JPS59132903A - Concentrating crystallization method - Google Patents

Concentrating crystallization method

Info

Publication number
JPS59132903A
JPS59132903A JP745583A JP745583A JPS59132903A JP S59132903 A JPS59132903 A JP S59132903A JP 745583 A JP745583 A JP 745583A JP 745583 A JP745583 A JP 745583A JP S59132903 A JPS59132903 A JP S59132903A
Authority
JP
Japan
Prior art keywords
cooling
heating
liquid
concentrated
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP745583A
Other languages
Japanese (ja)
Other versions
JPH0379041B2 (en
Inventor
Toshio Ito
寿夫 伊藤
Keiichi Nishitani
西谷 圭一
Ichiro Kamiya
一郎 神谷
Osamu Nomura
治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Ebara Corp
Original Assignee
Ajinomoto Co Inc
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc, Ebara Corp filed Critical Ajinomoto Co Inc
Priority to JP745583A priority Critical patent/JPS59132903A/en
Publication of JPS59132903A publication Critical patent/JPS59132903A/en
Publication of JPH0379041B2 publication Critical patent/JPH0379041B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To attain low temp. evaporation, continuous operation, energy conservation and simplification of equipment, by a method wherein waste heat is recovered by a heat pump cycle using the cycle of a freezer to be utilized as the heating source of solvent evaporation and a low temp. cooling liquid medium is further used as the cold heat source of a cooling process. CONSTITUTION:A liquid to be concentrated is heated and concentrated in a heater 2 by the latent heat of condensation of the hydraulic fluid from a heat pump. Further, the liquefied hydraulic fluid is heated and evaporated in a cooling medium evaporator 9 by the steam from the liquid to be concentrated generated from an evaporation boiler 3 to form a heat pump cycle. In addition, a part of the hydraulic fluid liquefied in the aforementioned cycle is guided to a cooling crystallization process to cool the concentrate in a cooler 25 and the dissolved component therein is crystallized while the evaporated hydraulic fluid is returned to the aforementioned heat pump cycle. As a result, heated steam required in evaporative concn. and low temp. cooling water in the cooling crystallization process become unnecessary and equipment for producing low temp. cooling water is also not necessitated.

Description

【発明の詳細な説明】 本発明は、各種の結晶性の溶液から結晶を晶出せしめる
)層線晶出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a layer line crystallization method for crystallizing crystals from various crystalline solutions.

晶出方法は一般に次に示す操作で行なわれる。The crystallization method is generally carried out by the following operations.

(1)溶液中の溶媒を蒸発させ溶液を飽和濃度以上にあ
げて結晶を晶出させる。
(1) The solvent in the solution is evaporated and the solution is raised to a saturation concentration or higher to precipitate crystals.

(2)溶液を冷却し)容解度をさげて過飽和状態に腰結
晶を晶出させる。
(2) Cool the solution) to lower the solubility and crystallize to a supersaturated state.

(3)溶液中の溶媒を蒸発させて飽和濃度近くまで濃縮
し、更に冷却して溶解度をさげて過飽和状態にし、結晶
を品出させる。
(3) The solvent in the solution is evaporated to a concentration close to saturation, and the solution is further cooled to reduce solubility and become supersaturated, thereby producing crystals.

この中で(2)の方法は、溶解度の高い;H液では濃度
か低い時には結晶が晶出せずまた収率も悪いので溶解度
の低い溶液に適している。しかし低温の大量の冷却水か
必要であり特に溶液温度が低い状態で溶解一度の高い)
容液の場合は収率をあげる為非常に低温にする必要かあ
るが氷結を起こす問題かある。
Among these methods, method (2) is suitable for solutions with high solubility; in H solution, crystals cannot be crystallized when the concentration is low and the yield is poor, so it is suitable for solutions with low solubility. However, a large amount of low-temperature cooling water is required, especially when the solution temperature is low and the melting time is high)
In the case of a liquid solution, it is necessary to keep it at a very low temperature to increase the yield, but there is the problem of freezing.

