JPH05223204A - Generating method for vapor utilizing heat pump - Google Patents

Generating method for vapor utilizing heat pump

Info

Publication number
JPH05223204A
JPH05223204A JP35230991A JP35230991A JPH05223204A JP H05223204 A JPH05223204 A JP H05223204A JP 35230991 A JP35230991 A JP 35230991A JP 35230991 A JP35230991 A JP 35230991A JP H05223204 A JPH05223204 A JP H05223204A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
condenser
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35230991A
Other languages
Japanese (ja)
Inventor
Masami Ogata
正実 緒方
Tadahiro Chino
忠宏 知野
Yukitoshi Urata
幸敏 浦田
Masayuki Kawabata
政幸 川端
Tamotsu Ishikawa
保 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIYODO KUUCHIYOUKI KK
NISHODO KUCHOKI KK
Original Assignee
NISHIYODO KUUCHIYOUKI KK
NISHODO KUCHOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIYODO KUUCHIYOUKI KK, NISHODO KUCHOKI KK filed Critical NISHIYODO KUUCHIYOUKI KK
Priority to JP35230991A priority Critical patent/JPH05223204A/en
Publication of JPH05223204A publication Critical patent/JPH05223204A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To eliminate a fear of corrosion, an explosion, a fire due to combustion, to enhance an energy efficiency and to improve economy by continuously generating vapor under a predetermined pressure by a heat pump without using combustion. CONSTITUTION:A passage for fluid to be heated is annexed to a condenser 2 of a refrigerating cycle having a compressor 1, the condenser 2, a refrigerant throttle tube 3 and an evaporator 4, and the condenser is used to output vapor in a heat pump. As the refrigerant, refrigerant having a critical temperature of 100 deg.C or higher is used. The cycle is so maintained that at least 87% of enthalpy of the refrigerant for supplying heat to the condenser becomes a temperature of 100 deg.C or higher, thereby operating the pump.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプを利用し蒸
気を生成する方法に係り、詳しくは冷媒として臨界温度
が100 ℃以上の冷媒を使用した冷凍サイクルによって蒸
気を発生させる上記方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing steam using a heat pump, and more particularly to the above method for producing steam by a refrigeration cycle using a refrigerant having a critical temperature of 100 ° C. or higher as a refrigerant. ..

【0002】[0002]

【従来の技術】従来、ヒートポンプでは高温側(高圧
側)の熱出力を用いて空調(暖房)や給湯用に利用する
ことが行われているが、通常のヒートポンプは凝縮器で
の凝縮温度(高圧圧力相当飽和温度)は40℃前後と低
く、最大でも60℃程度であるため40〜60℃程度の温水と
して空調や給湯に使用されている。もとより冷媒の凝縮
温度(飽和温度)以上に水を加熱することも可能であ
り、飽和温度以上の水は凝縮器に入ってくる冷媒が過熱
され、例えば120 ℃となっているのでその熱源温度を利
用して飽和温度以上の水温を得ることができる。しかし
冷媒が凝縮器に入って冷却され、出口で液化されるまで
の全熱量のうち、水温の上昇に寄与できるのは冷媒の過
熱域部分のみである。例えば水を蒸気にするためのエネ
ルギ(エンタルピ)は概略620kcal/kgであり、その内訳
は20℃→100 ℃までの水で80kcal/kg ,100 ℃の水→10
0 ℃の飽和蒸気で540kcal/kgの熱量となっている。つま
り水の蒸気化には87%の熱エネルギが100 ℃以上の熱源
として必要である。
2. Description of the Related Art Conventionally, heat pumps have been used for air conditioning (heating) and hot water supply by using the heat output on the high temperature side (high pressure side). High pressure equivalent saturation temperature) is as low as around 40 ℃, and is about 60 ℃ at maximum, so it is used as hot water at 40-60 ℃ for air conditioning and hot water supply. Of course, it is also possible to heat water above the condensation temperature (saturation temperature) of the refrigerant, and for water above the saturation temperature, the refrigerant entering the condenser is overheated, for example, at 120 ° C, so the heat source temperature is The water temperature above the saturation temperature can be obtained by utilizing this. However, of the total amount of heat until the refrigerant enters the condenser, is cooled, and is liquefied at the outlet, only the superheated region of the refrigerant can contribute to the rise in the water temperature. For example, the energy (enthalpy) to turn water into steam is approximately 620 kcal / kg, and the breakdown is 80 kcal / kg for water up to 20 ℃ → 100 ℃, and water for 100 ℃ → 10
The amount of heat is 540 kcal / kg with 0 ° C saturated steam. In other words, 87% of heat energy is required as a heat source of 100 ℃ or higher for water vaporization.

