JP2844295B2 - Vacuum concentrator - Google Patents

Vacuum concentrator

Info

Publication number
JP2844295B2
JP2844295B2 JP5182141A JP18214193A JP2844295B2 JP 2844295 B2 JP2844295 B2 JP 2844295B2 JP 5182141 A JP5182141 A JP 5182141A JP 18214193 A JP18214193 A JP 18214193A JP 2844295 B2 JP2844295 B2 JP 2844295B2
Authority
JP
Japan
Prior art keywords
stock solution
heat
heating
vacuum
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5182141A
Other languages
Japanese (ja)
Other versions
JPH078703A (en
Inventor
健 佐久間
正樹 佐久間
健司 佐久間
清人 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5182141A priority Critical patent/JP2844295B2/en
Publication of JPH078703A publication Critical patent/JPH078703A/en
Application granted granted Critical
Publication of JP2844295B2 publication Critical patent/JP2844295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば、果汁、酵素、
天然色素、天然香料、天然調味料、イースト抽出液、蛋
白溶液、有機酸、核酸、医薬品等を濃縮したり、低沸点
溶液から溶剤を回収するために用いられる比較的低温で
原液を加熱蒸発により濃縮するための真空濃縮装置に関
し、特に、ヒートポンプと組み合わせることによって極
めて高い熱効率を得ることのできる真空濃縮装置に関す
るものである。
The present invention relates to, for example, fruit juices, enzymes,
By heating and evaporating the stock solution at a relatively low temperature, which is used to concentrate natural pigments, natural flavors, natural seasonings, yeast extracts, protein solutions, organic acids, nucleic acids, pharmaceuticals, etc., and to recover solvents from low-boiling solutions The present invention relates to a vacuum concentrator for concentrating, and more particularly, to a vacuum concentrator capable of obtaining extremely high thermal efficiency by combining with a heat pump.

【0002】[0002]

【従来の技術】比較的低温で原液を濃縮するための濃縮
装置としては、従来、温水加熱による濃縮装置が用いら
れている。しかし、温水加熱による濃縮装置は通常加熱
源として飽和水蒸気が用いられているので装置の立ち上
がりの時間が長く、また温度設定の変更に長時間を要す
るという欠点がある。装置の立ち上がり時間を短縮させ
るために減圧蒸気加熱による真空濃縮装置が開発され
た。この装置は150〜1100Torrの減圧下で飽
和蒸気を発生させ、この蒸気の潜熱によって原液を間接
加熱するものである。
2. Description of the Related Art As a concentrating device for concentrating a stock solution at a relatively low temperature, a concentrating device using hot water heating has been conventionally used. However, a concentrating device using hot water heating has a drawback in that, since saturated steam is usually used as a heating source, the device takes a long time to start up, and it takes a long time to change the temperature setting. A vacuum concentrator using reduced pressure steam heating was developed to shorten the start-up time of the device. This apparatus generates saturated steam under a reduced pressure of 150 to 1100 Torr, and indirectly heats the stock solution by the latent heat of the steam.

【0003】上記した従来公知の真空濃縮装置は装置の
立ち上がり時間が短く、設定温度の変更も容易でしかも
異常昇温等なく安定性が高いが、真空ポンプまたはエジ
ェクタを使用して蒸気を吸引するため蒸気のロスが大き
く、システム構成機器が多いためメンテナンスに多大の
労力を要する。さらに、蒸気圧を150Torr以下に
設定することは困難であるので、加熱蒸気の温度を60
℃以下することはできず、熱に弱い果汁、酵素、天然色
素、天然香料、天然調味料、イースト抽出液、蛋白溶
液、有機酸、核酸、医薬品等を加熱濃縮する用途には使
用できないと共に、設定温度の調節精度も±1〜3℃と
比較的にラフである等の多くの欠点を有している。
[0003] The above-mentioned conventional vacuum concentrator has a short startup time, is easy to change the set temperature, and has high stability without abnormal temperature rise. However, a vacuum pump or an ejector is used to suck steam. Therefore, loss of steam is large, and maintenance work requires a great deal of labor because there are many system components. Further, since it is difficult to set the steam pressure to 150 Torr or less, the temperature of the heated steam is set at 60 Torr.
℃ or less, heat-sensitive juice, enzymes, natural pigments, natural flavors, natural seasonings, yeast extracts, protein solutions, organic acids, nucleic acids, can not be used for heat-concentrating applications, etc., There are many drawbacks such as the accuracy of adjusting the set temperature is relatively rough at ± 1 to 3 ° C.

【0004】これらの欠点を改善すべく、最近、ヒート
ポンプと真空蒸発装置とを組み合わせて、60℃以下の
加熱温度で使用可能な真空濃縮装置が提案された。この
装置は、特開平5−57101号公報に記載のごとく、
写真処理廃液等を蒸発濃縮するために開発されたもので
あって、エジェクタによって減圧に保たれた真空濃縮装
置の濃縮釜の中にヒートポンプのコイル状の凝縮器を配
置して減圧下で廃液を加熱し、蒸発した水分は濃縮釜の
周囲に設けた冷却室にてヒートポンプのコイル状の蒸発
器で冷却して凝縮し、ドレーンとして系外に取り出すよ
うにしたものである。
In order to improve these drawbacks, a vacuum concentrator which can be used at a heating temperature of 60 ° C. or less by combining a heat pump and a vacuum evaporator has recently been proposed. This device is described in Japanese Patent Application Laid-Open No. 5-57101,
Developed for evaporating and condensing photographic processing waste liquid, etc., a coil-shaped condenser of a heat pump is placed in a condenser of a vacuum concentrator maintained at a reduced pressure by an ejector, and the waste liquid is reduced under reduced pressure. The water that has been heated and evaporated is cooled and condensed by a coil evaporator of a heat pump in a cooling chamber provided around the concentrating pot, and is taken out of the system as a drain.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記特開平5
−57101号公報に記載の公知の真空濃縮装置は、加
熱源となるヒートポンプのコイル状の凝縮器を真空釜の
中に配置して、廃液を直接加熱しているので、特に、粘
度の高い原液を濃縮するときはコイル状の凝縮器の表面
に付着し、焦げ付いたり、また、伝熱を阻害して熱交換
効率を低下させるという欠点がある。また、原液に対す
る伝熱は自然対流によっているので、伝熱効率が悪く、
特に粘度の高い原液の場合は部分的に加熱され、品質を
悪くしたり、焦付を発生させる恐れがある。さらに、こ
のように直接加熱すると飛沫同伴が増え、製品の収率を
低下させると共に、特に泡の出やすい原液の場合は突沸
等を起こしやすく、その結果、不均一加熱による品質の
低下と、原液流出による収率の大幅な低下を招くことが
ある。
However, the above-mentioned Japanese Patent Application Laid-Open
In the known vacuum concentrator described in Japanese Patent No. 57101, a coiled condenser of a heat pump serving as a heating source is disposed in a vacuum pot and the waste liquid is directly heated. When it is concentrated, it has a drawback that it adheres to the surface of the coil-shaped condenser and is burnt, and that heat transfer is hindered and heat exchange efficiency is reduced. Also, the heat transfer to the undiluted solution is by natural convection, so the heat transfer efficiency is poor,
Particularly, in the case of an undiluted solution having a high viscosity, the solution is partially heated, so that the quality may be deteriorated, and there is a risk of causing burning. Furthermore, direct heating in this manner increases the entrainment of droplets, lowers the product yield, and in the case of a stock solution, which is likely to produce bubbles, tends to cause bumping and the like. As a result, the quality is reduced due to uneven heating, and the stock solution is reduced. The outflow can cause a significant decrease in yield.