(1)の方法は一般的な溶液(温度が高い程溶解度の高
い溶液)では、高い蒸発温度で操作すると飽和)黒度が
高く、結晶を晶出させるために多くの蒸発量か必要であ
りこの為加熱蒸気量も多く、エネルギの浪費となる。更
に熱感受性が強く変質し易い溶液には不向とである。こ
の為低い蒸発温度で操作することによって飽和濃度か低
くなり、蒸発量が少なくて済み、加熱蒸気量も低減でト
るかやはり結晶の回収率を上げるだめの蒸発量に伴なう
蒸気量がかなり必要となる。
Method (1) is used for general solutions (solutions with higher solubility as the temperature increases), and when operated at a high evaporation temperature, the degree of blackness is high (saturation), and a large amount of evaporation is required to crystallize the crystals. For this reason, the amount of heating steam is large, resulting in wasted energy. Furthermore, it is not suitable for solutions that are highly sensitive to heat and easily deteriorate. Therefore, by operating at a low evaporation temperature, the saturation concentration will be lower, the amount of evaporation will be less, and the amount of heating steam will be reduced, which will increase the recovery rate of crystals. Quite necessary.

(3)の方法は(1)の方法と(2)の方法の組み合せ
である。この場合(1)の方法と同じく低温で操作する
ことにより飽和濃度までの蒸発量が少なくで済み、更に
飽和濃度に達した以後は蒸発操作を行なわない為加熱蒸
気量か少なくて済む。また熱感受性の強い溶液に最適で
ある。この方法の場合、濃縮と冷却を別々の設(iii
’でバッチ式に処理することか多く、能率か悪く、(2
)の方法と同しく低温水と冷却設備か必要であった。
Method (3) is a combination of method (1) and method (2). In this case, as in method (1), by operating at a low temperature, the amount of evaporation up to the saturated concentration can be reduced, and furthermore, since no evaporation operation is performed after the saturated concentration is reached, the amount of heating steam can be reduced. It is also ideal for solutions that are highly heat sensitive. In this method, concentration and cooling are performed in separate settings (iii
' is often processed in batch mode, which is inefficient (2
), low-temperature water and cooling equipment were required.

本発明は、従来の方法の上記の欠点を除ぎ、結晶の回収
率において、消費エネルギが最も少なく、熱感受性物質
の溶液に最適であり、−かつ連続的に能率のよい作業が
行なえる濃縮品出方法を提供することを目的とするもの
で゛ある。
The present invention eliminates the above-mentioned drawbacks of the conventional methods and provides a crystal recovery rate that consumes the least amount of energy, is most suitable for solutions of heat-sensitive substances, and provides a continuous and efficient concentration method. The purpose is to provide a method for displaying items.

本発明は、被濃縮液を循環せしめながら加熱濃縮を繰返
す加熱濃縮工程と、該加熱濃縮工程によって濃縮された
濃縮液を循環せしめながら冷却品出を繰返す冷却晶出工
程上を有し、前記加熱濃縮工程と前記冷却晶出工程とを
同時に進行せしめ; 作動流体を循環ぜしめて作動する
し一トポンプサイクルの作動流体の凝縮潜熱により前記
加熱濃縮工程における加熱を行ない、前記作動原本のサ
イクル中の作動原本の冷熱により1前記冷却晶出工程に
おける冷却を行ない ; 前記加熱濃縮工程において得
られた被濃縮液からの蒸気により前記ヒートポンプサイ
クルにおける冷媒の加熱蒸発を行なうことを特徴とする
)層線晶出方法である。
The present invention comprises a heating concentration step in which heating and concentration are repeated while circulating the liquid to be concentrated, and a cooling crystallization step in which cooling is repeated while circulating the concentrated liquid concentrated in the heating and concentration step, The concentration step and the cooling crystallization step are carried out simultaneously; the working fluid is circulated and operated, and the heating in the heating concentration step is performed by the latent heat of condensation of the working fluid in the pump cycle, and the operation during the cycle of the working original is performed. (1) Cooling in the cooling crystallization step is performed using the cold energy of the original material; heating evaporation of the refrigerant in the heat pump cycle is performed using vapor from the liquid to be concentrated obtained in the heating concentration step) layer line crystallization It's a method.