【0003】ところが、現在、一般に家庭用として用い
られているR−22,R−12などの低沸点冷媒ではそ
の臨界温度は90〜100 ℃であるため水に与える凝縮温度
以上の熱源としては20%前後のエネルギ(エンタルピ)
しか寄与させることができないのが普通であり、残った
温度の低いエネルギで温水を作るか、廃熱として捨てら
れている。従って、蒸気の生成は多くは熱源温度が高い
燃焼(油,ガス熱源)を使ったボイラによって作られて
いる。
However, at present, low boiling point refrigerants such as R-22 and R-12 which are generally used for household use have a critical temperature of 90 to 100 ° C., so that they are used as a heat source above the condensation temperature given to water. Energy around% (enthalpy)
It is usually possible to make a contribution only, and hot water is made with the remaining low-temperature energy or is discarded as waste heat. Therefore, steam is mostly produced by a boiler using combustion (oil, gas heat source) with high heat source temperature.

【0004】[0004]

【発明が解決しようとする課題】本発明は上述の如き実
状に対処し、冷凍サイクルの凝縮器で放熱される熱の積
極的利用を試み、特に100 ℃の蒸気を作るための100 ℃
以上の熱源として飽和温度自身が100 ℃以上になるよう
に冷凍サイクルの高温側(高圧側)の安定維持を見出す
ことにより燃焼を使用することなく一定圧力で継続的な
蒸気発生を可能とし、燃焼による腐食,爆発,火災の恐
れを解消すると共に、エネルギ効率を高め、経済性を向
上することを目的とするものである。
SUMMARY OF THE INVENTION The present invention addresses the above situation and attempts to positively utilize the heat radiated in the condenser of the refrigeration cycle, particularly at 100 ° C. for producing steam at 100 ° C.
By finding stable maintenance of the high temperature side (high pressure side) of the refrigeration cycle so that the saturation temperature itself becomes 100 ° C or higher as the above heat source, it is possible to continuously generate steam at a constant pressure without using combustion. The purpose is to eliminate the risk of corrosion, explosion, and fire due to heat, improve energy efficiency, and improve economic efficiency.

【0005】[0005]

