JPS6217119B2 - - Google Patents

Info

Publication number
JPS6217119B2
JPS6217119B2 JP55084404A JP8440480A JPS6217119B2 JP S6217119 B2 JPS6217119 B2 JP S6217119B2 JP 55084404 A JP55084404 A JP 55084404A JP 8440480 A JP8440480 A JP 8440480A JP S6217119 B2 JPS6217119 B2 JP S6217119B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature seawater
working fluid
low
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55084404A
Other languages
Japanese (ja)
Other versions
JPS5710779A (en
Inventor
Takao Suzuki
Kenichiro Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP8440480A priority Critical patent/JPS5710779A/en
Publication of JPS5710779A publication Critical patent/JPS5710779A/en
Publication of JPS6217119B2 publication Critical patent/JPS6217119B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

【発明の詳細な説明】 本発明は海水の表面と深海部の温度差を利用し
て発電を行なう海洋温度差発電方法およびその装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ocean temperature difference power generation method and apparatus for generating power using the temperature difference between the surface of seawater and the deep sea.

一般に海洋表面の温水温度は25〜30℃であり、
また深海部の冷水温度は5〜10℃であることによ
り、この温度差を利用して作動流体としての蒸気
やガスを循環させ、これによつてタービンを回転
させて発電を行なう温度差発電装置が開発されて
いる。第1図は従来におけるこの種温度差発電装
置の概要構成図であつてこれを同図に基づいて説
明すると、発電機1にはタービン2が直結されて
おり、このタービン2と、蒸発器3、凝縮器4お
よびポンプ5によつて作動流体の循環径路が形成
されている。さらに、蒸発器3には、高温海水用
ポンプ6で汲上げられた高温海水が送り込まれて
おり、また、凝縮器4には、低温海水用ポンプ7
で汲み上げられた低温海水が送り込まれている。
そして、作動流体、例えば液化プロパンガスは蒸
発器3において高温海水により昇温気化され、凝
縮器4において低温海水により冷却液化されるこ
とによつてガス圧の勾配すなわちガスの流れが発
生する。これによつてタービン2が回転して発電
が行なわれる。
Generally, the temperature of warm water on the ocean surface is 25-30℃,
In addition, since the temperature of cold water in the deep sea is 5 to 10 degrees Celsius, this temperature difference power generation system utilizes this temperature difference to circulate steam or gas as a working fluid, thereby rotating a turbine and generating electricity. is being developed. FIG. 1 is a schematic configuration diagram of a conventional temperature difference power generation device of this kind. This will be explained based on the figure. A turbine 2 is directly connected to a generator 1, and this turbine 2 and an evaporator 3 , the condenser 4 and the pump 5 form a circulation path for the working fluid. Furthermore, high-temperature seawater pumped up by a high-temperature seawater pump 6 is fed into the evaporator 3, and low-temperature seawater pump 7 is fed into the condenser 4.
The low-temperature seawater pumped up by the
The working fluid, for example, liquefied propane gas, is heated and vaporized by high-temperature seawater in the evaporator 3, and cooled and liquefied by low-temperature seawater in the condenser 4, thereby generating a gas pressure gradient, that is, a gas flow. This causes the turbine 2 to rotate and generate electricity.

しかしながら、この温度差発電は15〜20℃とい
うわずかな温度差を利用するためにその発電効率
が小さく、ある程度の規模の発電量を得るために
は、大量の高温海水、低温海水を必要とし、また
大型で効率の高い蒸発器および凝縮器が必要とな
る。これに対して前記従来の装置は海水の汲上げ
をポンプで行なつているために大容量のポンプが
必要であり、また蒸発器、凝縮器などの熱交換器
は、その海水側が単相流であるために熱通過率が
低く伝熱面積が膨大になるという欠点があつた。
However, this temperature difference power generation utilizes a small temperature difference of 15 to 20 degrees Celsius, so its power generation efficiency is low, and in order to obtain a certain amount of power generation, large amounts of high-temperature seawater and low-temperature seawater are required. It also requires large and efficient evaporators and condensers. On the other hand, the conventional equipment described above uses a pump to pump up seawater, so a large-capacity pump is required, and heat exchangers such as evaporators and condensers have single-phase flow on the seawater side. Therefore, the heat transfer rate was low and the heat transfer area was huge.