【0006】また、この公知の真空濃縮装置はエジェク
タによる真空発生方式を採用しているので、循環冷却水
の温度変化により真空度が不安定になり、品質のバラツ
キが発生したり、凝縮水を使用しているので前記の同伴
した飛沫が循環水やエジェクタ用ポンプを汚染させ、そ
の故障を引き起こすことがある。さらに、この公知の真
空濃縮装置は加熱源にヒートポンプの凝縮器を使用して
いるが、その熱媒体に通常使用されるフロンの蒸発潜熱
は比較的に低いので、(例えば、35℃におけるフロン
22の蒸発潜熱は41kcal/kg、水の蒸発潜熱は
577kcal/kg)原液の単位時間当たりの処理量
をあまり上げることはできない等の欠点がある。
Further, since this known vacuum concentrator employs a vacuum generation method using an ejector, the degree of vacuum becomes unstable due to a change in the temperature of the circulating cooling water, causing a variation in quality and the generation of condensed water. Due to the use, the entrained droplets may contaminate the circulating water and the ejector pump and cause a failure thereof. Further, this known vacuum concentrator uses a condenser of a heat pump as a heating source. However, since the latent heat of vaporization of Freon usually used as a heating medium is relatively low, (for example, Freon 22 at 35 ° C.). Has a latent heat of vaporization of 41 kcal / kg and a latent heat of vaporization of water of 577 kcal / kg).

【0007】本発明は、上記公知の真空濃縮装置の欠点
を改良して、60℃以下の加熱温度で使用可能であると
共に、加熱効率が高く、水蒸気、冷却用水の使用を必要
とせず、安定性、操作性に優れ、しかも、製品の品質、
収率および単位時間当たりの生産量の高い真空濃縮装置
を提供することを目的としている。
The present invention solves the above-mentioned drawbacks of the known vacuum concentrator and can be used at a heating temperature of 60 ° C. or lower, has a high heating efficiency, does not require the use of steam and cooling water, and is stable. Excellent operability and operability, as well as product quality,
It is an object of the present invention to provide a vacuum concentrator having a high yield and a high output per unit time.

【0008】[0008]

【課題を解決するための手段】本発明者等は、鋭意研究
した結果、ヒートポンプを加熱源とする減圧蒸気発生器
で発生した減圧蒸気によって原液を間接的に加熱する熱
交換器と、加熱された原液を減圧下で低温沸騰させる真
空濃縮缶とを分離し、両者の間を循環ポンプによって原
液を強制的に循環させることにより、上記目的を達成し
うることを見出した。
Means for Solving the Problems As a result of intensive studies, the present inventors have found that a heat exchanger for indirectly heating a stock solution by a reduced pressure steam generated by a reduced pressure steam generator using a heat pump as a heating source, It has been found that the above-mentioned object can be achieved by separating the concentrated solution from a vacuum concentrator that boils at a low temperature under reduced pressure and forcibly circulating the solution by a circulation pump between the two.

【0009】 すなわち、本発明の真空濃縮装置は、
(a)コンプレッサ、熱交換用コイル、コンデンサ、膨
張弁、ベーパーコンデンサ用熱交換器、エバポレータを
連結する循環管路において、上記コンデンサと上記膨張
弁との間より分岐し別の膨張弁を介して上記熱交換用コ
イルに至るバイパス管路を設けると共に、上記2つの膨
張弁に冷媒を供給する流路を切り替える電磁弁を設ける
ことにより、加熱サイクルと冷凍サイクルとを切り替え
可能に構成したヒートポンプ、(b)上記ヒートポンプ
の冷凍サイクルにおける加熱源として働く熱交換用コイ
ルとの間接熱交換によって減圧下で液体熱媒体の減圧蒸
気を発生させる減圧蒸気発生器、(c)上記減圧蒸気発
生器で発生した減圧蒸気との間接熱交換によって原液を
潜熱加熱する原液加熱用熱交換器および(d)減圧下で
原液を低温沸騰させて濃縮する原液濃縮部と該原液濃縮
部において発生した蒸気を上記ヒートポンプの冷凍サイ
クルにおける冷熱源として働く熱交換器との間接熱交換
によって冷却濃縮させるベーパーコンデンサとを備えた
真空蒸発缶とよりなり、上記真空蒸発缶の原液濃縮部と
上記原液加熱用熱交換器との間を循環ポンプによって原
液を強制的に循環させる循環管路を設けたことを特徴と
する。
That is, the vacuum concentrator according to the present invention
(A) In a circulation line connecting a compressor, a heat exchange coil, a condenser, an expansion valve, a heat exchanger for a vapor condenser, and an evaporator, a branch is made from between the condenser and the expansion valve and through another expansion valve. A heat pump configured to be capable of switching between a heating cycle and a refrigeration cycle by providing a bypass pipe line leading to the heat exchange coil and providing an electromagnetic valve for switching a flow path for supplying refrigerant to the two expansion valves; b) a reduced-pressure steam generator for generating reduced-pressure steam of a liquid heat medium under reduced pressure by indirect heat exchange with a heat exchange coil serving as a heating source in the refrigeration cycle of the heat pump; (c) generated by the reduced-pressure steam generator A stock solution heating heat exchanger for latent heat of the stock solution by indirect heat exchange with reduced pressure steam, and (d) a stock solution at a low temperature under reduced pressure. A vacuum evaporator comprising a stock solution concentrating unit for concentrating and concentrating and a vapor condenser for cooling and concentrating the steam generated in the stock solution concentrating unit by indirect heat exchange with a heat exchanger serving as a cold heat source in the refrigeration cycle of the heat pump. A circulation pipe is provided for forcibly circulating the undiluted solution by a circulating pump between the undiluted solution concentration section of the vacuum evaporator and the undiluted solution heat exchanger.

【0010】上記減圧蒸気発生器と上記原液加熱用熱交
換器とは別々に構成して両者を管路で連結してもよい
が、上記減圧蒸気発生器と上記原液加熱用熱交換器とを
一つの真空容器内に一体的に組み込んでもよい。この真
空濃縮装置を起動する際は、まず上記減圧蒸気発生器に
供給される液体熱媒体の温度を運転温度よりも下げてお
く必要がある。そのために装置立ち上げ時に、減圧蒸気
発生器に導入された液体熱媒体の温度をヒートポンプの
加熱サイクルにおける冷熱源との間接熱交換によって設
定温度に設定する液体熱媒体の設定温度調節機構を備え
た。
The reduced-pressure steam generator and the stock solution heating heat exchanger may be constructed separately and connected to each other by a pipe. However, the reduced-pressure steam generator and the stock solution heating heat exchanger are connected to each other. They may be integrated into one vacuum vessel. When starting the vacuum concentrator, it is necessary to first lower the temperature of the liquid heat medium supplied to the reduced-pressure steam generator from the operating temperature. Therefore, at the time of start-up of the apparatus, there is provided a set temperature control mechanism for the liquid heat medium that sets the temperature of the liquid heat medium introduced into the reduced pressure steam generator to the set temperature by indirect heat exchange with a cold heat source in the heat cycle of the heat pump. .

