JPS59133370A - Magnetron sputtering device - Google Patents

Magnetron sputtering device

Info

Publication number
JPS59133370A
JPS59133370A JP814683A JP814683A JPS59133370A JP S59133370 A JPS59133370 A JP S59133370A JP 814683 A JP814683 A JP 814683A JP 814683 A JP814683 A JP 814683A JP S59133370 A JPS59133370 A JP S59133370A
Authority
JP
Japan
Prior art keywords
target
magnetron sputtering
sputtering
efficiency
sputtering device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP814683A
Other languages
Japanese (ja)
Inventor
Hironori Shimazu
島津 博徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP814683A priority Critical patent/JPS59133370A/en
Publication of JPS59133370A publication Critical patent/JPS59133370A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve considerably the effective utilizing efficiency of a target in a magnetron sputtering device by disposing many magnets on the rear of the target so as to pair opposite electrodes and moving the magnet group with respect to the target. CONSTITUTION:Many magnets 4 are disposed on the rear of a target 1 in a magnetron sputtering device in such a way that the opposing electrodes thereof are made the electrodes opposite to each other. The magnetic fluxes 5 of force penetrating the target 1 increase as many as several tens times more than in the prior art and the effective utilizing area of the target increases. These magnet groups 4 are fixed by a framework 8 and are moved in parallel with the target surface or further the groups 4 are rotated on the rear of the target, by which sputtering regions 6 are considerably widened and the effective utilizing efficiency of the target 1 is improved.

Description

【発明の詳細な説明】 本発明はマグネトロンスパッター装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetron sputtering apparatus.

マグネトロンスパッター装置は名称の示す通り磁界の作
用により放電効率を上げて旧来の磁界を使用しないスパ
ッターに比べ格段の効率を上げることが可能となった。
As the name suggests, magnetron sputtering equipment uses the action of a magnetic field to increase discharge efficiency, making it possible to significantly increase efficiency compared to conventional sputtering that does not use a magnetic field.

しかし従来のマグネトロンスパッター装置では一つの大
きな欠点があった。
However, conventional magnetron sputtering equipment has one major drawback.

第1図に従来のマグネトロンスパッターの構成を示す。FIG. 1 shows the configuration of a conventional magnetron sputter.

ターゲット1に高圧電源2(高周波電汀でもよい〕から
高圧の電力が印加さnてAfイオン3が放電しターゲッ
トに衝突しターゲツト材がスパッターさnる。
High-voltage power is applied to the target 1 from a high-voltage power source 2 (which may be a high-frequency electric source), and Af ions 3 are discharged and collide with the target, causing sputtering of the target material.

こiLに磁石4.4’ 、4”がターゲット背面に設置
することで磁界5が発生し、この中で電子が(図示せず
)電界と磁界の相互作用によりマグネトロン運動をする
ことでArイオンの放電効率が高まり、スパッター効率
の同上が達成される様になった。こnにより従来使用さ
nていなかった分野でのスパッター装置の利用が進めら
肚てきた。
A magnetic field 5 is generated by installing magnets 4.4' and 4'' behind the target in this iL, and in this field, electrons (not shown) perform magnetron motion due to the interaction between the electric field and the magnetic field, thereby generating Ar ions. As a result, the discharge efficiency of sputtering equipment has increased, and the same level of sputtering efficiency as above has been achieved.This has led to the advancement of the use of sputtering equipment in fields where it had not previously been used.

しかしこの方式の大きな欠点は第2図に示す様にマクネ
トロン放電でスパッターする領域がターゲット全面では
なく、磁界の接線方向がターゲット表面とほぼ平行にな
る領域のみがスパッターさf′L(スパッター領域6)
、他の部分はほとんどスパッターさ几ずに残ってしまう
現象がある。このためにターゲットの使用効率は極めて
悪く、夕一ゲット全体積の15〜20%ぐらいの効率し
かなく、残ったターゲットは再利用が不可能なので、タ
ーゲットコストが旧来の5〜6倍高く、ターゲット交換
頻度も頻繁でこILで作る部品コストと作業効率が問題
であった。
However, the major drawback of this method is that, as shown in Figure 2, the area to be sputtered by Macnetron discharge is not the entire surface of the target, but only the area where the tangential direction of the magnetic field is almost parallel to the target surface is sputtered f'L (sputter area 6). )
However, there is a phenomenon in which almost all other parts remain unspattered. For this reason, the target usage efficiency is extremely low, and the efficiency is only about 15 to 20% of the total volume of Yuichi's target, and the remaining targets cannot be reused, so the target cost is 5 to 6 times higher than the conventional target. The frequency of replacement was also frequent, and the cost of parts made with IL and work efficiency were problems.