本発明は以上のような点に鑑みなされたもの
で、高温海水と低温海水とをその送給径路内へ噴
射される空気と冷媒との沸騰によつてそれぞれ二
相流として汲上げることにより、汲上げ動力を節
減しかつ作動流体の蒸発器と凝縮器との伝熱面積
を縮少させるとともに、冷媒を分離凝縮して低温
海水域を通過させる冷凍サイクルを構成すること
により、低温海水を冷媒沸騰時の潜熱により冷却
させて発電効率の向上を計つた海洋温度差発電方
法およびその装置を提供するものである。
The present invention was made in view of the above points, and by pumping up high temperature seawater and low temperature seawater as two-phase flows by boiling the air and refrigerant injected into the feeding path, By reducing the pumping power and reducing the heat transfer area between the evaporator and condenser of the working fluid, and by configuring a refrigeration cycle that separates and condenses the refrigerant and passes it through the low-temperature seawater, low-temperature seawater can be used as a refrigerant. An object of the present invention is to provide an ocean temperature difference power generation method and an apparatus for the same, which improve power generation efficiency by cooling with latent heat during boiling.

以下、その構成等を図に示す実施例により詳細
に説明する。
Hereinafter, its configuration and the like will be explained in detail with reference to embodiments shown in the drawings.

第2図は本発明に係る海洋温度差発電装置の概
要構成図である。図において、海洋温度差発電装
置は作動流体用凝縮器11を備えており、その下
端部へ開口して連結された汲上げパイプ12は海
中へ垂下され、下端部は深海部の低温海水域へ達
して開口されている。また、凝縮器11の上方に
は、これと連通する気液分離器13が設けられて
おり、その排水口14は外部へ開口されている。
さらに、気液分離器13の上端開口部に連結され
た送気管15の他端は、冷媒圧縮機16に連結さ
れており、その排気側に連結された送気管17
は、前記汲上げパイプ12へ導かれているととも
に、この送気管17による送気径路内には、冷媒
用凝縮器18が深海部の低温海水域に位置して設
けられている。また、送気管17の汲上げパイプ
12内へ開口する先端部には、噴射ノズル19が
装着されている。
FIG. 2 is a schematic configuration diagram of the ocean temperature difference power generation device according to the present invention. In the figure, the ocean temperature difference power generation device is equipped with a working fluid condenser 11, and a pumping pipe 12 connected to the lower end thereof is suspended into the sea, and the lower end is connected to a low-temperature sea area in the deep sea. reached and opened. Moreover, a gas-liquid separator 13 is provided above the condenser 11 and communicates with the condenser 11, and its drain port 14 is opened to the outside.
Further, the other end of the air supply pipe 15 connected to the upper end opening of the gas-liquid separator 13 is connected to a refrigerant compressor 16, and an air supply pipe 17 connected to the exhaust side of the refrigerant compressor 16.
is guided to the pumping pipe 12, and a refrigerant condenser 18 is provided in the air path of the air pipe 17, located in the low-temperature seawater area of the deep sea. Furthermore, an injection nozzle 19 is attached to the tip of the air supply pipe 17 that opens into the pumping pipe 12 .

このように構成された冷凍サイクル20におい
て、汲上げパイプ12内の低温海水21に対して
は、噴射ノズル19からエタン、エチレンなどの
液体状冷媒が冷媒圧縮機16によつて噴射されて
これを沸騰させる。この沸騰によつて低温海水2
1と冷媒とが二相流となつて凝縮器11へ連続し
て汲上げられる。汲上げられた海水21と冷媒と
は、凝縮器11内で後述する熱交換を行なつたの
ち、気液分離器13へ送られて気体状の冷媒と海
水とに分離される。分離された海水は排水管14
から排出され、冷媒は冷媒圧縮機へ送られて圧縮
される。そして、圧縮された冷媒は、冷媒用の凝
縮器18を通過するときに外部の低温海水によつ
て冷却凝縮され、液体となつて噴射ノズル19か
ら汲上げパイプ12内へ噴射される。このあと、
冷凍サイクル20は、前記動作を繰返して冷媒を
循環させる。
In the refrigeration cycle 20 configured as described above, a liquid refrigerant such as ethane or ethylene is injected from the injection nozzle 19 into the low-temperature seawater 21 in the pumping pipe 12 by the refrigerant compressor 16. Bring to a boil. Due to this boiling, low temperature seawater 2
1 and the refrigerant are continuously pumped into the condenser 11 as a two-phase flow. The pumped up seawater 21 and refrigerant exchange heat in the condenser 11, which will be described later, and then are sent to the gas-liquid separator 13 where they are separated into the gaseous refrigerant and seawater. Separated seawater is drained into drain pipe 14
The refrigerant is sent to a refrigerant compressor and compressed. When the compressed refrigerant passes through the refrigerant condenser 18, it is cooled and condensed by external low-temperature seawater, and is injected into the pumping pipe 12 from the injection nozzle 19 as a liquid. after this,
The refrigeration cycle 20 repeats the above operation to circulate the refrigerant.