【0011】しかも、この液体熱媒体の設定温度調節機
構は、新たに別体として減圧蒸気発生器内に設けるので
はなく、ヒートポンプの冷凍サイクルにおける加熱源と
して働く凝縮器を、ヒートポンプのパイプラインを切り
替えることによって、加熱サイクルにおける冷熱源とし
て働く蒸発器に兼用させることによってその機能を発揮
できるようにした。
In addition, the set temperature adjusting mechanism for the liquid heat medium is not provided separately in the reduced-pressure steam generator, but is provided with a condenser serving as a heating source in a refrigeration cycle of the heat pump and a pipeline of the heat pump. By switching, the function can be exhibited by also using the evaporator serving as a cold heat source in the heating cycle.

【0012】上記真空蒸発缶は下半分に原液濃縮部、上
部にベーパーコンデンサを備えたサイクロン型とし、原
液加熱用交換器で加熱された原液は該蒸発缶の円筒状の
側壁より缶内面の接線方向に原液供給ノズルにより噴射
導入される。そして、蒸発缶の底部には導管を介して液
循環ポンプが取り付けられ、原液を原液加熱用交換器と
真空蒸発缶との間を強制的に循環させるようにしてい
る。
The vacuum evaporator is a cyclone type having a stock solution concentrating unit in the lower half and a vapor condenser in the upper part, and the stock solution heated by the stock solution heating exchanger is tangential to the inner surface of the can from the cylindrical side wall of the evaporator. It is injected by a stock solution supply nozzle in the direction. A liquid circulation pump is attached to the bottom of the evaporator via a conduit so that the stock solution is forcibly circulated between the stock solution heating exchanger and the vacuum evaporator.

【0013】[0013]

【作用】本発明の真空濃縮装置は、上記のように構成さ
れているため、原液は、原液加熱用熱交換器内を強制的
に循環させられながら減圧蒸気発生器内でヒートポンプ
の冷凍サイクルにおける加熱源によって加熱されて発生
した減圧蒸気によって間接的に加熱される。そして加熱
された原液は真空蒸発缶内に導入されて、減圧下で低温
沸騰して濃縮される。この際、発生した蒸気は真空蒸発
缶の上部のベーパーコンデンサでヒートポンプの冷凍サ
イクルにおける冷熱源との熱交換によって凝縮され、ド
レーンとなって系外に取り出される。
Since the vacuum concentrator of the present invention is configured as described above, the undiluted solution is forcibly circulated in the undiluted solution heat exchanger in the reduced-pressure steam generator in the refrigerating cycle of the heat pump. It is indirectly heated by the reduced pressure steam generated by being heated by the heating source. Then, the heated undiluted solution is introduced into a vacuum evaporator, and boiled under reduced pressure at a low temperature to be concentrated. At this time, the generated steam is condensed by heat exchange with a cold heat source in a refrigeration cycle of a heat pump in a vapor condenser above the vacuum evaporator, and is taken out of the system as a drain.

【0014】[0014]

【実施例】【Example】

(実施例1)本発明の実施例を図1によって説明する。
本実施例の真空濃縮装置は真空蒸発缶1と減圧蒸気発生
器20とヒートポンプ30とより構成され、原液加熱用
熱交換器7は減圧蒸気発生器20内に一体に組み込まれ
ている。真空蒸発缶1は下部に原液濃縮部2、上部にベ
ーパーコンデンサ3を備えた密閉されたサイクロン型の
缶体より構成されている。4は液循環ポンプで、上記原
液濃縮部2より抽出した原液を循環管路15−減圧蒸気
発生器20内に設けた原液加熱用熱交換器7−循環管路
16−液量調節弁8−原液供給ノズル9を経て真空蒸発
缶1に循環させている。
(Embodiment 1) An embodiment of the present invention will be described with reference to FIG.
The vacuum concentrator according to the present embodiment includes a vacuum evaporator 1, a reduced-pressure steam generator 20, and a heat pump 30, and the heat exchanger 7 for heating a stock solution is integrated into the reduced-pressure steam generator 20. The vacuum evaporator 1 comprises a closed cyclone-type can body provided with a stock solution concentrator 2 at the lower part and a vapor condenser 3 at the upper part. Reference numeral 4 denotes a liquid circulation pump which is a heat exchanger 7 for heating a raw liquid provided in a circulation line 15-a reduced-pressure steam generator 20-a circulation line 16-a liquid amount adjusting valve 8--for a raw liquid extracted from the raw liquid concentrating unit 2. It is circulated through the undiluted solution supply nozzle 9 to the vacuum evaporator 1.

【0015】5は原液供給タンクで原液供給管路13、
流量調節弁19を経て原液を循環管路15に供給してい
る。6は濃縮液取出し用ポンプで、循環管路15より濃
縮液取出し管路14を経て濃縮された製品を取り出すた
めのポンプである。8の液量調節弁は真空蒸発缶1内の
蒸発量をコントロールするためのものであって、真空蒸
発缶1内の原液の蒸発量とベーパーコンデンサ3におけ
る冷却凝縮力とのバランスをとるために、ベーパーコン
デンサ用の熱交換器38の入口温度によって自動的に弁
の開度が調整されている。
Reference numeral 5 denotes a stock solution supply tank,
The stock solution is supplied to the circulation line 15 via the flow control valve 19. Reference numeral 6 denotes a pump for taking out a concentrated liquid, which is a pump for taking out the product concentrated from the circulation line 15 through the concentrated liquid taking-out line 14. The liquid amount control valve 8 is for controlling the amount of evaporation in the vacuum evaporator 1, and is used to balance the amount of evaporation of the stock solution in the vacuum evaporator 1 with the cooling and condensing power in the vapor condenser 3. The opening of the valve is automatically adjusted according to the inlet temperature of the heat exchanger 38 for the vapor condenser.

【0016】10は蒸発缶1内の原液の液面の高さを測
定するためのレベルセンサーである。液量調節弁19は
レベルセンサー10と連動して、蒸発缶1内に導入する
原液の量を自動的に調整している。9の原液供給ノズル
は蒸発缶1の側壁の内面に接線方向に原液を噴射供給す
るようにされている。11はドレーンタンクでベーパー
コンデンサ3で凝縮された凝縮液を管路17を経て受け
入れるタンクである。12は真空ポンプで管路17、1
8を経て真空蒸発缶内を真空にするためのものである。
Reference numeral 10 denotes a level sensor for measuring the level of the stock solution in the evaporator 1. The liquid amount control valve 19 automatically adjusts the amount of the stock solution introduced into the evaporator 1 in conjunction with the level sensor 10. The stock solution supply nozzle 9 injects and feeds the stock solution tangentially to the inner surface of the side wall of the evaporator 1. A drain tank 11 receives the condensed liquid condensed by the vapor condenser 3 through a pipe 17. Reference numeral 12 denotes a vacuum pump, and lines 17 and 1
This is for making the inside of the vacuum evaporator vacuum through the process 8.

【0017】減圧蒸気発生器20は下部に減圧蒸気発生
部21、上部に原液加熱用熱交換器7を内蔵する熱交換
部22を備えた密閉された缶体より構成されていて、下
部に液体熱媒体である水を供給する給水管23、上部に
は圧力調整用真空ポンプ25に連通する管路24がそれ
ぞれ接続されている。26は圧力仕切弁であり、減圧蒸
気発生器20の圧力が設定圧力になれば自動的に閉鎖さ
れるように構成されている。
The reduced-pressure steam generator 20 comprises a sealed can body provided with a reduced-pressure steam generator 21 at the lower part and a heat exchange part 22 containing the heat exchanger 7 for heating the undiluted solution at the upper part, and a liquid at the lower part. A water supply pipe 23 for supplying water as a heat medium is connected to a pipe 24 connected to a vacuum pump 25 for pressure adjustment at an upper part thereof. Reference numeral 26 denotes a pressure gate valve which is automatically closed when the pressure of the reduced-pressure steam generator 20 reaches a set pressure.

