JP2018105586A - Steam generating system and control method for steam generating system - Google Patents

Steam generating system and control method for steam generating system Download PDF

Info

Publication number
JP2018105586A
JP2018105586A JP2016255122A JP2016255122A JP2018105586A JP 2018105586 A JP2018105586 A JP 2018105586A JP 2016255122 A JP2016255122 A JP 2016255122A JP 2016255122 A JP2016255122 A JP 2016255122A JP 2018105586 A JP2018105586 A JP 2018105586A
Authority
JP
Japan
Prior art keywords
output
steam generation
steam
flow rate
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016255122A
Other languages
Japanese (ja)
Other versions
JP6844254B2 (en
Inventor
康弘 横山
Yasuhiro Yokoyama
康弘 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016255122A priority Critical patent/JP6844254B2/en
Publication of JP2018105586A publication Critical patent/JP2018105586A/en
Application granted granted Critical
Publication of JP6844254B2 publication Critical patent/JP6844254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam generating system and a control method for the steam generating system capable of restricting deterioration of operation efficiency of an entire system even if steam generating devices having different output coefficients are operated in parallel.SOLUTION: This invention relates to a steam generating system in which several steam generating devices 2 for generating steam upon heat transmission of heat recovered from a heat source hot water W by a heat pump to water to be heated are connected in parallel, either an output distribution ratio or a flow rate distribution ratio is determined on the basis of each of the output coefficients at the steam generating devices 2 so as to perform an output distribution control processing by an output distribution control part 10a making an output set value of each of the steam generating devices 2 variable in response to the output distribution ratio and a requisite output of the steam generating system 1 or a flow rate distribution control processing by a flow rate distribution control part 10b making a flow rate set value of each of the steam generating devices 2 in response to the flow rate distribution ratio and a requisite flow rate of the steam generating system 1.SELECTED DRAWING: Figure 8

Description

本発明は、出力係数が異なる蒸気生成装置を並列運転する場合であってもシステム全体の運転効率の悪化を抑えることができる蒸気生成システム及び蒸気生成システムの制御方法に関する。   The present invention relates to a steam generation system and a method for controlling the steam generation system that can suppress deterioration of the operation efficiency of the entire system even when steam generation apparatuses having different output coefficients are operated in parallel.

蒸気生成装置の一つとして、工場排水や使用済冷却水等の排温水等の温水から熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置がある(特許文献1参照)。ヒートポンプ式蒸気生成装置は、ヒートポンプ部の蒸発器を排熱回収器として機能させ、ここで熱源温水から熱を冷媒に回収し、回収した熱を利用して凝縮器で被加熱水を加熱して蒸気を生成するため、ボイラ設備等を利用して蒸気を発生させる燃焼系蒸気生成装置に比べてランニングコストやCOの排出量を低減できるメリットがある。 As one of the steam generators, there is a heat pump steam generator that recovers heat from warm water such as waste water from factory wastewater or used cooling water to generate steam (see Patent Document 1). In the heat pump steam generator, the evaporator of the heat pump unit functions as an exhaust heat recovery device, where heat is recovered from the heat source hot water into the refrigerant, and the water to be heated is heated by the condenser using the recovered heat. Since steam is generated, there is an advantage that the running cost and CO 2 emission amount can be reduced as compared with the combustion system steam generating apparatus that generates steam using boiler equipment or the like.

特開2012−32136号公報JP 2012-32136 A

ところで、排温水などの熱源温水を用いて複数台の蒸気生成装置を並列運転する蒸気生成システムの各蒸気生成装置は、システム出力を均等配分した出力設定で運転している。しかし、各蒸気生成装置は、同じ出力設定を受けて運転していても、機差があり、例えば、出力性能で最大20%程度の差が生じる場合がある。各蒸気生成装置は、定格出力を得るために圧縮機を一定回転数で運転した場合の出力を定格出力で除算した出力比である出力係数によって性能が評価される。すなわち、各蒸気生成装置は、出力係数によって運転効率が評価される。   By the way, each steam generating device of the steam generating system that operates a plurality of steam generating devices in parallel using heat source hot water such as exhaust hot water is operated with an output setting in which system outputs are evenly distributed. However, even if each steam generator is operated under the same output setting, there is a difference in machine, for example, a difference of about 20% at maximum in output performance may occur. The performance of each steam generator is evaluated by an output coefficient that is an output ratio obtained by dividing the output when the compressor is operated at a constant rotational speed to obtain the rated output. That is, the operation efficiency of each steam generator is evaluated by the output coefficient.