一方、高温海水側には蒸発器22が設けられて
おり、その下端部には汲上げパイプ23が連結さ
れていて、その下端部は海面近くの高温海水域へ
開口されている。また、蒸発器22の排水口は外
部へ開口されている。そして、この蒸発器22に
は空気圧縮機24が付設されており、その送気管
25の汲上げパイプ23内へ開口する先端部に
は、噴射ノズル26が開口されている。
On the other hand, an evaporator 22 is provided on the high-temperature seawater side, and a pumping pipe 23 is connected to the lower end of the evaporator 22, the lower end of which is opened to the high-temperature seawater near the sea surface. Further, the drain port of the evaporator 22 is opened to the outside. An air compressor 24 is attached to the evaporator 22, and an injection nozzle 26 is opened at the tip of the air pipe 25 that opens into the pumping pipe 23.

このように構成された高温海水側において、汲
上げパイプ23内の高温海水27に対しては、空
気圧縮機24による空気が噴射ノズル26から噴
出されてこれを沸騰させ、この沸騰によつて高温
海水と空気とが二相流となつて蒸発器22へ連続
して汲上げられる。汲上げられた海水は、蒸発器
22内で後述する熱交換を行なつたのち排水口2
3から排出される。
On the high-temperature seawater side configured in this manner, air from the air compressor 24 is ejected from the injection nozzle 26 to the high-temperature seawater 27 in the pumping pipe 23 to boil it, and the boiling causes the high-temperature seawater 27 to rise to a high temperature. Seawater and air are continuously pumped into the evaporator 22 as a two-phase flow. The pumped up seawater undergoes heat exchange, which will be described later, in the evaporator 22, and then flows to the drain port 2.
It is discharged from 3.

そして、凝縮器11と蒸発器22との内部に
は、熱交換のための配管28および29がそれぞ
れ設けられており、これらの配管28,29の一
端を連結する送気管30の途中にはポンプ31が
設けられている。また配管28,29を連結する
送気管32の途中にはタービン33が設けられて
おり、このタービン33には発電機34が直結さ
れている。そして、凝縮器11、蒸発器22、ポ
ンプ31、およびタービン33によつて作動流体
循環径路35が構成されている。
Pipes 28 and 29 for heat exchange are provided inside the condenser 11 and evaporator 22, respectively, and a pump is installed in the middle of an air supply pipe 30 that connects one end of these pipes 28 and 29. 31 are provided. Further, a turbine 33 is provided in the middle of an air supply pipe 32 that connects the pipes 28 and 29, and a generator 34 is directly connected to this turbine 33. The condenser 11, evaporator 22, pump 31, and turbine 33 constitute a working fluid circulation path 35.

このように構成された作動流体循環径路35に
おいて、ポンプ31によつて蒸発器22へ送られ
た作動流体としての液化プロパンは、蒸発器22
を通過する高温海水と空気との二相流と熱交換さ
れることによつて昇温気化しタービン33へ送ら
れる。タービン33を通過したプロパンガスは凝
縮器11へ送られ、凝縮器11を通過する低温海
水と冷媒との二相流と熱交換されることによつて
冷却液化されたのちポンプ31へ送られる。この
あと、循環径路35内には、ガス圧の勾配ができ
ることによつて、プロパンガスが蒸発器22から
タービン33を通過して凝縮器11へ向つて連続
的に流れるので、タービン33が回転し、これに
直結された発電機34によつて発電が行なわれ
る。
In the working fluid circulation path 35 configured in this way, the liquefied propane as the working fluid sent to the evaporator 22 by the pump 31 is transferred to the evaporator 22.
By exchanging heat with the two-phase flow of high-temperature seawater and air passing through, the water is heated and vaporized and sent to the turbine 33. The propane gas that has passed through the turbine 33 is sent to the condenser 11, where it is cooled and liquefied by exchanging heat with the two-phase flow of low-temperature seawater and refrigerant passing through the condenser 11, and then sent to the pump 31. Thereafter, due to the gas pressure gradient created in the circulation path 35, propane gas continuously flows from the evaporator 22 to the turbine 33 and towards the condenser 11, causing the turbine 33 to rotate. , power is generated by a generator 34 directly connected to this.