【0018】 30はヒートポンプであって、加熱サイ
クルと冷凍サイクルとを切り替え可能に構成されてい
る。すなわち、加熱サイクルでは、バイパス管路57に
設けた吐出ガス電磁弁43をオン、吐出ガス電磁弁42
をオフ;液電磁弁49をオン、液電磁弁48をオフ;バ
イパス管路56に設けた吸入ガス電磁弁45をオン、液
電磁弁50をオフして、コンブレッサ31−オイルセパ
レタ32−吐出ガス電磁弁43−サブコンデンサ34−
レシーバタンク35−フイルタドライヤ36−液電磁弁
49−バイパス管路58に設けた膨張弁47−熱交橡用
コイル33−液電磁弁45−サブコンデンサ39−アキ
ュムレータ40−フイルタ41−コンプレッサ31の閉
回路を構成する。 この閉回路では、サブコンデンサ34
はコンプレッサ31によって圧縮され高温になった冷媒
によって加熱されるので、送風機51で空冷する。この
時発生する加熱空気は熱源として他の熱消費機器や暖房
に使用することができる。また、系内の圧力または温度
は、サブコンデンサ39の空冷用の送風機52をオン−
オフ制御して調節する。 一方、膨張弁47によって断熱
膨張されて液化した冷媒は、減圧蒸気発生器20の熱交
換用コイル33内において真空蒸気発生器20内の液体
熱媒体から熱を吸収して蒸発する。従って、減圧蒸気発
生器20の熱交換用コイル33内の冷媒は、真空蒸気発
生器20内の液体熱媒体を間接熱交換によって設定温度
まで冷却するための冷熱源として機能する。
[0018] 30 is a heat pump, heating Sai
And a refrigeration cycle.
You. That is, in the heating cycle, the bypass line 57
The provided discharge gas solenoid valve 43 is turned on, and the discharge gas solenoid valve 42
Off; liquid solenoid valve 49 on; liquid solenoid valve 48 off;
The suction gas solenoid valve 45 provided in the bypass passage 56 is turned on,
Turn off the solenoid valve 50, and set the compressor 31-oil separator
Letter 32-Discharge gas solenoid valve 43-Subcondenser 34-
Receiver tank 35-Filter dryer 36-Liquid solenoid valve
49—expansion valve 47 provided in bypass line 58—for heat exchange rubber
Coil 33-liquid solenoid valve 45-sub-condenser 39-space
Of the accumulator 40-filter 41-compressor 31
Configure the circuit. In this closed circuit, the sub-capacitor 34
Is a refrigerant that has been compressed by the compressor 31 and has become high temperature.
Therefore, the air is cooled by the blower 51. this
The generated heating air is used as a heat source for other heat consuming equipment and heating
Can be used for Also, the pressure or temperature in the system
Turns on the blower 52 for air cooling of the sub-condenser 39-
Adjust by turning off. On the other hand, the expansion valve 47 insulates
The expanded and liquefied refrigerant is subjected to heat exchange with the reduced-pressure steam generator 20.
The liquid in the vacuum steam generator 20 in the replacement coil 33
Absorbs heat from the heat medium and evaporates. Therefore, reduced pressure steam
The refrigerant in the heat exchange coil 33 of the creature 20 generates vacuum steam.
Set the temperature of the liquid heating medium in the creature 20 by indirect heat exchange.
Functions as a cold heat source for cooling to

【0019】 冷凍サイグルでは、吐出ガス電磁弁42
をオン、吐出ガス電磁弁43をオフ;液電磁弁48をオ
ン、液電磁弁49をオフ;液電磁弁50をオン、吸入ガ
ス電磁弁45をオフして、コンプレッサ31−オイルセ
パレタ32−吐出ガス電磁弁42−熱交換用コイル33
−液電磁弁50−サブコンデンサ34−レシーバタンク
35−フイルタドライヤ36−液電磁弁48−膨張弁4
6−ベーパーコンデンサ用熱交換器38−サブエバポレ
ータ39(加熱サイクルのサブコンデンサ39を共用す
る)−アキュムレータ40−フイルタ41−コンプレッ
サ31の濃縮運転中の閉回路を構成する。 この冷凍サイ
クルでは、サブコンデンサ34、サブエバポレータ39
に送風する送風機51、52およびバイパス管路55に
設けた吸入ガス電磁弁44を、系内の圧力(温度)によ
ってオン−オフ制御して、吐出1の圧力を一定に維持す
る。 この閉回路では、ベーパーコンデンサ3の熱交換器
38内を流れる冷媒は、膨張弁46によって断熱膨張さ
れて温度が降下し、真空蒸発缶1の原液濃縮部2におい
て発生した蒸気を間接熱交換によって冷却凝縮させる冷
熱源として機能する。 一方、減圧蒸気発生器20の熱交
換用コイル33内を流れる冷媒は、コンプレッサ31に
よって圧縮されて高温になり、真空蒸気発生器20内の
液体熱媒体を間接熱交換によって加熱する加熱源として
機能する。37は吐出側圧力計、53は圧力スイッチ、
54は吸入側圧力計、59はバイパス管路である。な
お、冷媒にはフロン22を使用している。
In the refrigeration sigle, the discharge gas solenoid valve 42
On, discharge gas solenoid valve 43 off; liquid solenoid valve 48 on
The liquid solenoid valve 49 is turned off; the liquid solenoid valve 50 is turned on,
The solenoid valve 45 is turned off, and the compressor 31
Pallet 32-Discharge gas solenoid valve 42-Heat exchange coil 33
-Liquid solenoid valve 50-sub-condenser 34-receiver tank
35-filter dryer 36-liquid solenoid valve 48-expansion valve 4
6-Heat exchanger for vapor condenser 38-Sub evaporator
Data 39 (sharing the sub-condenser 39 of the heating cycle
-Accumulator 40-filter 41-compressor
A closed circuit is formed during the concentration operation of the fuel cell 31. This frozen rhino
Sub-condenser 34, sub-evaporator 39
To the blowers 51 and 52 and the bypass pipe 55
The provided intake gas solenoid valve 44 is controlled by the pressure (temperature) in the system.
On-off control to maintain the pressure of discharge 1 constant.
You. In this closed circuit, the heat exchanger of the vapor condenser 3
38 is adiabatically expanded by the expansion valve 46.
And the temperature drops, and the solution is concentrated in the concentrate concentrate 2 of the vacuum evaporator 1.
To cool and condense the steam generated by indirect heat exchange
Functions as a heat source. On the other hand, heat exchange of the reduced-pressure steam generator 20
The refrigerant flowing through the replacement coil 33 is supplied to the compressor 31.
Therefore, it is compressed and becomes high temperature, and the inside of the vacuum steam generator 20 is
As a heating source to heat a liquid heat medium by indirect heat exchange
Function. 37 is a discharge side pressure gauge, 53 is a pressure switch,
54 is a suction side pressure gauge, and 59 is a bypass line. Note that Freon 22 is used as the refrigerant.