本発明は、低温での熱回収に適した冷蔵機のサイクルを
利用したヒートポンプのサイクルをこの濃縮晶出装置に
組み込み、そのヒートポンプの作動流体の凝縮潜熱によ
って被濃縮液を加熱し濃縮し、更に前記加熱濃縮工程で
発生する被濃縮液からの蒸気によって液化した作動流体
を加熱し蒸発させてヒートポンプサイクルを形成しでν
)る為、蒸発濃縮に要する加熱蒸気を不要とし、また前
記サイクル中の液化した作動流体の一部を冷却晶出工程
へ心外、この液化作動流体によって前記加熱濃縮工程か
ら抜外出された濃縮液を冷却し、溶解成分を晶出せしめ
ろとともに、この冷却品、出工程で蒸発した作動流体を
前記ビートポンプサイクル中へ戻すようにしたことによ
って、冷却晶出工程での低温の冷却水を不要とし、また
低温冷却水の製造設備も不要とした。更に加熱濃縮工程
と冷却晶出工程とを同一のヒートポンプサイクルを用ν
)て連続に行なっている為、装置の性能が常に安定して
おり、また設備費も少なく、この工程での消費エネルギ
も減少でトる。
The present invention incorporates a heat pump cycle that utilizes a refrigerator cycle suitable for heat recovery at low temperatures into this concentration crystallizer, heats and concentrates the liquid to be concentrated using the latent heat of condensation of the working fluid of the heat pump, and further A heat pump cycle is formed by heating and evaporating the liquefied working fluid by the vapor from the liquid to be concentrated generated in the heating concentration step.
), there is no need for heated steam required for evaporation and concentration, and a part of the liquefied working fluid during the cycle is sent to the cooling crystallization process, and the liquefied working fluid removes the concentrated water from the heating and concentration process. By cooling the liquid and crystallizing the dissolved components, the cooled product and the working fluid that evaporated in the output process are returned to the beat pump cycle, thereby reducing the use of low-temperature cooling water in the cooling and crystallization process. This also eliminates the need for low-temperature cooling water production equipment. Furthermore, the same heat pump cycle is used for the heating concentration process and the cooling crystallization process.
), the performance of the equipment is always stable, equipment costs are low, and energy consumption in this process is also reduced.

本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described using the drawings.

第1図において供給液人口lから供給された被処理液は
循環ライン4を通って加熱缶2の被加熱側へ供給され、
ここで加熱側から冷媒蒸気の凝縮潜熱で加熱され、循環
ライン5を通って蒸発缶3へ供給される。加熱された被
処理液は蒸発缶3で溶媒を蒸発器それ自身は過飽和状態
或いは飽和濃度又はその近くまで濃縮する。濃縮液の大
部分は循環ライン6へ抜熱量され液循環ポンプ゛?によ
って再び加熱缶2、蒸発缶3へと循環され、加熱、蒸発
さrし、加熱濃縮工程により濃縮される。
In FIG. 1, the liquid to be treated is supplied from the supply liquid port 1 through the circulation line 4 to the heated side of the heating can 2,
Here, it is heated from the heating side by the latent heat of condensation of the refrigerant vapor, and is supplied to the evaporator 3 through the circulation line 5. The heated liquid to be treated is concentrated in the evaporator 3 until the evaporator itself concentrates the solvent to a supersaturated state or a saturated concentration or close to it. Most of the concentrated liquid is transferred to the circulation line 6 where heat is removed to the liquid circulation pump. It is again circulated to the heating can 2 and the evaporating can 3, where it is heated, evaporated, and concentrated in a heating concentration step.

蒸発した溶媒の蒸気は蒸気管8を通って冷媒蒸発缶9の
加熱側へ送られ、ここで冷媒液に熱を与え、それ自身は
凝縮して溶媒液となりドレン出口10から系外へ排出さ
れる。また、被処理液側系内の不凝l@〃スを抽気装置
に接続した不i疑析i力゛ス出口11から排出する。
The vapor of the evaporated solvent is sent through the steam pipe 8 to the heating side of the refrigerant evaporator 9, where it imparts heat to the refrigerant liquid, and the refrigerant itself condenses to become a solvent liquid and is discharged from the system through the drain outlet 10. Ru. Further, the non-condensable gas in the system on the side of the liquid to be treated is discharged from the non-condensable gas outlet 11 connected to the extraction device.

一方熱を与えられた冷媒液は、蒸発して冷媒ガスとなり
ミストセパレータ 12を通ってかわト冷媒ガスとなっ
て冷媒ガスライン13を通り圧縮機14へはいり、ここ
で圧縮昇圧されてエンタルピーが増加し、高温の冷媒ガ
スとなって冷媒ガスライン15を通って加熱缶2の加熱
側へはいる。
On the other hand, the heated refrigerant liquid evaporates into refrigerant gas, passes through the mist separator 12, becomes refrigerant gas, passes through the refrigerant gas line 13, and enters the compressor 14, where it is compressed and pressurized to increase the enthalpy. Then, it becomes a high-temperature refrigerant gas and enters the heating side of the heating can 2 through the refrigerant gas line 15.