なお、本実施例においては作動流体として、体
積変化の割合が小さく低温で比較的高い圧力と密
度を有するプロパンガスを用いたが、その他のガ
スや水蒸気を用いてもよい。また、冷媒として、
海底圧下、海底低海水温度で沸騰し、かつ臨界圧
力が海底圧力以上であるエタンまたはエチレンを
用いたが、その他の冷媒を用いてもよい。
In this embodiment, propane gas, which has a small rate of volume change and has relatively high pressure and density at low temperature, was used as the working fluid, but other gases or water vapor may also be used. In addition, as a refrigerant,
Although ethane or ethylene, which boils under seabed pressure and at low seabed temperature and whose critical pressure is higher than seabed pressure, was used, other refrigerants may also be used.

以上の説明により明らかなように、海洋温度差
発電方法およびその装置として、高温海水と低温
海水とをその送給径路内へ噴射される空気と冷媒
との沸騰によつてそれぞれ二相流の状態で汲上げ
るように構成することにより、大容量の汲上げポ
ンプが不要となり、小容量で所要動力の小さい圧
縮機をもつてこれに代えることができるので、動
力および設備費を大幅に節減することができると
ともに、作動流体の熱交換を行なう蒸発器と凝縮
器の伝熱面積を縮少することができる。また冷媒
を分離凝縮して低温海水域を通過させる冷凍サイ
クルを構成することにより、低温海水を冷媒沸騰
時の潜熱により冷却することができるので、発電
効率が向上する。
As is clear from the above explanation, the ocean temperature difference power generation method and its device are capable of producing high-temperature seawater and low-temperature seawater into a two-phase flow state by boiling the air and refrigerant injected into the feed path. By configuring the system to pump up the water, a large-capacity pump becomes unnecessary and can be replaced with a small-capacity compressor that requires less power, resulting in significant savings in power and equipment costs. At the same time, the heat transfer area of the evaporator and condenser that exchange heat between the working fluid can be reduced. Furthermore, by configuring a refrigeration cycle in which the refrigerant is separated and condensed and passed through the low-temperature seawater, the low-temperature seawater can be cooled by the latent heat generated when the refrigerant boils, thereby improving power generation efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における海洋温度差発電装置の概
要構成図、第2図は本発明に係る海洋温度差発電
装置の概要構成図である。 11……作動流体凝縮器、12……汲上げポン
プ、13……気液分離器、16……冷媒圧縮機、
18……冷媒凝縮器、19……噴射ノズル、21
……低温海水、22……蒸発器、23……汲上げ
ポンプ、24……空気圧縮機、26……噴射ノズ
ル、27……高温海水、33……タービン、34
……発電機、35……作動流体循環径路。
FIG. 1 is a schematic diagram of a conventional ocean temperature difference power generation device, and FIG. 2 is a schematic diagram of an ocean temperature difference power generation device according to the present invention. 11... working fluid condenser, 12... pumping pump, 13... gas-liquid separator, 16... refrigerant compressor,
18... Refrigerant condenser, 19... Injection nozzle, 21
... Low temperature seawater, 22 ... Evaporator, 23 ... Lifting pump, 24 ... Air compressor, 26 ... Injection nozzle, 27 ... High temperature seawater, 33 ... Turbine, 34
... Generator, 35 ... Working fluid circulation path.

Claims (1)