【0020】(実施例2)図2に示すように、この実施
例の真空濃縮装置は、減圧蒸気発生器20と原液加熱用
熱交換器7とは別々に構成されている。そして、減圧蒸
気発生器20で発生した減圧蒸気は原液加熱用熱交換器
7の上部に連通管29によって導入され、熱交換器7内
に設けられた原液加熱コイル27の中を流通する原液を
潜熱加熱した後、ドレーンとなって熱交換器7の下部よ
り管路28によって減圧蒸気発生器20に戻される。
(Embodiment 2) As shown in FIG. 2, in the vacuum concentrator according to this embodiment, a reduced-pressure steam generator 20 and a heat exchanger 7 for heating a stock solution are separately provided. The reduced-pressure steam generated by the reduced-pressure steam generator 20 is introduced into the upper portion of the stock solution heating heat exchanger 7 by the communication pipe 29, and the stock solution flowing through the stock solution heating coil 27 provided in the heat exchanger 7 is removed. After the latent heat, the water is drained and returned to the reduced-pressure steam generator 20 through the pipe 28 from below the heat exchanger 7.

【0021】次に、このように構成された真空濃縮装置
の運転方法を実施例1の装置について説明する。 〈立ち上げ時の減圧蒸気発生器内の圧力調整〉まずヒー
トポンプ30の冷媒回路を加熱サイクル運転にする。そ
のためには、吐出ガス電磁弁43、吸入ガス電磁弁4
5、液電磁弁49、送風機51をオンにして、コンプレ
ッサ31−オイルセパレタ32−吐出ガス電磁弁43−
サブコンデンサ34−レシーバタンク35−フイルタド
ライヤ36−液電磁弁49−膨張弁47−熱交換用コイ
ル33−吸入ガス電磁弁45−サブコンデンサ39(冷
凍サイクルのおけるサブエバポレータ39を共用する)
−アキュムレータ40−フイルタ41−コンプレッサ3
1の閉回路を形成する。
Next, a method of operating the vacuum concentrator configured as described above will be described with reference to the first embodiment. <Adjustment of Pressure in Vacuum Generator at Startup> First, the refrigerant circuit of the heat pump 30 is set to a heating cycle operation. For this purpose, the discharge gas solenoid valve 43, the suction gas solenoid valve 4
5, the liquid solenoid valve 49 and the blower 51 are turned on, and the compressor 31-oil separator 32-discharge gas solenoid valve 43-
Sub-condenser 34-Receiver tank 35-Filter dryer 36-Liquid solenoid valve 49-Expansion valve 47-Heat exchange coil 33-Suction gas solenoid valve 45-Sub-condenser 39 (Shares sub-evaporator 39 in the refrigeration cycle)
-Accumulator 40-Filter 41-Compressor 3
1 is formed.

【0022】そして、吐出ガス電磁弁43、吸入ガス電
磁弁45、液電磁弁49をオンにして、サブコンデンサ
39の送風機52をオン−オフ制御して、減圧蒸気発生
器20内の熱交換用コイル33を冷却して減圧蒸気発生
部21内の水の温度を冷却し、濃縮に必要な温度になる
ように熱交換部22の圧力を圧力調整用真空ポンプ25
で調整する。
Then, the discharge gas solenoid valve 43, the suction gas solenoid valve 45, and the liquid solenoid valve 49 are turned on, and the blower 52 of the sub-condenser 39 is turned on and off to control heat exchange in the reduced-pressure steam generator 20. The coil 33 is cooled to cool the temperature of the water in the reduced-pressure steam generating section 21, and the pressure of the heat exchanging section 22 is adjusted to a temperature necessary for concentration by the pressure adjusting vacuum pump 25.
Adjust with.

【0023】〈濃縮運転〉減圧蒸気発生器20内の圧力
が所定の圧力になった時点で、ヒートポンプ30の冷媒
回路を冷凍サイクルに切り替える。そのためには、吐出
ガス電磁弁42、液電磁弁48、50をオンにして、サ
ブコンデンサ34の送風機51、サブエバポレータ39
の送風機52および吸入ガス電磁弁44を系内の圧力ま
たは温度でオン−オフ制御運転することによって、減圧
蒸気発生器20内の熱交換用コイル33を加熱して減圧
蒸気発生部21内の水を加熱して低温沸騰させて減圧蒸
気を発生させる。
<Concentration Operation> When the pressure in the reduced-pressure steam generator 20 reaches a predetermined pressure, the refrigerant circuit of the heat pump 30 is switched to a refrigeration cycle. For this purpose, the discharge gas solenoid valve 42 and the liquid solenoid valves 48 and 50 are turned on, and the blower 51 of the sub-condenser 34 and the sub-evaporator 39 are turned on.
By operating the blower 52 and the suction gas solenoid valve 44 on and off with the pressure or temperature in the system, the heat exchange coil 33 in the reduced-pressure steam generator 20 is heated, and the water in the reduced-pressure steam generator 21 is heated. Is heated and boiled at a low temperature to generate reduced-pressure steam.

【0024】真空蒸発缶1内の真空度を真空ポンプ12
によって設定圧力に設定した後、原液は原液供給タンク
5より原液供給管路13、循環缶路15を経て減圧蒸気
発生器20内の原液加熱用熱交換器7に供給される。熱
交換器7内の原液はヒートポンプ30の熱交換用コイル
33によって加熱されて発生した減圧蒸気によって間接
的に潜熱加熱される。加熱された原液は循環管路16を
経て真空蒸発缶1の原液濃縮部2に供給される。原液濃
縮部2の原液のレベルはレベルセンサ10によって測定
され、その結果は液量調節弁19にフィードバックされ
て新たに供給される液の流量が調節される。原液濃縮部
2内の原液は真空蒸発缶1内の真空度に応じて低温沸騰
して水分が蒸発して濃縮されるが、この蒸発量のコント
ロールはベーパーコンデンサ3の熱交換器38の入口温
度によって液量調節弁8の開度を調節することによって
行なわれる。
The degree of vacuum in the vacuum evaporator 1 is controlled by a vacuum pump 12
After setting the pressure to the set pressure, the stock solution is supplied from the stock solution supply tank 5 to the stock solution heating heat exchanger 7 in the reduced-pressure steam generator 20 via the stock solution supply line 13 and the circulation can passage 15. The stock solution in the heat exchanger 7 is indirectly latent-heated by the reduced pressure steam generated by being heated by the heat exchange coil 33 of the heat pump 30. The heated stock solution is supplied to the stock solution concentrating unit 2 of the vacuum evaporator 1 via the circulation line 16. The level of the undiluted solution in the undiluted solution concentrating unit 2 is measured by the level sensor 10, and the result is fed back to the liquid amount control valve 19 to adjust the flow rate of the newly supplied liquid. The stock solution in the stock solution concentrating unit 2 boils at a low temperature in accordance with the degree of vacuum in the vacuum evaporator 1 and evaporates and concentrates water. The evaporation amount is controlled by the inlet temperature of the heat exchanger 38 of the vapor condenser 3. The adjustment is performed by adjusting the opening of the liquid amount control valve 8.

【0025】発生した蒸気はベーパーコンデンサ3にお
いて、ヒートポンプ30の冷熱が供給される熱交換器3
8によって間接的に冷却される。冷却されて凝縮した凝
縮水は管路17を経てドレーンタンク11に貯えられ開
閉弁を経て系外に排出される。一方、製品である濃縮液
は循環ポンプ4の下流で循環管路15より分岐された濃
縮液取出し管路14を経て濃縮液取出し用ポンプ6によ
って取出される。
The generated steam is supplied to the heat exchanger 3 to which the heat of the heat pump 30 is supplied in the vapor condenser 3.
8 indirectly cooled. The condensed water that has been cooled and condensed is stored in the drain tank 11 via a pipe 17 and discharged out of the system via an on-off valve. On the other hand, the concentrate, which is a product, is taken out by the concentrate take-out pump 6 via the concentrate take-out line 14 branched from the circulation line 15 downstream of the circulation pump 4.