さらに第2図のスバシター領域6に示す様な形状にター
ゲットが侵食さしてぐると、一番深く侵食さnている部
分に放電が集中してここにスパッター電力が集中するた
めに、局部的にスパッター電力密度が高まり、ターゲッ
ト部材の微粒子が飛び出して来るという現象が発生する
。このためスパッター、膜表面が荒nるという品質問題
が生じていた。
Furthermore, when the target erodes into the shape shown in the sub-siter region 6 in Fig. 2, the discharge concentrates in the most deeply eroded part and the sputtering power is concentrated there, causing localized sputtering. As the power density increases, a phenomenon occurs in which fine particles from the target member fly out. This has caused quality problems such as sputtering and roughening of the film surface.

本発明はかかる従来のマグネトロンスパッターの欠点を
解決するためになさn比ものである。次に不発明の実施
例の概念図を第3図(平面図〕に示す。ターゲット1の
背面に最近接の磁極が反対の極に々るように相互に磁石
4全配置する。
The present invention was made in order to solve the drawbacks of the conventional magnetron sputter. Next, a conceptual diagram of the non-inventive embodiment is shown in Fig. 3 (plan view).All the magnets 4 are arranged on the back surface of the target 1 so that the nearest magnetic poles are opposite to each other.

この様に多数の磁極を配置すると第4図のターゲット断
面図に示す様に、ターゲラトラ貫く磁力線束5が多数に
なる。第4図の断面図では磁力線束が数ケしかない様に
見えるが第3囚の磁石配置かられかる様に英際は縦横に
磁力線束が貫通するため、従来の磁石配置に比べnは数
十倍の磁力線束の数となる。この結果ターゲットの有効
利用面積が増力口する。このことでターゲットの有効オ
l用効率は40〜50%と従来のものと比べ〜3倍も増
加するようになった。この様子をターゲットの断面構造
として第5図に示す。本発明による効率をさらに高める
には本発明の磁石群をターゲットに対して位置が変化す
るように動かせばよい。すなわち磁石を動かすことでタ
ーゲット表面での磁力線束の分布をなるぺ〈均一にして
、ターゲットの位置によるスパッター電力密度のバラツ
キを押えるものである。本発明による方法でもターゲッ
トのスパッターさねない領域がどうしても残る。こノス
ハツターさ扛ない領域7と7電が第6図の斜線部領域で
示さnている。ここの部分は磁力線が互いに反発して磁
力線の通らない領域7と磁力線がターゲット表面に対し
垂直なため電子のマグネトロン運動が発生しない領域7
電に相当する。
When a large number of magnetic poles are arranged in this manner, as shown in the cross-sectional view of the target in FIG. 4, a large number of magnetic flux lines 5 pass through the target rattle. In the cross-sectional view of Figure 4, it appears that there are only a few magnetic fluxes, but as you can see from the magnet arrangement in the third case, the magnetic fluxes penetrate vertically and horizontally, so compared to the conventional magnet arrangement, n is a number. The number of magnetic flux lines is ten times greater. As a result, the effective use area of the target is increased. As a result, the effective efficiency of the target is 40 to 50%, which is about three times as much as the conventional method. This situation is shown in FIG. 5 as a cross-sectional structure of the target. To further increase the efficiency of the present invention, the magnet group of the present invention may be moved so that its position changes with respect to the target. That is, by moving the magnet, the distribution of magnetic flux on the target surface is made uniform, thereby suppressing variations in sputtering power density depending on the position of the target. Even with the method according to the invention, there remains a region of the target that is not susceptible to sputtering. Areas 7 and 7 where the beams are not exposed are shown by the shaded areas in FIG. This area is a region 7 where magnetic lines of force repel each other and no magnetic lines of force pass through, and a region 7 where no electron magnetron movement occurs because the lines of magnetic force are perpendicular to the target surface.
Equivalent to electricity.