各蒸気生成装置は同じ出力設定がされており、出力係数が低い蒸気生成装置は、設定された出力とするため、出力係数が高い蒸気生成装置に比して圧縮機の回転数を上げて運転しなければならず、運転効率が低くなる。その結果、システム全体の運転効率が悪化することになる。   Each steam generator has the same output setting, and the steam generator with a low output coefficient is set to the set output, so the compressor is operated at a higher rotational speed than the steam generator with a high output coefficient. Operation efficiency is reduced. As a result, the operation efficiency of the entire system is deteriorated.

本発明は、上記に鑑みてなされたものであって、出力係数が異なる蒸気生成装置を並列運転する場合であってもシステム全体の運転効率の悪化を抑えることができる蒸気生成システム及び蒸気生成システムの制御方法を提供することを目的とする。   The present invention has been made in view of the above, and a steam generation system and a steam generation system capable of suppressing deterioration of the operation efficiency of the entire system even when steam generation apparatuses having different output coefficients are operated in parallel It is an object to provide a control method.

上述した課題を解決し、目的を達成するために、本発明にかかる蒸気生成システムは、熱源温水からヒートポンプで回収した熱を被加熱水に伝熱することで蒸気を生成する複数台の蒸気生成装置を並列に接続した蒸気生成システムであって、前記蒸気生成装置におけるそれぞれの出力係数に基づき、出力配分比または流量配分比を決定し、前記出力配分比と前記蒸気生成システムの要求出力により各蒸気生成装置の出力設定値を可変とする出力配分制御処理、または前記流量配分比と前記蒸気生成システムの必要流量により各蒸気生成装置の流量設定値を可変とする流量配分制御処理を行うことを特徴とする。   In order to solve the above-described problems and achieve the object, the steam generation system according to the present invention generates a plurality of steams that generate steam by transferring heat recovered from the heat source hot water by a heat pump to the water to be heated. A steam generation system in which the devices are connected in parallel, wherein an output distribution ratio or a flow rate distribution ratio is determined based on respective output coefficients in the steam generation apparatus, and each of the output ratio and the required output of the steam generation system An output distribution control process in which the output set value of the steam generator is variable, or a flow distribution control process in which the flow set value of each steam generator is variable according to the flow distribution ratio and the required flow rate of the steam generation system. Features.

また、本発明にかかる蒸気生成システムは、上記の発明において、前記出力配分制御処理は、前記出力係数が大きい前記蒸気生成装置ほど前記出力配分比を大きくし、前記出力係数が小さい前記蒸気生成装置ほど前記出力配分比を小さくすることを特徴とする。   The steam generation system according to the present invention is the steam generation device according to the above invention, wherein the output distribution control processing increases the output distribution ratio as the steam generation device has a larger output coefficient, and decreases the output coefficient. As described above, the output distribution ratio is reduced.

また、本発明にかかる蒸気生成システムは、上記の発明において、各蒸気生成装置に対する各出力設定値は、各蒸気生成装置の前記出力係数の総和に対する各蒸気生成装置個別の前記出力係数の比に前記蒸気生成システムの要求出力を乗算した値に基づき設定されることを特徴とする。   In the steam generation system according to the present invention, in the above invention, each output setting value for each steam generation device is a ratio of the output coefficient of each steam generation device to the sum of the output coefficients of each steam generation device. It is set based on a value obtained by multiplying the required output of the steam generation system.

また、本発明にかかる蒸気生成システムは、上記の発明において、前記流量配分制御処理は、前記出力係数が大きい前記蒸気生成装置ほど前記流量配分比を小さくし、前記出力係数が小さい前記蒸気生成装置ほど前記流量配分比を大きくすることを特徴とする。   The steam generation system according to the present invention is the steam generation apparatus according to the above invention, wherein the flow rate distribution control process is such that the steam generation device having a larger output coefficient reduces the flow rate distribution ratio and the output coefficient is smaller. As described above, the flow rate distribution ratio is increased.