【0026】〈操業例〉まず、ヒートポンプ30を加熱
サイクルにしてヒートポンプ30を始動して減圧蒸気発
生器20内の水を冷却してほぼ30℃に設定する。次に
真空ポンプ25を始動して減圧蒸気発生器20内の圧力
を40Torrに調整して圧力調整弁26を閉じる。次
にヒートポンプ30を冷凍サイクルに切り替えて熱交換
用コイル33によって減圧蒸気発生部21の水を加熱す
る。この加熱によって約45℃の減圧蒸気が発生する。
一方、真空蒸発缶1内の圧力を真空ポンプ12によって
10Torrに設定する。蒸発缶1内の圧力が設定圧力
に到達すれば、原液循環ポンプ4を始動して原液を原液
加熱用熱交換器7に送液し、濃縮運転を開始する。
<Operation Example> First, the heat pump 30 is set to a heating cycle, the heat pump 30 is started, and the water in the reduced-pressure steam generator 20 is cooled to about 30 ° C. Next, the vacuum pump 25 is started to adjust the pressure in the reduced-pressure steam generator 20 to 40 Torr, and the pressure regulating valve 26 is closed. Next, the heat pump 30 is switched to a refrigeration cycle, and the water in the reduced-pressure steam generator 21 is heated by the heat exchange coil 33. This heating produces a reduced pressure steam of about 45 ° C.
On the other hand, the pressure in the vacuum evaporator 1 is set to 10 Torr by the vacuum pump 12. When the pressure in the evaporator 1 reaches the set pressure, the stock solution circulating pump 4 is started to send the stock solution to the stock solution heating heat exchanger 7 to start the concentration operation.

【0027】操作条件ならびにその結果は次の通りであ
る。 原料:オレンジジュース 原液組成:水分87.5wt% 原液仕込み量:151.8kg 原液入口温度(原液供給管路13内) 15℃ 原液加熱温度(原液加熱用熱交換器7内) 34℃ 蒸発温度(真空蒸発缶1内) 15〜20
℃ 操作真空度(真空蒸発缶1内) 10〜15
Torr 加熱源温度(熱交換用コイル33) 約45℃ この条件で2時間運転した結果、濃縮液(水分62.5
wt%)50.5kgが得られた。パネルテストを行な
った結果、得られた製品の色および風味は原液と全く変
わらないという評価が得られた。
The operating conditions and the results are as follows. Raw material: orange juice Stock solution composition: water 87.5 wt% Stock solution preparation amount: 151.8 kg Stock solution inlet temperature (in stock solution supply line 13) 15 ° C Stock solution heating temperature (in stock solution heating heat exchanger 7) 34 ° C Evaporation temperature ( Vacuum evaporator 1) 15-20
℃ Operating vacuum (in vacuum evaporator 1) 10-15
Torr Heat source temperature (heat exchange coil 33) Approx. 45 ° C. After operating for 2 hours under these conditions, the concentrated liquid (water content of 62.5%) was obtained.
50.5 kg). As a result of a panel test, it was evaluated that the color and flavor of the obtained product were not different from those of the stock solution.

【0028】[0028]

【発明の効果】本発明の真空濃縮装置は、減圧蒸気によ
って原液をを間接的に加熱す熱交換器と加熱された原液
を減圧下で低温沸騰させる真空濃縮缶とを分離し、両者
の間を循環ポンプによって原液を強制的に循環させる構
成としたので、原液加熱用の熱交換器においては原液が
濃縮されないので濃縮物が加熱面へ付着することが少な
く、真空濃縮缶では原液が加熱面によって加熱されるこ
とがないので不均一加熱、局部過熱、突沸等が起こら
ず、濃縮物の焦付や製品の品質の低下を起こすことがな
くなる。
The vacuum concentrator according to the present invention separates a heat exchanger for indirectly heating the stock solution by reduced pressure steam and a vacuum concentrator for boiling the heated stock solution under reduced pressure at a low temperature. Since the undiluted solution is forcibly circulated by the circulation pump, the undiluted solution is not concentrated in the heat exchanger for heating the undiluted solution, so that the concentrate hardly adheres to the heating surface. As a result, non-uniform heating, local overheating, bumping, etc. do not occur, and there is no risk of burning of the concentrate and deterioration of product quality.

【0029】原液を加熱するための減圧蒸気は減圧蒸気
発生器内で熱応答性のよいヒートポンプの冷凍サイクル
における加熱源によって加熱されるので、立ち上がりの
時間が短くてすみ、また設定温度の変更も容易にでき
る。また、加熱温度や圧力の微小量の調節が可能である
と共に、設定温度および圧力のバラツキが少ないので、
安定した操業が可能となる。原液は熱交換器内を強制的
に循環させられながら減圧蒸気によって間接的に加熱さ
れるので、熱効率が極めて高く、しかも、均一に加熱さ
れるので、焼き付きや変質を起こすことがなくなる。ま
た、処理時間が短くてすむので、生産効率を高めると共
に、長時間加熱による品質低下を回避することができ
る。
Since the reduced-pressure steam for heating the undiluted solution is heated by the heating source in the refrigeration cycle of the heat pump having good heat response in the reduced-pressure steam generator, the rising time can be short and the set temperature can be changed. Easy. In addition, since it is possible to adjust the heating temperature and pressure in small amounts, and because there is little variation in the set temperature and pressure,
Stable operation becomes possible. Since the undiluted solution is heated indirectly by the reduced-pressure steam while being forcibly circulated in the heat exchanger, the heat efficiency is extremely high, and since the undiluted solution is uniformly heated, no seizure or deterioration occurs. In addition, since the processing time is short, it is possible to increase the production efficiency and to avoid the deterioration in quality due to long-time heating.

【0030】原液の加熱にはパイプ状の熱交換器内を流
通する原液を減圧水蒸気の潜熱によって間接的に加熱し
ているので、蒸発缶内にヒートポンプの凝縮器を設置し
て原液を直接加熱する場合に比較して熱移動量が遥かに
高く、効率のよい加熱を行なうことができる。すなわ
ち、通常、ヒートポンプの熱媒体に使用されるフロン2
2と水蒸気の35℃における蒸発潜熱を比較すると、前
者が41kcal/kgに対して後者が577kcal
/kgと10倍以上の格差があり、単位流量当たりの加
熱効率は実行値において7〜12倍、本発明の減圧蒸気
を使用する方式の方が優れている。
Since the undiluted solution flowing in the pipe-shaped heat exchanger is indirectly heated by the latent heat of the depressurized steam, the undiluted solution is directly heated by installing a condenser of a heat pump in the evaporator. The amount of heat transfer is much higher than in the case where the heating is performed, and efficient heating can be performed. That is, CFC 2 which is usually used as a heat medium of a heat pump is used.
2 and steam at 35 ° C., the former was 41 kcal / kg and the latter was 577 kcal / kg.
/ Kg and a difference of 10 times or more, the heating efficiency per unit flow rate is 7 to 12 times as much as the actual value, and the method using the reduced pressure steam of the present invention is superior.