【課題を解決するための手段】即ち、上記目的に適合す
る本発明蒸気生成方法の特徴は、圧縮機,凝縮器,冷媒
絞り管及び蒸発器を含む冷凍サイクルの前記凝縮器に被
加熱流体貫流経路を併設して、該凝縮器を蒸気取り出し
用となしたヒートポンプにおいて、冷媒として臨界温度
が100 ℃以上の冷媒を用い、凝縮器へ給熱する冷媒のエ
ンタルピのうち、少なくとも87%が100 ℃以上の温度と
なるように冷凍サイクルを維持し、ヒートポンプを作動
させることにある。これを更に詳述すれば、本発明は先
ず、飽和温度100 ℃以上、つまり臨界温度(ガスが液化
しない温度)が100 ℃以上の冷媒を用いることが必要で
ある。かかる冷媒は設計温度で分解変質することなく安
定したものであることが必要で、例えばR−123,R
−11などがある。これらは通常、臨界温度は120 〜18
0 ℃程度である。そのため、圧縮機を潤滑する冷凍機油
も高温用で、かつ冷媒に好適なものを選定する。更に加
熱用凝縮器への給水は加熱能力に合致する給水量に制御
することが好ましく、加熱能力以上の給水を行うと、蒸
気圧力が低下し、過大だと温水になって了う。なお、高
温熱源の放熱を行う凝縮器は放熱温度と圧縮機吐出圧力
相当温度に合わせて設計される。一方、低温熱源の吸熱
を行う蒸発器は吸熱温度と圧縮機吸込圧力相当温度に合
わせて設計する。また、凝縮器へ給熱する冷媒のエンタ
ルピのうち、少なくとも87%が100 ℃以上の温度となる
ように冷凍サイクルを維持することは前述したように水
を蒸気にするためのエネルギは概略620kcal/kgで、う
ち、20℃→100 ℃までの水で80kcal/kg ,100 ℃の水→
100 ℃の飽和蒸気で540kcal/kgの熱量となっていて87%
の熱エネルギを与える熱源温度が100 ℃の水の蒸気化に
必要であるからである。もし87%未満であれば水の蒸気
化がならず、本発明の目的は達成し難い。
That is, the feature of the vapor generating method of the present invention which meets the above object is that the fluid to be heated flows through the condenser of the refrigeration cycle including the compressor, the condenser, the refrigerant throttle pipe and the evaporator. In a heat pump with a passage for the condenser for vapor extraction, a refrigerant with a critical temperature of 100 ° C or higher is used as the refrigerant, and at least 87% of the enthalpy of the refrigerant that heats the condenser is 100 ° C. The refrigeration cycle is maintained so that the temperature becomes the above temperature, and the heat pump is operated. More specifically, in the present invention, first, it is necessary to use a refrigerant having a saturation temperature of 100 ° C. or higher, that is, a critical temperature (a temperature at which gas is not liquefied) of 100 ° C. or higher. Such a refrigerant needs to be stable at the design temperature without decomposing and deteriorating. For example, R-123, R
There are -11 etc. These usually have a critical temperature of 120-18.
It is about 0 ° C. Therefore, refrigerating machine oil that lubricates the compressor is also selected for high temperatures and is suitable as a refrigerant. Further, it is preferable to control the amount of water supplied to the heating condenser so that the amount of water supplied matches the heating capacity. If water having a heating capacity or more is supplied, the steam pressure will decrease, and if it is too large, it will end up as warm water. The condenser that radiates heat from the high temperature heat source is designed according to the heat radiation temperature and the temperature equivalent to the compressor discharge pressure. On the other hand, the evaporator that absorbs heat from the low temperature heat source is designed according to the heat absorption temperature and the temperature equivalent to the suction pressure of the compressor. Also, maintaining the refrigeration cycle so that at least 87% of the enthalpy of the refrigerant that supplies heat to the condenser is at a temperature of 100 ° C or higher means that the energy for converting water into steam is approximately 620 kcal / 80 kg / kg of water up to 20 ℃ → 100 ℃, 100 ℃ of water →
87% with a calorific value of 540 kcal / kg with 100 ° C saturated steam
This is because the heat source temperature that gives the heat energy of is necessary for the vaporization of water at 100 ° C. If it is less than 87%, water is not vaporized and the object of the present invention is difficult to achieve.

【0006】[0006]

【作用】上記本発明方法によれば、変動する低温側熱源
より熱を汲み上げ、適量の水を冷媒凝縮器に供給し、燃
焼を使用せず、蒸気を一定圧力で継続的に自動的に得る
ことができる。
According to the above-mentioned method of the present invention, heat is drawn from the fluctuating low temperature side heat source, an appropriate amount of water is supplied to the refrigerant condenser, combustion is not used, and steam is continuously and automatically obtained at a constant pressure. be able to.

【0007】[0007]

【実施例】以下、更に添付図面を参照し、本発明の実施
例を説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0008】図1は本発明方法を実施するための装置の
1例であり、図において圧縮機(1),凝縮器(2),
冷媒絞り管(キャピラリチューブ)(3),蒸発器
(4)、更にアキュムレータ(5)が順次、接続配管さ
れて冷凍サイクルが構成されていると共に、蒸発器
(4)出口側と圧縮機(1)吐出側には夫々低圧圧力ス
イッチ(9),高圧圧力スイッチ(10)が設けられて
いる。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention. In the figure, a compressor (1), a condenser (2),
Refrigerant throttle pipe (capillary tube) (3), evaporator (4), and further accumulator (5) are sequentially connected to form a refrigeration cycle, and the outlet side of evaporator (4) and compressor (1) ) A low pressure switch (9) and a high pressure switch (10) are provided on the discharge side, respectively.