また、本発明にかかる蒸気生成システムは、上記の発明において、各蒸気生成装置に対する各流量設定値は、各蒸気生成装置の前記出力係数の逆数の総和に対する各蒸気生成装置個別の前記出力係数の逆数の比に前記蒸気生成システムの必要流量を乗算した値に基づき設定されることを特徴とする。   Further, in the steam generation system according to the present invention, in the above invention, each flow rate setting value for each steam generation device is the output coefficient of each steam generation device with respect to the sum of the reciprocal of the output coefficient of each steam generation device. The reciprocal ratio is set based on a value obtained by multiplying the required flow rate of the steam generation system.

また、本発明にかかる蒸気生成システムは、上記の発明において、前記出力配分制御処理と前記流量配分制御処理との切替指示を行う操作部を備え、前記操作部の切替指示に従って前記出力配分制御処理と前記流量配分制御処理とを切り替えることを特徴とする。   The steam generation system according to the present invention further includes an operation unit that issues a switching instruction between the output distribution control process and the flow rate distribution control process in the above invention, and the output distribution control process according to the switching instruction of the operation unit. And the flow rate distribution control processing are switched.

また、本発明にかかる蒸気生成システムは、上記の発明において、前記熱源温水の温度が所定値以上の場合、前記流量配分制御処理を行い、前記熱源温水の温度が所定値未満の場合、前記出力配分制御処理を行う自動切替制御部を備えたことを特徴とする。   Further, in the steam generation system according to the present invention, in the above invention, when the temperature of the heat source hot water is equal to or higher than a predetermined value, the flow distribution control process is performed, and when the temperature of the heat source hot water is lower than a predetermined value, the output An automatic switching control unit that performs distribution control processing is provided.

また、本発明にかかる蒸気生成システムの制御方法は、熱源温水からヒートポンプで回収した熱を被加熱水に伝熱することで蒸気を生成する複数台の蒸気生成装置を並列に接続した蒸気生成システムの制御方法であって、前記蒸気生成装置におけるそれぞれの出力係数に基づき、出力配分比または流量配分比を決定し、前記出力配分比と前記蒸気生成システムの要求出力により各蒸気生成装置の出力設定値を可変とする出力配分制御処理、または前記流量配分比と前記蒸気生成システムの必要流量により各蒸気生成装置の流量設定値を可変とする流量配分制御処理を行うことを特徴とする。   The steam generation system control method according to the present invention includes a steam generation system in which a plurality of steam generation devices that generate steam by transferring heat recovered from a heat source hot water with a heat pump to heated water are connected in parallel. And determining an output distribution ratio or a flow distribution ratio based on each output coefficient in the steam generation device, and setting the output of each steam generation device based on the output distribution ratio and the required output of the steam generation system An output distribution control process in which the value is variable, or a flow distribution control process in which the flow rate setting value of each steam generator is variable according to the flow rate distribution ratio and the required flow rate of the steam generation system is performed.

本発明によれば、各蒸気生成装置におけるそれぞれの出力係数に基づき、出力配分比または流量配分比を決定し、前記出力配分比と蒸気生成システムの要求出力により各蒸気生成装置の出力設定値を可変とする出力配分制御処理、または前記流量配分比と前記蒸気生成システムの必要流量により各蒸気生成装置の流量設定値を可変とする流量配分制御処理を行うようにしているので、出力係数が異なる蒸気生成装置を並列運転する場合であってもシステム全体の運転効率の悪化を抑えることができる。   According to the present invention, the output distribution ratio or the flow rate distribution ratio is determined based on the respective output coefficients in each steam generator, and the output set value of each steam generator is determined by the output distribution ratio and the required output of the steam generation system. The output coefficient is different because the variable output distribution control process or the flow distribution control process in which the flow rate setting value of each steam generation device is variable according to the flow rate distribution ratio and the required flow rate of the steam generation system is performed. Even when the steam generators are operated in parallel, it is possible to suppress the deterioration of the operation efficiency of the entire system.