【0031】原液加熱用交換器で加熱された原液はサイ
クロン型をした蒸発缶の側壁より原液供給ノズルにより
缶内面の接線方向に噴射導入されるので、気液分離が容
易に行なわれて、蒸発効率を向上させることができる。
加熱された原液は真空蒸発缶内に導入されて、減圧下で
低温沸騰させて濃縮させるので、その真空度に応じて1
0〜110℃の範囲の任意の設定温度で濃縮することが
でき、また、その設定温度の変更も容易に行なうことが
できる。さらに、蒸発缶では加熱を行なわないので、焼
き付き、突沸、発生蒸気への飛沫同伴による製品の収率
の低下を回避することができる。
The undiluted solution heated by the undiluted solution heat exchanger is injected into the tangential direction of the inner surface of the can from the side wall of the cyclone-type evaporator by the undiluted solution supply nozzle. Efficiency can be improved.
The heated undiluted solution is introduced into a vacuum evaporator and is boiled at a low temperature under reduced pressure to be concentrated.
It can be concentrated at any set temperature in the range of 0 to 110 ° C., and the set temperature can be easily changed. Furthermore, since heating is not performed in the evaporator, reduction in product yield due to seizure, bumping, and entrainment of generated steam can be avoided.

【0032】真空濃縮缶に付設されたベーパーコンデン
サは熱応答性のよいヒートポンプの冷凍サイクルにおけ
る冷熱源によって冷却されるので、冷却温度の微小量の
調節が可能であると共に、設定温度のバラツキが少ない
ので、安定した操業が可能となる。また、設定温度の変
更も容易である。
Since the vapor condenser attached to the vacuum concentrator is cooled by the cold heat source in the refrigeration cycle of the heat pump having good heat response, it is possible to adjust the minute amount of the cooling temperature and to reduce the variation in the set temperature. Therefore, stable operation is possible. Further, it is easy to change the set temperature.

【0033】原液の加熱用に用いられる減圧蒸気は閉鎖
系で使用されるので、運転中の水の補給は不用であり、
その他コンデンサ用の冷却水等も全く使用しないので、
水の消費量は極めて少なく、また、装置の運転には電力
以外のエネルギーを全く使用しなくてよいので、システ
ムの運用、管理が極めて容易である。原液の加熱用の熱
交換部は真空蒸気発生器の蒸気雰囲気内にあるので腐食
が少なく、メンテナンスコストの低減が図れる。
Since the reduced pressure steam used for heating the undiluted solution is used in a closed system, it is not necessary to supply water during operation.
Other cooling water for condensers is not used at all.
The consumption of water is extremely small, and the operation of the apparatus does not require any energy other than electric power, so that the operation and management of the system are extremely easy. Since the heat exchange section for heating the undiluted solution is in the steam atmosphere of the vacuum steam generator, it has less corrosion and can reduce maintenance costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の真空濃縮装置の概略図。FIG. 1 is a schematic diagram of a vacuum concentrator according to an embodiment of the present invention.

【図2】本発明の他の実施例の真空濃縮装置の要部を示
す概略図。
FIG. 2 is a schematic view showing a main part of a vacuum concentrator according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 真空蒸発缶 2 原液濃縮部 3 ベーパーコンデンサ 4 原液循環ポンプ 5 原液供給タンク 6 濃縮液取出しポンプ 7 原液加熱用熱交換器 8 液量調節弁 9 原液供給ノズル 10 レベルセンサー 11 ドレーンタンク 12 真空ポンプ 15 循環管路 16 循環管路 20 減圧蒸気発生器 21 減圧蒸気発生部 22 熱交換部 23 給水管 24 管路 25 圧力調整用真空ポンプ 26 圧力仕切弁 27 原液加熱コイル 30 ヒートポンプ 31 コンプレッサ 33 熱交換用コイル 34 サブコンデンサ 35 レシーバタンク 38 ベーパーコンデンサ用熱交換器 39 サブエバポレータ 40 アキュムレータ 42 吐出ガス電磁弁 43 吐出ガス電磁弁 44 吸入ガス電磁弁 45 吸入ガス電磁弁 46 膨張弁 47 膨張弁 48 液電磁弁 49 液電磁弁 50 液電磁弁 51 送風機 52 送風機 REFERENCE SIGNS LIST 1 vacuum evaporator 2 stock solution concentrating unit 3 vapor condenser 4 stock solution circulation pump 5 stock solution supply tank 6 stock solution take-out pump 7 stock solution heating heat exchanger 8 liquid volume control valve 9 stock solution supply nozzle 10 level sensor 11 drain tank 12 vacuum pump 15 Circulation line 16 Circulation line 20 Decompression steam generator 21 Decompression steam generation unit 22 Heat exchange unit 23 Water supply pipe 24 Pipe line 25 Pressure adjustment vacuum pump 26 Pressure gate valve 27 Stock solution heating coil 30 Heat pump 31 Compressor 33 Heat exchange coil 34 Subcondenser 35 Receiver tank 38 Heat exchanger for vapor condenser 39 Subevaporator 40 Accumulator 42 Discharge gas solenoid valve 43 Discharge gas solenoid valve 44 Intake gas solenoid valve 45 Suction gas solenoid valve 46 Expansion valve 47 Expansion valve 48 Liquid solenoid valve 49 Liquid Solenoid valve 50 Liquid solenoid valve 51 Blower 52 Blower