【0009】そして上記凝縮器(2)に浴槽の如き貯湯
槽(14)より給水ポンプ(11),水絞り管(キャピ
ラリチューブ)(12)を通じて被加熱流体、例えば水
が該凝縮器(2)に併設された被加熱流体貫流経路内に
給水され、該経路内で水は冷媒と対向流で熱交換されて
蒸気として蒸気圧力調整器(6),気液分離器(7),
止弁(8)を経て蒸気取出口より取り出されると共に、
蒸気に混じって湯が存在するときは、湯は気液分離器
(7)で分離され、貯湯槽に還流されるよう構成されて
いる。
A fluid to be heated, such as water, is supplied to the condenser (2) from a hot water storage tank (14) such as a bath through a water supply pump (11) and a water throttle pipe (capillary tube) (12). Water is supplied into a heated fluid flow passage provided alongside, and water is heat-exchanged with the refrigerant in the opposite flow in the passage to form steam as a vapor pressure regulator (6), a gas-liquid separator (7),
It is taken out from the steam outlet through the stop valve (8),
When there is hot water mixed with steam, the hot water is separated by the gas-liquid separator (7) and is returned to the hot water storage tank.

【0010】一方、蒸発器(4)側は前記貯湯槽(1
4)より循環ポンプ(13)を経て蒸発器(4)に併設
された貫通経路内に至り、冷媒と向流的に熱交換して再
び貯湯槽(14)で還流する配管系統が設けられている
と共に、給湯口に至る弁付配管が接続されている。な
お、(17)は補給水槽であり、適宜、給水され、前記
貯湯槽(14)への水補給を受け持つ一方、貯湯槽(1
4)への配管途中より直接、循環ポンプ(15)を介
し、水加熱器(16)を通じて給湯口配管に至る配管が
分岐接続されている。また、前記貯湯槽(14)は上部
に溢水に対応する安全弁(19)を介して排水溝(2
0)に至る配管と共に止弁(18)を介して排水溝(2
0)に至る配管が夫々連結されている。
On the other hand, the hot water storage tank (1
4) a circulation system (13) is passed through the circulation pump (13) to reach the inside of the penetrating path provided in the evaporator (4), and a piping system is provided for countercurrently exchanging heat with the refrigerant and returning it to the hot water storage tank (14) again. At the same time, the pipe with valve leading to the hot water supply port is connected. Incidentally, (17) is a makeup water tank, which is appropriately supplied with water and takes charge of water supply to the hot water storage tank (14), while the hot water storage tank (1
The pipe leading to the hot water inlet pipe is branched and connected from the middle of the pipe to 4) directly through the circulation pump (15) and the water heater (16). In addition, the hot water storage tank (14) has a drain valve (2) through an upper safety valve (19) for overflow.
0) and the drain (2) via the stop valve (18).
The pipes leading to 0) are connected to each other.

【0011】しかして上記装置において凝縮器(2)へ
の給水を加熱能力に合致する給水量に制御すること、高
温熱源の放熱を行う凝縮器(2)を放熱温度と、圧縮機
吐出圧力相当温度に合わせて設計すること、ならびに低
温熱源の吸熱を行う蒸発器(4)を吸熱温度と圧縮機吸
込み圧力相当温度に合わせて設計することは前述の通り
である。また、蒸発器(4)の吸熱量によって凝縮器
(2)で発生する蒸気の量が異なり、生成蒸気量が過大
となると、蒸気圧力が上昇し、高温危険であったり、冷
媒を冷却する熱源温度が上昇するので、凝縮圧力(温
度)が上昇し、所期の蒸気温度が得られなくなる。その
ため、一定圧力または一定温度の蒸気を得るためには凝
縮器(2)出口で放出する蒸気の量を調整する蒸気圧力
調整器(6)を取り付けておく、更に蒸気の使用を止め
る場合は、装置を停止するか、蒸気出口の止弁(8)を
閉じるが、止弁(8)を閉じると、圧力が上昇するの
で、出口圧力調整弁があっても異常高圧(高温)となる
ので圧力スイッチ(10)より信号を得るか、出口部に
取り付けた温度センサーより信号を得て装置を停止す
る。
In the above apparatus, however, the amount of water supplied to the condenser (2) is controlled to match the heating capacity, and the condenser (2) that radiates heat from the high temperature heat source corresponds to the heat radiation temperature and the compressor discharge pressure. The design according to the temperature and the design of the evaporator (4) that absorbs heat from the low-temperature heat source according to the endothermic temperature and the temperature equivalent to the suction pressure of the compressor are as described above. Further, the amount of steam generated in the condenser (2) varies depending on the amount of heat absorbed by the evaporator (4), and when the amount of generated steam becomes excessive, the steam pressure rises, causing a high temperature danger and a heat source for cooling the refrigerant. Since the temperature rises, the condensing pressure (temperature) rises and the desired vapor temperature cannot be obtained. Therefore, in order to obtain steam with a constant pressure or a constant temperature, a steam pressure regulator (6) for adjusting the amount of steam discharged at the outlet of the condenser (2) is attached. Stop the device or close the stop valve (8) at the steam outlet, but if the stop valve (8) is closed, the pressure will rise, so even if there is an outlet pressure control valve, it will be an abnormally high pressure (high temperature). The device is stopped by receiving a signal from the switch (10) or a temperature sensor attached to the outlet.