ここで被処理液側へ放熱し、それ自身は凝縮して冷媒液
となり、冷媒液ライン16を通って膨張弁17で減圧さ
れ再び冷媒蒸発缶9の蒸発側へ戻る。
Here, heat is radiated to the liquid to be treated, and the liquid itself condenses to become a refrigerant liquid, passes through a refrigerant liquid line 16, is depressurized by an expansion valve 17, and returns to the evaporation side of the refrigerant evaporator 9 again.

このようにして冷凍機のサイクル(ヒートポンプのサイ
クル)を形成する。
In this way, a refrigerator cycle (heat pump cycle) is formed.

ここで18は冷媒液を伝熱面へ供給する冷媒液循環ポン
プ、19.20は冷媒液循環ラインである。また21は
、系内の余剰熱を除去する除熱器である。
Here, 18 is a refrigerant liquid circulation pump that supplies refrigerant liquid to the heat transfer surface, and 19.20 is a refrigerant liquid circulation line. Further, 21 is a heat remover that removes surplus heat within the system.

次に濃縮液の一部は濃縮液ライン23を通って濃縮液抜
出ポンプ22によって抜き出され被冷却液循環ライン2
9に供給される。濃縮液は被冷却液循環ライン2つを通
って冷却器25の被冷却側へ供給され、ここで冷却側の
冷媒液へ放熱しそれ自身は低温の過飽和溶液となり被冷
却液循環ライン30を通って晶出缶26へはいり、ここ
で晶出又は斎晶する。更に晶出缶26内の溶液は被冷却
液循環ライン31を通って抜き出され被冷却液循環ポン
プ27によって冷却器25、晶出缶26へと再び循環さ
れて冷却品出工程により冷却され、晶出、育晶を行なう
Next, a part of the concentrated liquid passes through the concentrated liquid line 23 and is extracted by the concentrated liquid extraction pump 22, and is drawn out from the cooled liquid circulation line 23.
9. The concentrated liquid is supplied to the cooled side of the cooler 25 through two cooled liquid circulation lines, where it radiates heat to the coolant liquid on the cooling side and becomes a low-temperature supersaturated solution and passes through the cooled liquid circulation line 30. The liquid then enters the crystallization can 26, where it is crystallized or pre-crystallized. Further, the solution in the crystallization can 26 is extracted through the cooled liquid circulation line 31, and is circulated again to the cooler 25 and the crystallization can 26 by the cooled liquid circulation pump 27, and is cooled in the cooling product discharge process. Perform crystallization and growth.

晶出缶26内の一部の溶液は余剰となるため結晶ととも
にスラリ抜出口32から抜熱量し分離磯28で結晶と母
液を分離し、結晶は結晶出口33から抜き出される。ま
た母液は母液供給ポンプ35によって母液ライン34を
通り、母液供給ライン36からその一部又は全量を循環
ライン4に供給し、再び濃縮されて結晶の収率を上げる
Since a part of the solution in the crystallization can 26 becomes surplus, heat is removed from the slurry outlet 32 along with the crystals, and the crystals and mother liquor are separated by the separation rock 28, and the crystals are extracted from the crystal outlet 33. Further, the mother liquor passes through the mother liquor line 34 by the mother liquor supply pump 35, and part or all of it is supplied from the mother liquor supply line 36 to the circulation line 4, where it is concentrated again to increase the yield of crystals.

37は母液を抜出す母液出口ラインである。37 is a mother liquor outlet line for extracting the mother liquor.

一方冷却側の冷媒液は、冷媒液ライン16の膨張弁−次
側の途中から抜熱量され、冷却用冷媒液ライン38を通
り、膨張弁39で冷媒蒸発側圧力まで減圧され温度を下
げで冷却器25の冷却側へ供給される。ここで被冷却側
から加熱され定圧、定温のもとで蒸発し、その蒸発潜熱
で被冷却赦を冷却した後、冷却用冷媒ガスライン40を
通って再び冷媒蒸発缶9の蒸発側へ返送される。
On the other hand, the refrigerant liquid on the cooling side removes heat from the middle of the refrigerant liquid line 16 next to the expansion valve, passes through the cooling refrigerant liquid line 38, is depressurized to the refrigerant evaporation side pressure at the expansion valve 39, and is cooled by lowering the temperature. is supplied to the cooling side of the vessel 25. Here, it is heated from the side to be cooled and evaporated under a constant pressure and temperature, and after the latent heat of vaporization cools the side to be cooled, it is returned to the evaporation side of the refrigerant evaporator 9 through the cooling refrigerant gas line 40. Ru.