磁石群の動かし方には直線、曲線、円運動等、あるいは
こnらの組会せが考えら肚るが一番効率の良い方法を採
用すnばよい。考え方は同じなので本発明の説明では磁
石群をM’ff9運動させる時について述べる。
Although linear, curved, circular motion, or a combination of these methods may be considered as a method of moving the magnet group, the most efficient method should be adopted. Since the idea is the same, the present invention will be described with reference to the case where the magnet group is moved by M'ff9.

第6図で磁石群4を枠組8で固定しておき、と2’L’
e矢印方回矢印−ゲツト面に対して平行になるように動
かす。こうすると例えば磁石群4を第6図の位置9から
上方向の位置10に動かすと、横万同に貫通している磁
力線束全体が位置10の方向に回って掃引するため部分
的な磁力線束が面的拡が9を持ち、スパッターさnない
領域7もスパッターさnるようになる。
In Fig. 6, the magnet group 4 is fixed with the framework 8, and 2'L'
e Arrow direction - Move it so that it is parallel to the target surface. In this way, for example, when the magnet group 4 is moved from position 9 to position 10 in the upward direction in FIG. has a surface area of 9, and the sputtered area 7 also becomes sputtered.

第6図から見ても明らかなようにこうすることでスパッ
ターさnる領域が格段に増加し、こnだけでも効率は6
電チ以上になる。
As is clear from Figure 6, this method greatly increases the sputtering area, and this alone increases the efficiency by 6.
It becomes more than electric.

当然のことであるが単純なる直線運動だけでなく、こし
に例えば回転運動を加えることで第6図のスパッターさ
しない領域71も磁力線束でカバーさnてスパッターさ
オL1 ターゲットのスパッターさnない領域はほとん
どなくなる。こnによ肚ばターゲットの利用効率は90
チ近くまでに上昇する。
Of course, by applying not only a simple linear motion but also a rotational motion to the strainer, the area 71 where spatter is not applied in Fig. 6 can be covered by the flux of magnetic lines of force, thereby preventing sputtering from the target L1. The area will be almost gone. The usage efficiency of Konyo Appuba target is 90
It rises to near the peak.

本発明によnば従来よりもターゲット利用効率が格段に
良くなるので、従来スパッター膜厚分布を良くするため
に笑効スパッター面積より数十多大きいターゲットを使
用していたが、その必要はかなり軽減さnlこのことか
らもターゲットの利用効率は良くなる。
According to the present invention, the efficiency of target utilization is much better than that of the conventional method, so the conventional method of using a target several tens of times larger than the effective sputtering area in order to improve the sputtering film thickness distribution is no longer necessary. This also improves the target usage efficiency.

以上本発明によnばターゲットの利用効率が高まり、タ
ーゲットコストを安くすることが出来る。さらに磁石を
動かすことで集中的なスパッター電力密度が避けらn1
スパツター膜質の同上が得らn1ターゲツト利用効率が
さらに高まることでターゲットの面積が減らせ、ターゲ
ットコストの削減さらにはスパッター装置の小型化が実
現出来るようになった。
As described above, according to the present invention, the utilization efficiency of the target can be increased and the target cost can be reduced. Furthermore, by moving the magnet, intensive sputtering power density can be avoided n1
The same sputtering film quality as above can be obtained, and the n1 target usage efficiency is further increased, so that the target area can be reduced, target cost can be reduced, and sputtering equipment can be downsized.