【0012】一方、低温側熱源温度が低下し、蒸発器
(4)での冷媒蒸発温度が低下する圧縮機吸入圧力が低
下し、圧縮比が上がり好ましくない。そこで異常低圧時
にも圧縮機保護のため低圧圧力スイッチ(9)を設け、
装置を停止するようにしている。
On the other hand, the low temperature side heat source temperature is lowered, the refrigerant evaporation temperature in the evaporator (4) is lowered, the compressor suction pressure is lowered, and the compression ratio is increased, which is not preferable. Therefore, a low pressure switch (9) is provided to protect the compressor even when the pressure is abnormally low.
The device is being stopped.

【0013】次に上記装置を用い具体的に蒸気を生成し
た実施例を小型貫流方式の低圧蒸気発生用ヒートポンプ
を例とし、下記仕様に従って説明する。 (1)冷媒はフロンR−123を仕様 (2)圧縮機は密閉式(液インジエクション付ロータリ
ーコンプレッサ)を使用 (3)蒸発器,凝縮器は二重管方式を使用 (4)凝縮器から蒸発器への冷媒液膨張(流量絞り)は
キャピラリチューブによって行った (5)凝縮器への給水流量調整はキャピラリチューブと
可変吐出圧力式のポンプによって行った (6)低温側の熱源として40〜60℃の温水を使用した (7)蒸気圧力は0.5kg /cm2G(相当温度は110 ℃)で
運転した 以上の仕様による具体的な運転時の状態は下記の如くで
あった、表1は冷凍サイクルの運転時の状態、表2は各
機器の運転時の状態を示す。表1中、括弧内の数値は実
測値でない参考近似値である。 以下余白
Next, an embodiment in which steam is specifically generated using the above apparatus will be described in accordance with the following specifications, taking a small once-through type low-pressure steam generating heat pump as an example. (1) Freon R-123 is specified as the refrigerant (2) Compressor uses a closed type (rotary compressor with liquid injection) (3) Evaporator and condenser use a double pipe system (4) Condenser Liquid refrigerant expansion (flow restriction) from the evaporator to the evaporator was performed by the capillary tube. (5) The feed water flow rate adjustment to the condenser was performed by the capillary tube and the variable discharge pressure type pump. (6) As a heat source on the low temperature side. (7) Operated at steam pressure of 0.5 kg / cm2G (equivalent temperature is 110 ° C). The specific operating conditions according to the above specifications were as follows. The operating state of the refrigeration cycle and Table 2 show the operating state of each device. In Table 1, the values in parentheses are reference approximate values that are not actually measured values. Margin below