以上の加熱濃縮工程と冷却晶出工程とは同時に併用して
進行せしめ、バッチ式でなく連続処理を行なう。
The heating concentration step and the cooling crystallization step described above are carried out simultaneously, and a continuous process is performed instead of a batch process.

この様に冷凍機のサイクルを用いたヒートポンプサイク
ルで11−熱を回収上溶媒蒸発の加熱源とし、更に冷却
工程の冷熱源を低温の冷媒液を用いたことにより、低温
蒸発、連続操作、省エネルギ、設備の簡素化などが可能
となる。
In this way, in a heat pump cycle using a refrigerator cycle, 11-heat is recovered and used as a heating source for solvent evaporation, and furthermore, by using a low-temperature refrigerant liquid as a cold heat source in the cooling process, low-temperature evaporation, continuous operation, and savings are achieved. It becomes possible to simplify energy and equipment.

第2図は別の実施例で、冷却用冷媒液に低温の冷媒液を
用いた例である。この低温の冷媒液は冷媒循環ライン2
0の途中から冷媒液循環ポンプ18によって冷却用冷媒
液ライン38′を通って冷却器25の冷却側へ送られこ
こで加熱され蒸発して冷却用冷媒ガスライン40を通り
再び冷媒蒸発器9の蒸発側へ戻る。ここで41は冷媒液
量を制御する調節弁である。
FIG. 2 shows another embodiment, in which a low-temperature refrigerant liquid is used as the cooling refrigerant liquid. This low-temperature refrigerant liquid is transferred to the refrigerant circulation line 2.
0, the refrigerant liquid is sent by the refrigerant circulation pump 18 through the cooling refrigerant liquid line 38' to the cooling side of the cooler 25, where it is heated and evaporated, and passes through the cooling refrigerant gas line 40 again to the refrigerant evaporator 9. Return to the evaporation side. Here, 41 is a control valve that controls the amount of refrigerant liquid.

第3図は別の実施例であり、冷媒液の顕熱を利用した例
である。42は膨張弁を兼ねた冷媒液量調節弁、40′
は冷却用冷媒ガスラインである。
FIG. 3 shows another embodiment, in which the sensible heat of the refrigerant liquid is used. 42 is a refrigerant liquid level control valve that also serves as an expansion valve, 40'
is a cooling refrigerant gas line.

l:54図は別の実施例であり、冷却器25で蒸発した
冷却用冷媒力スを圧縮機14′に導びと圧縮した後、冷
媒ガスライン15’又は15″によって圧縮機14の吐
出側又は吸込側に供給するようにしたものである。これ
により冷却器25において濃縮液を特に低温度に冷却す
ることがでとる。
Figure 1:54 shows another embodiment, in which the cooling refrigerant gas evaporated in the cooler 25 is led to the compressor 14' and compressed, and then transferred to the discharge side of the compressor 14 by the refrigerant gas line 15' or 15''. Alternatively, the concentrate is supplied to the suction side.This allows the concentrate to be cooled to a particularly low temperature in the cooler 25.

冷媒液は膨張弁17の前から冷却用冷媒液ライン38を
経由して導入しでもよい。43はミストセパレータであ
る。
The refrigerant liquid may be introduced from before the expansion valve 17 via the cooling refrigerant liquid line 38 . 43 is a mist separator.

以上の実施例は上記の如く構成され作用するので次の如
き効果を°有する。
The above embodiment is constructed and operates as described above, and has the following effects.

(A)低温で濃縮し飽和濃度に到達後冷却により晶出さ
せることにより、 (1)熱分解し易い液の処理に適している。
(A) By concentrating at low temperature and crystallizing by cooling after reaching the saturated concentration, (1) Suitable for treating liquids that are easily thermally decomposed.