図1は、本発明の実施の形態1である蒸気生成システムの全体構成を示すブロック図である。FIG. 1 is a block diagram showing an overall configuration of a steam generation system according to Embodiment 1 of the present invention. 図2は、図1に示した蒸気生成装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the steam generation apparatus illustrated in FIG. 1. 図3は、出力配分制御部による出力配分制御処理手順を示すフローチャートである。FIG. 3 is a flowchart showing an output distribution control processing procedure by the output distribution control unit. 図4は、出力配分制御部による出力配分制御処理の具体例を説明する説明図である。FIG. 4 is an explanatory diagram illustrating a specific example of output distribution control processing by the output distribution control unit. 図5は、本発明の実施の形態2である蒸気生成システムの全体構成を示すブロック図である。FIG. 5 is a block diagram showing the overall configuration of the steam generation system according to Embodiment 2 of the present invention. 図6は、流量配分制御部による流量配分制御処理手順を示すフローチャートである。FIG. 6 is a flowchart showing a flow distribution control processing procedure by the flow distribution control unit. 図7は、流量配分制御部による流量配分制御処理の具体例を説明する説明図である。FIG. 7 is an explanatory diagram illustrating a specific example of the flow distribution control processing by the flow distribution control unit. 図8は、本発明の実施の形態3である蒸気生成システムの全体構成を示すブロック図である。FIG. 8 is a block diagram showing the overall configuration of the steam generation system according to Embodiment 3 of the present invention. 図9は、本発明の実施の形態4である蒸気生成システムの全体構成を示すブロック図である。FIG. 9 is a block diagram showing an overall configuration of a steam generation system according to Embodiment 4 of the present invention. 図10は、自動切替制御部による自動切替制御処理手順を示すフローチャートである。FIG. 10 is a flowchart showing an automatic switching control processing procedure by the automatic switching control unit.

以下、添付図面を参照してこの発明を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

[実施の形態1]
(全体構成)
図1は、本発明の実施の形態1である蒸気生成システム1の全体構成を示すブロック図である。蒸気生成システム1は、工場排水等の熱源温水から排熱を回収し、回収した排熱を利用して水蒸気を生成するシステムであり、生成した水蒸気は乾燥装置や殺菌装置等の外部の蒸気利用設備に送られる。
[Embodiment 1]
(overall structure)
FIG. 1 is a block diagram showing an overall configuration of a steam generation system 1 according to Embodiment 1 of the present invention. The steam generation system 1 is a system that recovers exhaust heat from heat source hot water such as factory waste water and generates steam by using the recovered exhaust heat. The generated steam is used by external steam such as a drying device or a sterilizer. Sent to the facility.

図1に示すように、蒸気生成システム1は、熱源温水Wからヒートポンプで回収した熱を被加熱水に伝熱することで蒸気Hを生成する複数台の蒸気生成装置2(2a〜2d)が並列に接続される。各蒸気生成装置2には、熱源温水Wを貯留するバッファタンクとしての温水タンク3から、ポンプ4を介して熱源温水Wが供給される。この温水タンク3を設けることによって、各蒸気生成装置2に対する熱源温水Wの供給量変動を抑えることができる。この結果、熱源温水Wの供給量変動に伴う蒸気生成システム1の蒸気出力変動を抑えることができる。   As shown in FIG. 1, the steam generation system 1 includes a plurality of steam generation devices 2 (2 a to 2 d) that generate steam H by transferring heat recovered from a heat source hot water W by a heat pump to water to be heated. Connected in parallel. Each steam generator 2 is supplied with heat source hot water W via a pump 4 from a hot water tank 3 serving as a buffer tank that stores the heat source hot water W. By providing this hot water tank 3, fluctuations in the supply amount of the heat source hot water W to each steam generator 2 can be suppressed. As a result, it is possible to suppress the steam output fluctuation of the steam generation system 1 due to the supply amount fluctuation of the heat source hot water W.

温水タンク3には、水位センサ6が設けられる。水位センサ6は、温水タンク3に貯留される熱源温水Wの貯留量を測定する。また、ポンプ4と各蒸気生成装置2との間には流量調整弁5(5a〜5d)が設けられる。制御部10は、水位センサ6が検知した温水タンク3の貯留量の増減に対応してポンプ4が供給する熱源温水Wの流量を増減する。   The warm water tank 3 is provided with a water level sensor 6. The water level sensor 6 measures the storage amount of the heat source hot water W stored in the hot water tank 3. Further, a flow rate adjusting valve 5 (5a to 5d) is provided between the pump 4 and each steam generator 2. The controller 10 increases or decreases the flow rate of the heat source hot water W supplied by the pump 4 in accordance with the increase or decrease of the storage amount of the hot water tank 3 detected by the water level sensor 6.