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】図2(イ),(ロ)は上記表1及び表2に
おける冷媒フロンR−123を用いた本発明ヒートポン
プの動作状態を示したモリエル線図及び温度勾配図であ
り、高温冷媒が凝縮器入口に入ってくる動作点2の位置
(A)では冷媒は(イ)図に示すように127.6 ℃の温度
で、対向流であるため蒸気出口を最高温度まで加熱す
る。一方、凝縮器には(ロ)図に示すように54.5℃の水
(温水)が入って来て、110.4 ℃に昇温すると蒸気化が
始まるが、この110.4 ℃まで加熱する冷媒温度はこの温
度以上であり、水の物性値より所要エンタルピは56Kcal
/kg である。そして、次に上記蒸気化が始まり、110.4
℃の飽和蒸気に至るには更に532Kcal/kgのエンタルピを
必要とする。従って54.5℃の水を110.4 ℃の飽和蒸気に
するには合計、56+532 =588Kcal/kgのエンタルピが必
要となる。一般に20℃の水を100 ℃の蒸気とするには前
述のように20℃→100 ℃までの水で80Kcal/kg 、100 ℃
の水→100 ℃の飽和蒸気で540Kcal/kgの熱量を要し、総
熱量620Kcal/kgに対する後者熱量の割合は540/620 =8
7.1%であり、最低87%が100 ℃以上の冷媒温度が必要
である。上記本発明実験例においては532/588 =90.5%
となり、充分87%以上である。そして表1の動作点2〜
3の冷媒温度、即ち、図2(ロ)のA〜B間の冷媒側温
度は127.6 〜104.1 ℃であり、100 %,100℃以上となっ
ている。なお、図2(イ)において表1のエンタルピが
示されているが、A〜B間においては159.7Kcal/kg−12
4.8Kcal/kg=34.9Kcal/kg である。これを100 %とすれ
ば、前記した本実験例における9.5 %,90.5 %は3.3Kca
l/kg,31.6Kcal/kgとなり、54.5℃→110.5 ℃では3.3Kca
l/kgが消費され、110.5 ℃の蒸気化では31.6Kcal/kg が
消費されていることになる。かくして、本発明方法はヒ
ートポンプ利用の蒸気生成に極めて有効であることが理
解される。
2 (a) and 2 (b) are a Mollier diagram and a temperature gradient diagram showing the operating state of the heat pump of the present invention using the refrigerant CFC R-123 in Tables 1 and 2 above. At the position (A) of operating point 2 entering the condenser inlet, the refrigerant has a temperature of 127.6 ° C. as shown in FIG. On the other hand, as shown in Fig. (B), water (warm water) at 54.5 ° C enters the condenser, and vaporization starts when the temperature rises to 110.4 ° C. Above, the required enthalpy is 56 Kcal from the physical properties of water
/ kg. Then, the above vaporization starts, and 110.4
An additional 532 Kcal / kg enthalpy is required to reach saturated steam at ℃. Therefore, a total of 56 + 532 = 588 Kcal / kg enthalpy is required to convert 54.5 ° C water to 110.4 ° C saturated steam. Generally, in order to convert 20 ° C water to 100 ° C steam, 80Kcal / kg, 100 ° C at 20 ° C → 100 ° C water as described above.
Of water → saturated steam at 100 ℃ requires 540 Kcal / kg heat quantity, the ratio of the latter heat quantity to the total heat quantity 620 Kcal / kg is 540/620 = 8
7.1%, and at least 87% requires a refrigerant temperature of 100 ° C or higher. In the above experimental example of the present invention, 532/588 = 90.5%
Is more than 87%. And operating points 2 in Table 1
The refrigerant temperature of No. 3, that is, the refrigerant side temperature between A and B in FIG. 2B is 127.6 to 104.1 ° C., which is 100%, 100 ° C. or higher. Although the enthalpy of Table 1 is shown in FIG. 2 (a), it is 159.7 Kcal / kg-12 between A and B.
4.8Kcal / kg = 34.9Kcal / kg. Assuming this to be 100%, 9.5% and 90.5% in the above-mentioned experimental example are 3.3 Kca.
l / kg, 31.6Kcal / kg, 3.3Kca at 54.5 ℃ → 110.5 ℃
l / kg is consumed, and 31.6 Kcal / kg is consumed in the vaporization at 110.5 ℃. Thus, it is understood that the method of the present invention is extremely effective for steam generation using a heat pump.