(2)蒸発量が少なくて高い回収率で結晶が囮られるの
で ・ 加熱用エネルギが少ない ・ 装置が小型になる ・ 運転時間が短い (B)  低温に適したヒートポンプのサイタルと組み
合せ排熱回収することにより、 (1)加熱用蒸気が不要となり省エネルギとなる。又(
A)から加熱用エネルギが少ないためヒートポンプの動
力も少なくてよい。
(2) Since the amount of evaporation is small and the crystals are decoyed with a high recovery rate, less energy is required for heating, the equipment is smaller, and operating time is shorter (B) Waste heat is recovered in combination with a heat pump citral suitable for low temperatures. (1) No heating steam is required, resulting in energy savings. or(
From A), since the energy for heating is small, the power of the heat pump may also be small.

(、C)  冷却晶出工程を連続に操作し、冷却熱源に
ヒートポンプサイクル中の冷媒液を用いていることによ
り、 (1)低温冷却水の製造設備が不要である。
(,C) By operating the cooling crystallization process continuously and using the refrigerant liquid in the heat pump cycle as the cooling heat source, (1) Low-temperature cooling water production equipment is not required.

(2)低温冷却水の製造エネルギが不要である。(2) No energy is required to produce low-temperature cooling water.

(3)低温でしが晶出しない液に最適である。(3) Ideal for liquids that do not crystallize at low temperatures.

(4)連続操作の為安定した運転がでトる。(4) Continuous operation ensures stable operation.

(5)晶出と熱回収システムが分離している為ミスト、
結晶等の圧縮搬へのトラブルがない。
(5) Because the crystallization and heat recovery systems are separate, mist,
There is no problem with compressing and transporting crystals, etc.

本発明により、消費エネルギが少なく、熱感受性物質を
扱うことができ、バッチ式でなく連続的に能率のよい晶
出作業を行なう濃縮品出方法を提供することができ、実
用上極めて犬なる効果を奏する。
According to the present invention, it is possible to provide a method for producing concentrated products that consumes less energy, can handle heat-sensitive substances, and performs efficient crystallization work continuously rather than in batches, and is extremely effective in practical use. play.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の実施例のフロー図である
。 1・・供給液入口、2・・加熱毎、3・・蒸発缶、4.
5.8・・循環ライン、7・・液循環ポンプ、8・・蒸
気管、9・・冷媒蒸発缶、10・・ドレン出口、11・
・不凝縮ガス出口、12・・ミストセパレータ、13・
・冷媒ガスライン、14゜14′ ・・圧縮区、15.
15’ 、15″ ・・冷媒ガスライン、  1B・・
冷媒液ライン、J7・・膨張弁、18・・冷媒液循環ポ
ンプ、19.20・・冷媒液循環ライン、21・・除熱
器、22・・濃縮液抜出ポンプ、 23.24・・濃縮
液ライン、25・・冷却器、26・・晶出価、27・・
被冷却液循環ポンプ、28・・分離機、29゜30.3
1・・被冷却液循環ライン、32・・スラリ抜出口、3
3・・結晶出口、34・・母液ライン、35・・母液供
給ポンプ、36・・母液供給ライン、37・・母液出口
ライン、38゜38′ ・・冷却用冷媒液ライン、3つ
・・膨張弁、40.40’  ・・冷却用冷媒ガスライ
ン、4ノ。 42・・調節弁、43・・ミストセパレータ。 特許出願人  味の素株式会社 同      株式会社 荏原製作所 代理人弁理士 千  1)    稔 代理友f−理士丸山隆夫
1-4 are flow diagrams of embodiments of the present invention. 1. Supply liquid inlet, 2. Each heating, 3. Evaporator, 4.
5.8...Circulation line, 7.Liquid circulation pump, 8.Steam pipe, 9.Refrigerant evaporator, 10.Drain outlet, 11.
・Noncondensable gas outlet, 12.・Mist separator, 13・
・Refrigerant gas line, 14° 14' ・・Compression section, 15.
15', 15''...refrigerant gas line, 1B...
Refrigerant liquid line, J7... Expansion valve, 18... Refrigerant liquid circulation pump, 19.20... Refrigerant liquid circulation line, 21... Heat remover, 22... Concentrated liquid extraction pump, 23.24... Concentration Liquid line, 25... Cooler, 26... Crystallization price, 27...
Cooled liquid circulation pump, 28...Separator, 29°30.3
1. Cooled liquid circulation line, 32. Slurry outlet, 3
3. Crystal outlet, 34. Mother liquor line, 35. Mother liquor supply pump, 36. Mother liquor supply line, 37. Mother liquor outlet line, 38°38'. Cooling refrigerant liquid line, 3. Expansion. Valve, 40.40' ... Cooling refrigerant gas line, 4th. 42...Control valve, 43...Mist separator. Patent Applicant: Ajinomoto Co., Ltd. Ebara Corporation, Representative Patent Attorney 1) Minoru Representative Friend f-Physician Takao Maruyama