制御部10は、各流量調整弁5を調整して、各蒸気生成装置2に対して均等配分された流量の熱源温水Wを供給する。さらに制御部10は、各蒸気生成装置2に対して均等配分された熱源温水Wの流量(均等配分流量F)をもとに、各蒸気生成装置2の運転制御を行う。特に、制御部10は、出力配分制御部10aを有し、出力配分制御部10aは、記憶部70の出力係数情報Dを参照して、各蒸気生成装置2a〜2dにおけるそれぞれの出力係数に基づき、出力配分比を決定し、決定した出力配分比と蒸気生成システム1の要求出力により各蒸気生成装置2a〜2dの出力設定値を可変とする出力配分制御処理を行う。この出力配分制御処理は、出力配分比の総和が1となるように、出力係数が大きい蒸気生成装置ほど出力配分比を大きくし、出力係数が小さい蒸気生成装置ほど出力配分比を小さくする処理を行う。この出力配分制御処理の詳細については後述する。   The control unit 10 adjusts each flow rate adjustment valve 5 to supply the heat source hot water W having a flow rate that is evenly distributed to each steam generation device 2. Further, the control unit 10 controls the operation of each steam generating device 2 based on the flow rate of the heat source hot water W equally distributed to each steam generating device 2 (equally distributed flow rate F). In particular, the control unit 10 includes an output distribution control unit 10a, and the output distribution control unit 10a refers to the output coefficient information D in the storage unit 70, based on the output coefficients in the respective steam generation devices 2a to 2d. Then, the output distribution ratio is determined, and output distribution control processing for changing the output set values of the respective steam generators 2a to 2d according to the determined output distribution ratio and the required output of the steam generation system 1 is performed. In this output distribution control process, the steam generation apparatus having a larger output coefficient increases the output distribution ratio so that the total output distribution ratio becomes 1, and the steam generation apparatus having a smaller output coefficient decreases the output distribution ratio. Do. Details of the output distribution control process will be described later.

なお、温水タンク3には、温度センサ7が設けられる。温度センサ7は、温水タンク3内に貯留される熱源温水Wの温度を検出し、その検出結果を制御部10に送出する。各蒸気生成装置2に供給される熱源温水Wは、各蒸気生成装置2に熱を供給するものであり、各蒸気生成装置2に供給される熱流量は、熱源温水Wの流量と温度とに依存する。制御部10は、この熱源温水Wの温度を加味して各蒸気生成装置2に供給される熱流量を調整する必要がある。この実施の形態では、説明の便宜上、熱源温水Wの温度が一定とし、熱源温水Wの流量を制御することによって、各蒸気生成装置2に対する熱流量が制御されるものとして説明する。   The warm water tank 3 is provided with a temperature sensor 7. The temperature sensor 7 detects the temperature of the heat source hot water W stored in the hot water tank 3 and sends the detection result to the control unit 10. The heat source hot water W supplied to each steam generation device 2 supplies heat to each steam generation device 2, and the heat flow rate supplied to each steam generation device 2 depends on the flow rate and temperature of the heat source hot water W. Dependent. The control unit 10 needs to adjust the heat flow rate supplied to each steam generator 2 in consideration of the temperature of the heat source hot water W. In this embodiment, for convenience of explanation, it is assumed that the temperature of the heat source hot water W is constant and the flow rate of the heat source hot water W is controlled so that the heat flow rate for each steam generator 2 is controlled.

(蒸気生成装置の構成)
図2は、図1に示した蒸気生成装置2の構成を示すブロック図である。図2に示すように、蒸気生成装置2は、水を蒸発させて水蒸気を生成し、外部へと送り出す蒸気生成部12と、温水供給部14によって供給される熱源温水Wから熱を回収し、この熱を蒸気生成部12での蒸気生成のための熱源として供給するヒートポンプ部16と、制御部18とを備える。
(Configuration of steam generator)
FIG. 2 is a block diagram illustrating a configuration of the steam generation apparatus 2 illustrated in FIG. 1. As shown in FIG. 2, the steam generator 2 recovers heat from the heat source hot water W supplied by the steam generator 12 and the hot water supply unit 14 that generate water vapor by evaporating water and send it to the outside. A heat pump unit 16 that supplies this heat as a heat source for generating steam in the steam generation unit 12 and a control unit 18 are provided.