【0017】[0017]

【発明の効果】本発明は以上のように冷媒として臨界温
度が100 ℃以上の冷媒を用いて、冷凍サイクルの高温側
にあたる凝縮器へ給熱する冷媒のエンタルピのうち、少
なくとも87%以上が100 ℃以上の温度となるように冷凍
サイクルを維持する如く運転せしめる方法であり、従
来、殆ど生成できなかったヒートポンプ高温側の凝縮熱
で蒸気発生を可能とし、蒸気ボイラに代る蒸気生成源と
して燃焼を使用せず、制御性良好に蒸気生成を達成する
ことができる。また、叙上の如く、燃焼を使用しないこ
とから本発明方法では腐食も起こらず、機器寿命を長期
化することができると共に、爆発、火災の心配もなく安
全性を高めることもできる。更に圧縮式ヒートポンプの
ため大気環境を汚染することもなく、またエネルギー効
率も高く運転経費の面で経済的である利点もある。
As described above, the present invention uses a refrigerant having a critical temperature of 100 ° C. or higher as a refrigerant, and at least 87% or more of the enthalpy of the refrigerant to be supplied to the condenser on the high temperature side of the refrigeration cycle is 100% or more. It is a method of operating so that the refrigeration cycle is maintained so that the temperature becomes ℃ or more, and it is possible to generate steam by the heat of condensation on the high temperature side of the heat pump, which could hardly be generated in the past. It is possible to achieve steam generation with good controllability without using. Further, as mentioned above, since combustion is not used, corrosion does not occur in the method of the present invention, the life of the equipment can be extended, and safety can be improved without fear of explosion or fire. Furthermore, since it is a compression heat pump, it has the advantages that it does not pollute the atmospheric environment, it is energy efficient, and it is economical in terms of operating costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する装置の概要図である。FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention.

【図2】本発明に係るヒートポンプ作動の動作状態を示
す図で、(イ)はモルエル線図、(ロ)は温度勾配図で
ある。
FIG. 2 is a diagram showing an operating state of a heat pump operation according to the present invention, (a) is a Mollier diagram, and (b) is a temperature gradient diagram.

【符号の説明】[Explanation of symbols]

(1) 圧縮機 (2) 凝縮器 (3) 冷媒絞り管 (4) 蒸発器 (11) 給水ポンプ (12) 水絞り管 (13) 循環ポンプ (14) 貯湯槽 (15) 循環ポンプ (16) 水加熱器 (17) 補給水槽 (1) Compressor (2) Condenser (3) Refrigerant throttle pipe (4) Evaporator (11) Water supply pump (12) Water throttle pipe (13) Circulation pump (14) Hot water tank (15) Circulation pump (16) Water heater (17) Make-up water tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機,凝縮器,冷媒絞り弁及び蒸発器
を含む冷凍サイクルの前記凝縮器に被加熱流体貫流経路
を併設して、該凝縮器を蒸気取り出し用となしたヒート
ポンプにおいて、上記冷凍サイクルの冷媒として臨界温
度が100 ℃以上の冷媒を用い、凝縮器へ給熱する冷媒の
エンタルピのうち、少なくとも87%が100 ℃以上の温度
となるように冷凍サイクルを維持し運転させることを特
徴とするヒートポンプ利用の蒸気生成方法。
1. A heat pump, wherein a condenser for a refrigerating cycle including a compressor, a condenser, a refrigerant throttle valve, and an evaporator is provided with a heated fluid flow path, and the condenser is used for taking out vapor. Use a refrigerant with a critical temperature of 100 ° C or higher as the refrigerant for the refrigeration cycle, and maintain and operate the refrigeration cycle so that at least 87% of the enthalpy of the refrigerant that heats the condenser is 100 ° C or higher. Characteristic steam generation method using a heat pump.
JP35230991A 1991-12-13 1991-12-13 Generating method for vapor utilizing heat pump Pending JPH05223204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35230991A JPH05223204A (en) 1991-12-13 1991-12-13 Generating method for vapor utilizing heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35230991A JPH05223204A (en) 1991-12-13 1991-12-13 Generating method for vapor utilizing heat pump

Publications (1)

Publication Number Publication Date
JPH05223204A true JPH05223204A (en) 1993-08-31

Family

ID=18423181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35230991A Pending JPH05223204A (en) 1991-12-13 1991-12-13 Generating method for vapor utilizing heat pump

Country Status (1)