Claims (1)

【特許請求の範囲】 1、 被濃縮液を循環せしめなから加熱濃縮を繰返す加
熱濃縮工程と、該加熱濃縮工程によって濃縮された濃縮
液を循環せしめながら冷却品−出を繰返す冷却晶出工程
とを有し、面記加熱濃縮工程と前記冷却晶出工程とを同
時に進行せしめ ; 作動流体を循環ぜしめて作動する
ヒートポンプサイクルの作動流体の凝縮潜熱により前記
加熱濃縮工程における加熱を行ない、前記作動流木のサ
イクル中の作動流体の冷熱により前記冷却品出工程にお
ける冷却を行ない ;前記加熱濃縮工程において得られ
た被濃縮液からの蒸気により前記ヒートポンプサイクル
における冷媒の加熱蒸発を行なうことを特徴とする濃縮
品出方法。 2、 前記作動流体の冷熱による冷却が、作動流体の蒸
発潜熱にて行なわれる特許請求の範囲第1項記載の方法
。 3、 前記作動流体の冷熱による冷却が、作動流体の顕
熱で行なわれる特許請求の範囲第1項記載の方法。 4、 被濃縮液を循環せしめなから加熱濃縮を繰返す加
熱濃縮工程と、該加熱濃縮工程によって濃縮された濃縮
液を循環せしめながら冷却晶出を繰返す冷却晶出工程と
を有し、前記加熱濃縮工程と前記冷却晶出工程とを同時
に進行ゼしめ ; 作動流体を循環せしめて作動するヒ
ートポンプサイクルの作動流体の凝縮潜熱により前記加
熱濃縮工程における力「熱を行ない、前記作動流体のサ
イクル中の作動流体の冷熱により前記冷却晶出工程にお
ける冷却を行ない ;前記加熱濃縮工程において得られ
た被濃縮液からの蒸気により前記ヒートポンプサイクル
における冷媒の加熱蒸発を行ない、前記冷却晶出工程で
蒸発した作動流体を、圧縮機により前記ヒートポンプサ
イクル中に導くことを特徴とする濃縮品出方法。
[Claims] 1. A heating concentration step in which heating and concentration are repeated while the liquid to be concentrated is circulated, and a cooling crystallization step in which a cooled product is repeatedly discharged while the concentrated liquid concentrated in the heating and concentration step is circulated. The heating concentrating step and the cooling crystallization step are carried out simultaneously; heating in the heating concentrating step is performed by the latent heat of condensation of the working fluid of a heat pump cycle that operates by circulating the working fluid; Concentration characterized in that the cooling in the cooling product output step is performed by the cold heat of the working fluid during the cycle; and the heating evaporation of the refrigerant in the heat pump cycle is performed by vapor from the liquid to be concentrated obtained in the heating concentration step. How to display items. 2. The method according to claim 1, wherein the cooling of the working fluid is performed using latent heat of vaporization of the working fluid. 3. The method according to claim 1, wherein the cooling of the working fluid by cold heat is performed by sensible heat of the working fluid. 4. A heating concentration step in which heating and concentration are repeated without circulating the liquid to be concentrated, and a cooling crystallization step in which cooling and crystallization are repeated while circulating the concentrated liquid concentrated in the heating and concentration step, The process and the cooling crystallization process are carried out simultaneously; the heat pump cycle operates by circulating the working fluid, and the heat in the heating and concentrating process is generated by the latent heat of condensation of the working fluid, and the operation of the working fluid during the cycle is carried out. Cooling is performed in the cooling crystallization step by the cold heat of the fluid; heating evaporation of the refrigerant in the heat pump cycle is performed by vapor from the liquid to be concentrated obtained in the heating concentration step, and the working fluid evaporated in the cooling crystallization step A method for producing a concentrated product, characterized in that the product is introduced into the heat pump cycle by a compressor.
JP745583A 1983-01-21 1983-01-21 Concentrating crystallization method Granted JPS59132903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP745583A JPS59132903A (en) 1983-01-21 1983-01-21 Concentrating crystallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP745583A JPS59132903A (en) 1983-01-21 1983-01-21 Concentrating crystallization method