本発明はかかる優した特徴をイイしているので工業的利
用価値は高く、電子部品用の薄膜作製、例えは工Cの金
属膜作製用には特に最適である。
Since the present invention has such excellent features, it has high industrial utility value, and is particularly suitable for producing thin films for electronic parts, for example, for producing metal films for process C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマグネトロンスパッターのIW 全断面
図、第2図は第1図におけるターゲット侵食状態を示す
図である。第3図は本発明による実施例の概念平面図、
第4図は第3図における磁力線の様子を示すス、第5図
は第3図におけるターゲットの侵食状態を示す図、第6
図は本発明の応用形態で磁石を動かして利用効率を高め
ることを示す図である。 10.ターゲット 2゜。スパッター電源 4゜。磁石 5゜。磁力線 6゜。スパッター領域 7、。スパッターさnない領域 以上 出願人 株式会社第二精工舎 代理人 弁理士最上   務 第2図 第3図 第4図 第5図 メーゝ、
FIG. 1 is a full sectional view of the IW of a conventional magnetron sputter, and FIG. 2 is a diagram showing the state of target erosion in FIG. 1. FIG. 3 is a conceptual plan view of an embodiment according to the present invention;
Figure 4 shows the state of the magnetic lines of force in Figure 3, Figure 5 shows the erosion state of the target in Figure 3, and Figure 6 shows the state of the target erosion in Figure 3.
The figure is a diagram showing how magnets are moved to increase usage efficiency in an applied form of the present invention. 10. Target 2°. Sputter power supply 4°. Magnet 5°. Magnetic field lines 6°. Sputter region 7. Spatter-free area and above Applicant Daini Seikosha Co., Ltd. Agent Patent Attorney Mogami Affairs Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)マグネトロンスパッター装置において、ターゲッ
ト背面に配置される複数個の磁石の極の隣同士が互いに
反対の極になるように配置さχしていることを特徴とす
るマグネトロ/スパッター装置。
(1) A magnetron sputtering device characterized in that a plurality of magnets arranged on the back side of a target are arranged so that adjacent poles are opposite to each other.
(2)前記複数個の磁石対がターゲットに対して移動可
能としたことを特徴とする特許請求の範囲第1項記載の
マグふトロンスパッター装置。
(2) The magfutron sputtering apparatus according to claim 1, wherein the plurality of magnet pairs are movable relative to the target.
JP814683A 1983-01-21 1983-01-21 Magnetron sputtering device Pending JPS59133370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP814683A JPS59133370A (en) 1983-01-21 1983-01-21 Magnetron sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP814683A JPS59133370A (en) 1983-01-21 1983-01-21 Magnetron sputtering device

Publications (1)

Publication Number Publication Date
JPS59133370A true JPS59133370A (en) 1984-07-31

Family

ID=11685163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP814683A Pending JPS59133370A (en) 1983-01-21 1983-01-21 Magnetron sputtering device

Country Status (1)

Country Link
JP (1) JPS59133370A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086272A (en) * 1983-10-18 1985-05-15 Anelva Corp Sputtering apparatus
JPH03240953A (en) * 1990-02-16 1991-10-28 Seiko Electronic Components Ltd Magnetron sputtering device
US5215639A (en) * 1984-10-09 1993-06-01 Genus, Inc. Composite sputtering target structures and process for producing such structures
JP2002363740A (en) * 2001-06-01 2002-12-18 Anelva Corp Plasma treatment device for sputtering film deposition
JP2009280863A (en) * 2008-05-22 2009-12-03 Canon Anelva Corp Magnetron sputtering apparatus and method for manufacturing thin film
CN101851746A (en) * 2009-04-03 2010-10-06 鸿富锦精密工业(深圳)有限公司 Magnetic control sputtering target and magnetic control sputtering system
JP2011017088A (en) * 2010-09-27 2011-01-27 Canon Anelva Corp Plasma treatment apparatus for applying sputtering film deposition
CN101988188A (en) * 2009-07-30 2011-03-23 鸿富锦精密工业(深圳)有限公司 Magnetic control device for sputtering
WO2011018544A3 (en) * 2009-08-14 2011-07-07 Consejo Superior De Investigaciones Cientificas (Csic) Magnetron device and method for the uniform erosion of a target using such a device
CN103050358A (en) * 2011-10-17 2013-04-17 鸿富锦精密工业(深圳)有限公司 Planar magnetron sputtering cathode
CN103168338A (en) * 2010-10-22 2013-06-19 于利奇研究中心有限公司 Sputtering sources for high-pressure sputtering with large targets and sputtering method
JP2013139642A (en) * 2013-04-02 2013-07-18 Canon Anelva Corp Plasma treatment apparatus applied for sputtering film forming