Country Link
JP (1) JPH05223204A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207882A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump
JP2007232357A (en) * 2006-02-01 2007-09-13 Kansai Electric Power Co Inc:The Heat pump type steam and warm water generator
JP2008045807A (en) * 2006-08-15 2008-02-28 Tokyo Electric Power Co Inc:The Steam generating system
JP2013044489A (en) * 2011-08-25 2013-03-04 Miura Co Ltd Steam generator
JP2016522388A (en) * 2013-06-24 2016-07-28 エルジー・ケム・リミテッド Heat recovery equipment
JP2016151388A (en) * 2015-02-18 2016-08-22 富士電機株式会社 Heat pump type steam generation device and operation method of heat pump type steam generation device
JP2016200314A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device
JP2018105586A (en) * 2016-12-28 2018-07-05 富士電機株式会社 Steam generating system and control method for steam generating system
JP2019158173A (en) * 2018-03-08 2019-09-19 富士電機株式会社 Heat pump type steam generation system
JP2019158176A (en) * 2018-03-08 2019-09-19 富士電機株式会社 Heat pump type steam generation system
CN115355660A (en) * 2022-08-16 2022-11-18 山东安冷新材料科技有限公司 Portable and movable medical insulation box with constant temperature function and use method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207882A (en) * 2005-01-26 2006-08-10 Ebara Corp Absorption heat pump
JP2007232357A (en) * 2006-02-01 2007-09-13 Kansai Electric Power Co Inc:The Heat pump type steam and warm water generator
JP2008045807A (en) * 2006-08-15 2008-02-28 Tokyo Electric Power Co Inc:The Steam generating system
JP2013044489A (en) * 2011-08-25 2013-03-04 Miura Co Ltd Steam generator
JP2016522388A (en) * 2013-06-24 2016-07-28 エルジー・ケム・リミテッド Heat recovery equipment
US9612045B2 (en) 2013-06-24 2017-04-04 Lg Chem, Ltd. Heat recovery apparatus
JP2016151388A (en) * 2015-02-18 2016-08-22 富士電機株式会社 Heat pump type steam generation device and operation method of heat pump type steam generation device
JP2016200314A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device
JP2018105586A (en) * 2016-12-28 2018-07-05 富士電機株式会社 Steam generating system and control method for steam generating system
JP2019158173A (en) * 2018-03-08 2019-09-19 富士電機株式会社 Heat pump type steam generation system
JP2019158176A (en) * 2018-03-08 2019-09-19 富士電機株式会社 Heat pump type steam generation system
CN115355660A (en) * 2022-08-16 2022-11-18 山东安冷新材料科技有限公司 Portable and movable medical insulation box with constant temperature function and use method thereof

Similar Documents

Publication Publication Date Title
Li et al. Energy and exergy analyses of a solar-driven ejector-cascade heat pump cycle
CN101796355A (en) Thermally activated high efficiency heat pump
Butrymowicz et al. Investigations of prototype ejection refrigeration system driven by low grade heat
CN2913969Y (en) Compression type and absorption type associated refrigerating plant
JPH05223204A (en) Generating method for vapor utilizing heat pump
CN105135749A (en) Carbon dioxide heating and cooling combined system
Chen et al. Experimental study on two-stage ejector refrigeration system driven by two heat sources
Bai et al. Thermodynamic performance evaluation of an ejector-enhanced transcritical CO2 parallel compression refrigeration cycle
CN201199118Y (en) Novel energy-saving refrigeratory
KR101878234B1 (en) Vapor injection applied heat pump system for making highly dried hot steam
JPH02195130A (en) Heat pump capable of supplying both cold and hot fluids simultaneously
JP2013040726A (en) Device with heater
CN106322858A (en) Control method and control loop of refrigerating circuit for use in a motor vehicle
JP2013079739A (en) Device using heater
Bhatia Overview of vapor absorption cooling systems
CN104075489B (en) High-temperature steam source pump
JP2004301344A (en) Ammonia absorption heat pump
CN105737127A (en) Water vapor preparer
Abd-Elhady et al. The cooling rate of the heated vapor compression cycle in case of using refrigerants R134a, R22, and R600a
US4351159A (en) Energy recovery system
Hosseinnia et al. Performance analysis of a novel air source ammonia/water cascade heat pump for heating buildings in subarctic climate
JPH07139847A (en) High/low temperature heat pump system
CN111780077A (en) Vacuum waste heat steam boiler
CN200986289Y (en) Heat capillary power cycle type hot pipe type heat reclamation cold water device
CN205784769U (en) A kind of refrigerant hydrate circulation cold storage system