【特許請求の範囲】 1 低温海水とその送給径路内へ冷媒用圧縮機で
吹込まれる冷媒とを二相流状態で作動流体凝縮器
を通過させたのち分離器で冷媒を分離し、これを
低温海水域に設けた冷媒凝縮器で冷却凝縮して前
記圧縮機で低温海水送給径路へ吹込むことにより
冷媒を循環させ、一方高温海水とその送給径路内
へ空気圧縮機で吹込まれる空気とを二相流状態で
蒸発器へ導くとともに、作動流体を前記蒸発器を
通過する高温海水による昇温気化と前記作動流体
凝縮器を通過する低温海水による冷却凝縮とを繰
返しながら循環させることにより循環径路中に設
けたタービンを回転させて発電を行なうことを特
徴とする海洋温度差発電方法。 2 高温海水を通過させる蒸発器と、この蒸発器
への高温海水送給径路内へ開口する噴射ノズルを
備えた空気圧縮機と、低温海水を通過させる作動
流体凝縮器と、この凝縮器への低温海水送給径路
内へ開口する噴射ノズルを備えた冷媒圧縮機と、
この冷媒圧縮機と前記作動流体凝縮器との間に介
装された気液分離機と、前記蒸発器と冷媒凝縮器
とを含む作動流体循環径路内にあつて循環する作
動流体によつて回転するタービンとを設けたこと
を特徴とする海洋温度差発電装置。
[Claims] 1. Low-temperature seawater and refrigerant blown into its feed path by a refrigerant compressor are passed through a working fluid condenser in a two-phase flow state, and then the refrigerant is separated in a separator; The refrigerant is cooled and condensed in a refrigerant condenser installed in a low-temperature seawater area, and then blown into the low-temperature seawater feed path by the compressor to circulate the refrigerant, while the high-temperature seawater is blown into the high-temperature seawater and its feed path by an air compressor. At the same time, the working fluid is circulated through repetition of heating vaporization by high-temperature seawater passing through the evaporator and cooling condensation by low-temperature seawater passing through the working fluid condenser. An ocean temperature difference power generation method characterized by generating electricity by rotating a turbine provided in a circulation path. 2. An evaporator through which high-temperature seawater passes, an air compressor equipped with an injection nozzle that opens into the high-temperature seawater feed path to this evaporator, a working fluid condenser through which low-temperature seawater passes, and a refrigerant compressor equipped with an injection nozzle that opens into the low-temperature seawater supply path;
A gas-liquid separator interposed between the refrigerant compressor and the working fluid condenser, and a working fluid circulation path that includes the evaporator and the refrigerant condenser, and is rotated by the circulating working fluid. An ocean temperature difference power generation device characterized by being provided with a turbine.
JP8440480A 1980-06-20 1980-06-20 Electric power generating method using differential temperature of sea water and its generating unit Granted JPS5710779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8440480A JPS5710779A (en) 1980-06-20 1980-06-20 Electric power generating method using differential temperature of sea water and its generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8440480A JPS5710779A (en) 1980-06-20 1980-06-20 Electric power generating method using differential temperature of sea water and its generating unit

Publications (2)

Publication Number Publication Date
JPS5710779A JPS5710779A (en) 1982-01-20
JPS6217119B2 true JPS6217119B2 (en) 1987-04-16

Family

ID=13829642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8440480A Granted JPS5710779A (en) 1980-06-20 1980-06-20 Electric power generating method using differential temperature of sea water and its generating unit

Country Status (1)

Country Link
JP (1) JPS5710779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167029U (en) * 1988-05-13 1989-11-22
JPH01167031U (en) * 1988-05-13 1989-11-22

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4727174B2 (en) * 2004-07-16 2011-07-20 オリンパス株式会社 Endoscope device
KR100963557B1 (en) 2008-06-11 2010-06-15 한국기계연구원 Self reciprocated energy recovery device
CN103758719A (en) * 2013-11-04 2014-04-30 洪满 Air storage tank generating set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167029U (en) * 1988-05-13 1989-11-22
JPH01167031U (en) * 1988-05-13 1989-11-22

Also Published As

Publication number Publication date
JPS5710779A (en) 1982-01-20

Similar Documents

Publication Publication Date Title
US20070289303A1 (en) Heat transfer for ocean thermal energy conversion
KR101431133B1 (en) OTEC cycle device that contains the ejector
JP2005248877A (en) Binary cycle power generation method and device
CN110213934A (en) A kind of immersion cooling system and immersion liquid cooling source
CN102220947B (en) Dehumidifying and cooling system of offshore wind generating set
US4324983A (en) Binary vapor cycle method of electrical power generation
CN204787425U (en) Prepare hydrothermal circulation system of high temperature
JPH10288047A (en) Liquefied natural gas evaporating power generating device
CN110513909A (en) A kind of steam-refrigerated residual neat recovering system and method
JPS6217119B2 (en)
CN207006629U (en) A kind of heat pump
JPH05223204A (en) Generating method for vapor utilizing heat pump
CN106642681A (en) Air-energy water heater circulation system and operating method thereof
CN209378463U (en) High efficient cryogenic energy saving evaporator
CN206739674U (en) A kind of device of rectifying tower top gaseous phase waste heat recovery fine frozen water
US4622820A (en) Absorption power generator
CA1273496A (en) Geothermal energy utilization system
CN108507219A (en) A kind of compound two-stage type lithium bromide absorption type heat pump and working method
CN206310724U (en) The air-source water heater circulatory system
CN213713693U (en) Cooling circulating device of vacuum pump
CN106150700A (en) Sea water cooling, the efficient combustion engine inlet gas cooling device of mixing low-temperature receiver
CN218065191U (en) Solar energy powered absorption refrigerator system
CN202645902U (en) Direct heat transfer heat seawater temperature difference power generation device
CN102678493A (en) Direct heat transfer type ocean temperature differential power generation device
JPS6313113B2 (en)