼板
が得られることは明白である。
As a result of various tests, in both cases of 5US430 powder and carbon steel powder, powder addition was performed only by one cold rolling process following high-temperature hot rolling, which was equivalent to the conventional two-time cold rolling process (B
It has become clear that steel sheets with ridging resistance properties of
0°C), it is clear that a ferritic stainless steel sheet having the ridging resistance shown in Table 2 can be obtained even with a single cold rolling process as shown in A'.

上述のように、この発明によれば、成形加工によっても
美麗な外観の損なわれることのない、すぐれた耐リジン
グ性を有するフェライト系ステンレス鋼板を、従来より
も更に簡単な工程の下に能率良く安価に量産することが
でき、フェライト系ステンレス鋼板の適用分野上一層拡
大することができるなど、工業上有用な効果がもたらさ
れるのである。
As mentioned above, according to the present invention, a ferritic stainless steel sheet with excellent ridging resistance that does not lose its beautiful appearance even through forming processing can be produced efficiently through a simpler process than conventional methods. It brings about industrially useful effects such as being able to be mass-produced at low cost and further expanding the field of application of ferritic stainless steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタンディシュからの溶鋼流に粉体を添加する方
法の1例全模式的に示したものであう、第2図は鋳片の
等細菌率に及ぼす粉体添加量の影響上水す線図、第3図
は粉体添加量に対応したインゴットのマクロ組織を示す
写真図、第4図は鋼板の耐リジング性に及ぼす熱延終止
温度の影響を示す線図、第5図は実施例における冷延、
焼鈍工程全説明するための工程図である。 図面において、 1・・・中空ストッパー、  2・・・粉体。 3・・・タンディシュ、   4・・・溶鋼流、5・・
・モールド。 出願人 住友金属工業株式会社 代理人 富 1)和 夫  ほか1名
Figure 1 schematically shows an example of the method of adding powder to the molten steel flow from the tundish. Figure 2 shows the influence of the amount of powder added on the uniform bacterial ratio of slabs. Figure 3 is a photographic diagram showing the macrostructure of the ingot corresponding to the amount of powder added, Figure 4 is a diagram showing the influence of hot rolling end temperature on the ridging resistance of steel plate, and Figure 5 is an example. cold rolling,
It is a process diagram for explaining the entire annealing process. In the drawings: 1...Hollow stopper, 2...Powder. 3... Tandish, 4... Molten steel flow, 5...
·mold. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and 1 other person

Claims (1)

【特許請求の範囲】[Claims] タンディシュからの溶鋼流へ、粒径:5〜3000μm
の金属粉を溶鋼重量の0.1〜5係の割合で添加しなが
ら連続鋳造を実施して連続鋳造鋳片を得た後、該鋳片に
順次熱間圧延、焼鈍、冷間圧gを施すことを特徴とする
、耐リジング性にすぐれたフェライト系ステンレス鋼板
の製造法。
From the tundish to the molten steel flow, particle size: 5 to 3000 μm
Continuous casting is carried out while adding metal powder in a ratio of 0.1 to 5 parts of the weight of the molten steel to obtain a continuously cast slab, and then the slab is sequentially subjected to hot rolling, annealing, and cold pressing. A method for manufacturing ferritic stainless steel sheets with excellent ridging resistance.
JP831183A 1983-01-21 1983-01-21 Production of ferritic stainless steel plate Pending JPS59133952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP831183A JPS59133952A (en) 1983-01-21 1983-01-21 Production of ferritic stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP831183A JPS59133952A (en) 1983-01-21 1983-01-21 Production of ferritic stainless steel plate

Publications (1)

Publication Number Publication Date
JPS59133952A true JPS59133952A (en) 1984-08-01

Family

ID=11689601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP831183A Pending JPS59133952A (en) 1983-01-21 1983-01-21 Production of ferritic stainless steel plate

Country Status (1)

Country Link
JP (1) JPS59133952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008872A (en) * 2017-03-10 2017-08-04 东北大学 Grain refiner for ferritic stainless steel continuous casting and preparation method thereof and application method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103234A (en) * 1977-02-18 1978-09-08 Lins Albert Mixing valve device for cool and hot water
JPS5494437A (en) * 1978-01-11 1979-07-26 Hitachi Ltd Method of adding steel granules into molten steel flow of tundish in continuous casting apparatus
JPS54153749A (en) * 1978-05-26 1979-12-04 Nippon Steel Corp Inprovement in ridging of ferrite stainless steel manufactured by continuous casting method
JPS5775275A (en) * 1980-10-30 1982-05-11 Nippon Kokan Kk <Nkk> Continuous casting method for steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53103234A (en) * 1977-02-18 1978-09-08 Lins Albert Mixing valve device for cool and hot water
JPS5494437A (en) * 1978-01-11 1979-07-26 Hitachi Ltd Method of adding steel granules into molten steel flow of tundish in continuous casting apparatus
JPS54153749A (en) * 1978-05-26 1979-12-04 Nippon Steel Corp Inprovement in ridging of ferrite stainless steel manufactured by continuous casting method
JPS5775275A (en) * 1980-10-30 1982-05-11 Nippon Kokan Kk <Nkk> Continuous casting method for steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107008872A (en) * 2017-03-10 2017-08-04 东北大学 Grain refiner for ferritic stainless steel continuous casting and preparation method thereof and application method
CN107008872B (en) * 2017-03-10 2019-07-02 东北大学 Grain refiner for continuous casting of ferritic stainless steel and preparation method and use method thereof

Similar Documents

Publication Publication Date Title
WO2007079625A1 (en) An ultrafine grain steel sheet produced by continuous casting and rolling a medium-thin slab and its manufacture process
CN103797135A (en) Method for producing cold-rolled steel sheet
CN109280861A (en) Flat product and its production method with good resistance to ag(e)ing
CN107674955A (en) A kind of preparation method of low density steel of the strength and ductility product more than 50GPa%
CN101422784A (en) Rolling technique of ultra-fine grained magnesium alloy sheet
JPS6035424B2 (en) Manufacturing method of aluminum alloy plate for drawing forming
JPH05239584A (en) Rolled sheet of high strength aluminum alloy and its production
JP3806186B2 (en) Method for producing ferritic stainless steel with excellent anti-roping properties
JPS59133952A (en) Production of ferritic stainless steel plate
JP2002194475A (en) THIN SHEET OF Fe-Co BASED ALLOY AND ITS PRODUCTION METHOD
JPH01118341A (en) Manufacturing method of ferritic stainless steel
JPH0730406B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
JPH02250925A (en) Manufacturing method of ferritic stainless steel sheet
EP0378705A1 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JPH09256064A (en) Method for producing ferritic stainless steel sheet with excellent roping characteristics
JPS5939483B2 (en) Manufacturing method of low alloy steel with excellent cold drawing and cold extrusion processability
JPH03260015A (en) Method for producing steel sheets with excellent brittle crack propagation arresting properties and low-temperature toughness
JP3227057B2 (en) Method for producing hot rolled silicon steel sheet with excellent surface properties
JPS6283426A (en) Manufacturing method of cold rolled steel sheet for deep drawing
JPH04318123A (en) Continuous annealing method for cold-rolled austenitic stainless steel strip
CN107746940B (en) A kind of dual-phase pipeline steel hot continuous rolling strip and production method thereof
JPH0730407B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
RU2127159C1 (en) Method for rolling and heat treatment of uranium ingots
JPH01111816A (en) Production of cold rolled ferritic stainless steel sheet
JPH02111828A (en) Manufacture of copper alloy for lead frame