フロントページの続き (56)参考文献 特開 平4−338241(JP,A) 特開 昭63−54901(JP,A) 特開 平5−57101(JP,A) 特開 昭60−147067(JP,A) 特開 平4−338949(JP,A) 実開 平2−57101(JP,U) 実公 平4−15194(JP,Y2) 欧州特許出願公開6612(EP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 1/28 B01D 1/00 F25B 30/04 510 A23L 2/08Continuation of the front page (56) References JP-A-4-338241 (JP, A) JP-A-63-54901 (JP, A) JP-A-5-57101 (JP, A) JP-A-60-147067 (JP) JP-A-4-338949 (JP, A) JP-A-2-57101 (JP, U) JP-A-4-15194 (JP, Y2) European Patent Publication 6612 (EP, A) (58) Search Field (Int.Cl. 6 , DB name) B01D 1/28 B01D 1/00 F25B 30/04 510 A23L 2/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コンプレッサ、熱交換用コイル、コンデ
ンサ、膨張弁、ベーパーコンデンサ用熱交換器、エバポ
レータを連結する循環管路において、上記コンデンサと
上記膨張弁との間より分岐し別の膨張弁を介して上記熱
交換用コイルに至るバイパス管路を設けると共に、上記
2つの膨張弁に冷媒を供給する流路を切り替える電磁弁
を設けることにより、加熱サイクルと冷凍サイクルとを
切り替え可能に構成したヒートポンプ、上記ヒートポン
プの冷凍サイクルにおける加熱源として働く熱交換用コ
イルとの間接熱交換によって減圧下で液体熱媒体の減圧
蒸気を発生させる減圧蒸気発生器、上記減圧蒸気発生器
で発生した減圧蒸気との間接熱交換によって原液を潜熱
加熱する原液加熱用熱交換器および減圧下で原液を低温
沸騰させて濃縮する原液濃縮部と該原液濃縮部において
発生した蒸気を上記ヒートポンプの冷凍サイクルにおけ
る冷熱源として働く熱交換器との間接熱交換によって冷
却濃縮させるベーパーコンデンサとを備えた真空蒸発缶
とよりなり、上記真空蒸発缶の原液濃縮部と上記原液加
熱用熱交換器との間を循環ポンプによって原液を強制的
に循環させる循環管路を設けたことを特徴とする真空濃
縮装置。
In a circulation line connecting a compressor, a heat exchange coil, a condenser, an expansion valve, a heat exchanger for a vapor condenser, and an evaporator, another expansion valve is branched from between the condenser and the expansion valve. A heat pump configured to be able to switch between a heating cycle and a refrigeration cycle by providing a bypass pipe line that leads to the heat exchange coil through the heat exchange coil, and by providing an electromagnetic valve that switches a flow path that supplies a refrigerant to the two expansion valves. A reduced-pressure steam generator that generates reduced-pressure steam of the liquid heat medium under reduced pressure by indirect heat exchange with a heat exchange coil that acts as a heating source in the refrigeration cycle of the heat pump, and a reduced-pressure steam generated by the reduced-pressure steam generator. A stock solution heating heat exchanger that heats the stock solution by latent heat by indirect heat exchange, and concentrates the stock solution by boiling it at low temperature under reduced pressure A vacuum evaporator comprising a stock solution concentrating unit and a vapor condenser for cooling and condensing the steam generated in the stock solution concentrating unit by indirect heat exchange with a heat exchanger serving as a cold heat source in the refrigeration cycle of the heat pump, A vacuum concentrator comprising a circulation pipe for forcibly circulating a stock solution by a circulation pump between a stock solution concentrating section of the evaporator and the stock solution heating heat exchanger.
【請求項2】 上記減圧蒸気発生器と上記原液加熱用熱
交換器とを一つの真空容器内に一体的に組み込んでなる
ことを特徴とする請求項1記載の真空濃縮装置。
2. The vacuum concentrator according to claim 1, wherein the reduced-pressure steam generator and the stock solution heating heat exchanger are integrated into one vacuum vessel.
【請求項3】 上記真空蒸発缶をサイクロン型に構成
し、原液加熱用熱交換器によって加熱された原液を該蒸
発缶の円筒状の内壁に接線方向に導入する原液導入ノズ
ルを該蒸発缶の側壁に取り付けたことを特徴とする請求
項1記載の真空濃縮装置。
3. The evaporator according to claim 1, wherein the vacuum evaporator has a cyclone shape, and a stock solution introduction nozzle for tangentially introducing a stock solution heated by a stock solution heating heat exchanger to a cylindrical inner wall of the evaporator. The vacuum concentrator according to claim 1, wherein the vacuum concentrator is attached to a side wall.
【請求項4】 装置立ち上げ時に、上記減圧蒸気発生器
に導入された液体熱媒体の温度を上記ヒートポンプの加
熱サイクルにおける冷熱源として働く熱交換用コイルと
の間接熱交換によって設定温度に設定する液体熱媒体の
設定温度調節機構を備えたことを特徴とする請求項1記
載の真空濃縮装置。
4. When the apparatus is started, the temperature of the liquid heat medium introduced into the reduced-pressure steam generator is set to a set temperature by indirect heat exchange with a heat exchange coil serving as a cold heat source in a heating cycle of the heat pump. The vacuum concentrator according to claim 1, further comprising a set temperature adjusting mechanism for the liquid heat medium.
JP5182141A 1993-06-29 1993-06-29 Vacuum concentrator Expired - Lifetime JP2844295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5182141A JP2844295B2 (en) 1993-06-29 1993-06-29 Vacuum concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5182141A JP2844295B2 (en) 1993-06-29 1993-06-29 Vacuum concentrator

Publications (2)

Publication Number Publication Date
JPH078703A JPH078703A (en) 1995-01-13
JP2844295B2 true JP2844295B2 (en) 1999-01-06

Family

ID=16113071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5182141A Expired - Lifetime JP2844295B2 (en) 1993-06-29 1993-06-29 Vacuum concentrator

Country Status (1)

Country Link
JP (1) JP2844295B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6151593B2 (en) * 2013-07-25 2017-06-21 株式会社大川原製作所 Operation method of heat pump type concentrator
JP6223272B2 (en) * 2014-04-27 2017-11-01 鹿島建設株式会社 Method and system for treating mercury-containing wastewater
LT3234201T (en) * 2014-12-18 2020-08-25 Avantium Knowledge Centre B.V. Process for the production of solid saccharides from an aqueous saccharide solution
CN108128827A (en) * 2018-01-22 2018-06-08 昆山威胜达环保设备有限公司 A kind of vacuum evaporation equipment
CN110237553A (en) * 2019-05-28 2019-09-17 上海环球制冷设备有限公司 A kind of solution condensing device and its implementation
CN110420469A (en) * 2019-07-27 2019-11-08 江西江氨科技有限公司 Evaporation concentration system
CN110465108B (en) * 2019-09-04 2024-01-19 江西赫柏康华制药设备有限公司 Multifunctional extraction and concentration integrated equipment and process
CN111470483A (en) * 2020-06-05 2020-07-31 于龙 Utilize freon to concentrate system as cold and hot carrier's nitric acid
CN112451982B (en) * 2020-12-02 2021-08-13 复旦大学 Evaporation equipment for removing organic solvent in fluid
CN112843761B (en) * 2021-03-10 2022-08-12 郑州博大浓缩干燥设备有限公司 Lees protein production fodder is with lees filter liquor evaporation concentration system
CN113266609B (en) * 2021-06-02 2023-04-07 傅朝清 Hydrothermal solution injection multi-unit vapor compression device and heat pump
CN113546436B (en) * 2021-08-18 2023-08-04 深圳市蓝石环保科技有限公司 Vacuum system, control method and equipment of vacuum system and evaporation treatment system
CN113877224A (en) * 2021-08-23 2022-01-04 冯羽 Low-temperature high-vacuum concentration system and method
CN114644378A (en) * 2022-04-06 2022-06-21 安徽恒星世纪空调制冷设备有限公司 Heat pump low-temperature vacuum evaporation integrated equipment for salt-containing wastewater and working method thereof
CN114804254A (en) * 2022-04-08 2022-07-29 中自环保科技股份有限公司 Method for recovering ethylene glycol from waste liquid

Also Published As

Publication number Publication date
JPH078703A (en) 1995-01-13

Similar Documents

Publication Publication Date Title
JP2844295B2 (en) Vacuum concentrator
JP2844296B2 (en) Vacuum concentrator
US5816070A (en) Enhanced lithium bromide absorption cycle water vapor recompression absorber
US6010599A (en) Compact vacuum distillation device
AU660842B2 (en) A water distillation system
CN105517682B (en) Utilize the method and complete set of equipments for recompressing steam
US5605054A (en) Apparatus for reclaiming refrigerant
JPH02306067A (en) Absorption type freezing
JP2011230071A (en) Crystallizer
US6332328B1 (en) Absorption heat pump and process for operation of an absorption heat pump
CN113398610A (en) Evaporation apparatus
KR102422412B1 (en) High efficiency low temperature concentrator
JP3712036B2 (en) Salt water desalination equipment
CN209378463U (en) High efficient cryogenic energy saving evaporator
CN221267129U (en) Energy-saving evaporator with double heat supply sources
JP2005172314A (en) Refrigeration unit
CN215841627U (en) Evaporation apparatus
CN218320878U (en) Efficient divides liquid device
CN220283681U (en) Low-temperature evaporation full-quantization processing device
JPH1057702A (en) Auto-vapor compression type concentration method of water solution and device therefor
JPS6239541A (en) Apparatus for production of formic acid
JPH0953802A (en) Heating/cooling device using heat medium
CN102249470A (en) Water distilling equipment, and drinking water machine comprising water distilling equipment
JPH067881B2 (en) Distillation liquid manufacturing equipment
CN117942610A (en) Energy-saving single-effect evaporation crystallization system