Publications (2)

Publication Number Publication Date
JPS59132903A true JPS59132903A (en) 1984-07-31
JPH0379041B2 JPH0379041B2 (en) 1991-12-17

Family

ID=11666294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP745583A Granted JPS59132903A (en) 1983-01-21 1983-01-21 Concentrating crystallization method

Country Status (1)

Country Link
JP (1) JPS59132903A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160684A (en) * 1985-01-07 1986-07-21 Noozeru Eng Kk Flow rate control device
JPH0866511A (en) * 1994-08-27 1996-03-12 Maruka Kk Lottery game device
JP2010214375A (en) * 2010-07-05 2010-09-30 Shionogi & Co Ltd Crystallizer, crystallization method, and concentration crystallization system
CN105833562A (en) * 2016-05-03 2016-08-10 南京航空航天大学 Vacuum evaporation concentration crystallization system and method
CN105854336A (en) * 2016-05-26 2016-08-17 中国科学院理化技术研究所 High temperature and low temperature coupled concentrating system capable of achieving heat recycling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237201A (en) * 1988-07-27 1990-02-07 Kawasaki Heavy Ind Ltd Cyclone coal burning equipment with precombustor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237201A (en) * 1988-07-27 1990-02-07 Kawasaki Heavy Ind Ltd Cyclone coal burning equipment with precombustor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160684A (en) * 1985-01-07 1986-07-21 Noozeru Eng Kk Flow rate control device
JPH0454109B2 (en) * 1985-01-07 1992-08-28 Noozeru Enjiniaringu Kk
JPH0866511A (en) * 1994-08-27 1996-03-12 Maruka Kk Lottery game device
JP2010214375A (en) * 2010-07-05 2010-09-30 Shionogi & Co Ltd Crystallizer, crystallization method, and concentration crystallization system
CN105833562A (en) * 2016-05-03 2016-08-10 南京航空航天大学 Vacuum evaporation concentration crystallization system and method
CN105854336A (en) * 2016-05-26 2016-08-17 中国科学院理化技术研究所 High temperature and low temperature coupled concentrating system capable of achieving heat recycling

Also Published As

Publication number Publication date
JPH0379041B2 (en) 1991-12-17

Similar Documents

Publication Publication Date Title
JP5599168B2 (en) Solidification equipment for solution and waste liquid
US2896419A (en) Fresh water recovery process and apparatus for use in same
JP2004136273A (en) Method for solution separation by multiple heat exchange vacuum distillation, cooling and freezing, and method of desalting seawater
US5417084A (en) Vacuum concentrating plant
CN105819531B (en) A kind of energy saving heat pump medium temperature spray evaporation system
JP2844295B2 (en) Vacuum concentrator
US4324983A (en) Binary vapor cycle method of electrical power generation
JPS59132903A (en) Concentrating crystallization method
US4735641A (en) Apparatus and method of producing refrigeration as ice at the triple point of water
CN213221027U (en) Ammonium magnesium sulfate evaporation crystallization equipment
FI81501C (en) Procedure for icing
CN111939586A (en) Vacuum sublimation evaporation cold-heat energy separation method distributed energy supply station
US2521751A (en) Refrigerating plant
JP2776200B2 (en) Absorption type ice cold storage device
JPH06320140A (en) Vacuum distilling plant for water
CN1736526A (en) Energy-saving three-stage vacuum evaporation concentrate crystallization method
JPS6217119B2 (en)
SU583354A1 (en) Method of operation of absorption refrigerating installation
CN1147618A (en) Technological process for double-effect bromization absorption type refrigerator
SU1383061A1 (en) System for preparing air for refrigerating chamber
JPS61125403A (en) Operating method of distillation tower
JPS5832301B2 (en) absorption refrigerator
SU567043A1 (en) Absorption-resorption refrigeration plant
JPH0237201B2 (en) NOSHUKUSHOSEKIHOHOOYOBINOSHUKUSHOSEKISOCHI
CN114522433A (en) Closed heat cycle heat pump ultralow temperature evaporation concentration system and working method thereof