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365754B2 (en) * 1983-10-18 1988-12-16 Nichiden Anelva Kk
JPS6086272A (en) * 1983-10-18 1985-05-15 Anelva Corp Sputtering apparatus
US5215639A (en) * 1984-10-09 1993-06-01 Genus, Inc. Composite sputtering target structures and process for producing such structures
JPH03240953A (en) * 1990-02-16 1991-10-28 Seiko Electronic Components Ltd Magnetron sputtering device
JP2002363740A (en) * 2001-06-01 2002-12-18 Anelva Corp Plasma treatment device for sputtering film deposition
JP4614578B2 (en) * 2001-06-01 2011-01-19 キヤノンアネルバ株式会社 Plasma processing equipment for sputter deposition applications
JP2009280863A (en) * 2008-05-22 2009-12-03 Canon Anelva Corp Magnetron sputtering apparatus and method for manufacturing thin film
CN101851746A (en) * 2009-04-03 2010-10-06 鸿富锦精密工业(深圳)有限公司 Magnetic control sputtering target and magnetic control sputtering system
US8382967B2 (en) 2009-07-30 2013-02-26 Hon Hai Precision Industry Co., Ltd. Magnetic device and magnetron sputtering device using the same
CN101988188A (en) * 2009-07-30 2011-03-23 鸿富锦精密工业(深圳)有限公司 Magnetic control device for sputtering
WO2011018544A3 (en) * 2009-08-14 2011-07-07 Consejo Superior De Investigaciones Cientificas (Csic) Magnetron device and method for the uniform erosion of a target using such a device
JP2011017088A (en) * 2010-09-27 2011-01-27 Canon Anelva Corp Plasma treatment apparatus for applying sputtering film deposition
CN103168338A (en) * 2010-10-22 2013-06-19 于利奇研究中心有限公司 Sputtering sources for high-pressure sputtering with large targets and sputtering method
CN103168338B (en) * 2010-10-22 2015-11-25 于利奇研究中心有限公司 There is the sputtering source for high pressure spray and the sputtering method of large target
CN103050358A (en) * 2011-10-17 2013-04-17 鸿富锦精密工业(深圳)有限公司 Planar magnetron sputtering cathode
JP2013139642A (en) * 2013-04-02 2013-07-18 Canon Anelva Corp Plasma treatment apparatus applied for sputtering film forming

Similar Documents

Publication Publication Date Title
US5876576A (en) Apparatus for sputtering magnetic target materials
KR100212087B1 (en) Sputtering apparatus
JPS59133370A (en) Magnetron sputtering device
JP2934711B2 (en) Sputtering equipment
GB2051877A (en) Magnetically Enhanced Sputtering Device and Method
WO2001029874A1 (en) Planar magnetron sputtering apparatus
JPS61221363A (en) Sputtering apparatus
JP3100837B2 (en) Sputtering equipment
JPH0525625A (en) Magnetron sputtering cathode
JPS63125675A (en) Magnetron sputtering device
JPH0559542A (en) Magnetron sputtering electrode
JPS6217175A (en) Sputtering device
JP2942301B2 (en) Fence device for electron gun magnetic field correction
JPH0159351B2 (en)
JPH03260067A (en) Sputtering device
JP3186194B2 (en) Magnetron sputtering equipment
JPS6016515B2 (en) Low temperature sputtering equipment
JPS6160880A (en) Spattering device
JPH0633454B2 (en) Sputtering device
JPS62149868A (en) High-speed sputtering method for ferromagnetic material
JPS63277758A (en) Magnetron sputtering device
JP2003183828A (en) Magnetron sputtering method with multiplex magnetic poles
JPH04354868A (en) Target for magnetron sputtering device
JPH06207272A (en) Magnetic circuit of permanent magnet for magnetron plasma
JPH07118845A (en) Magnetron sputtering device