ヒートポンプ部16は、冷媒を圧縮する圧縮機20と、圧縮機20で圧縮された冷媒を凝縮させる凝縮器22と、凝縮器22を出た冷媒を減圧する膨張機構24と、熱源温水Wから熱を回収して冷媒を蒸発させる蒸発器26とを環状に接続したヒートポンプサイクルを有したヒートポンプ装置である。本実施の形態では、凝縮器22の出口側と膨張機構24の入口側との間に加熱器28を接続している。膨張機構24は、例えば電子膨張弁である。   The heat pump unit 16 includes a compressor 20 that compresses the refrigerant, a condenser 22 that condenses the refrigerant compressed by the compressor 20, an expansion mechanism 24 that decompresses the refrigerant that has exited the condenser 22, and heat from the heat source hot water W. Is a heat pump device having a heat pump cycle in which an evaporator 26 that collects the refrigerant and evaporates the refrigerant is connected in an annular shape. In the present embodiment, a heater 28 is connected between the outlet side of the condenser 22 and the inlet side of the expansion mechanism 24. The expansion mechanism 24 is, for example, an electronic expansion valve.

圧縮機20で圧縮されて高温高圧となった冷媒は、凝縮器22で蒸気生成部12を循環する水と熱交換して冷却され凝縮する。凝縮器22を出た冷媒は、加熱器28で給水経路30を流れる水を予熱してさらに冷却された後、膨張機構24で断熱膨張され、蒸発器26で温水供給部14の温水経路32を流れる熱源温水Wから吸熱して蒸発して圧縮機20へと戻る。   The refrigerant that has been compressed by the compressor 20 to a high temperature and high pressure is cooled and condensed by exchanging heat with the water circulating in the steam generation unit 12 in the condenser 22. The refrigerant that has exited the condenser 22 is preheated with water flowing through the water supply path 30 by the heater 28 and further cooled, and then adiabatic expansion is performed by the expansion mechanism 24, and the hot water path 32 of the hot water supply unit 14 is expanded by the evaporator 26. It absorbs heat from the flowing heat source hot water W, evaporates and returns to the compressor 20.

ヒートポンプ部16の冷媒経路には、圧縮機20の吸入側の冷媒の圧力及び温度をそれぞれ検出する吸入圧力センサ34及び吸入温度センサ35と、圧縮機20の吐出側の冷媒の圧力及び温度をそれぞれ検出する吐出圧力センサ36及び吐出温度センサ37と、膨張機構24の入口側の冷媒の温度を検出する入口温度センサ38と、蒸発器26の本体温度を検出する蒸発器本体温度センサ29とが設置されている。圧縮機20は制御部18の制御下に、各センサ34〜38の検出値に基づきインバータ(INV)40を介して圧縮機20の運転回転数を制御する。   The refrigerant path of the heat pump unit 16 includes a suction pressure sensor 34 and a suction temperature sensor 35 that respectively detect the pressure and temperature of the refrigerant on the suction side of the compressor 20, and a pressure and temperature of the refrigerant on the discharge side of the compressor 20, respectively. A discharge pressure sensor 36 and a discharge temperature sensor 37 for detecting, an inlet temperature sensor 38 for detecting the temperature of the refrigerant on the inlet side of the expansion mechanism 24, and an evaporator main body temperature sensor 29 for detecting the main body temperature of the evaporator 26 are installed. Has been. Under the control of the control unit 18, the compressor 20 controls the operating rotational speed of the compressor 20 via the inverter (INV) 40 based on the detection values of the sensors 34 to 38.

蒸気生成部12は、ヒートポンプ部16を循環する冷媒を熱源として水を蒸発させて蒸気を生成する凝縮器22と、凝縮器22で生成される水と蒸気を含む気液二相流を蒸気と水とに分離する水蒸気分離器42と、水蒸気分離器42で分離された蒸気を外部の蒸気利用設備に供給する蒸気供給経路44と、水蒸気分離器42で分離された水を給水経路30から供給される水と合流させて凝縮器22から水蒸気分離器42へと導く水循環経路46とを有する。   The steam generation unit 12 uses a refrigerant circulating in the heat pump unit 16 as a heat source to evaporate water to generate steam, and a vapor-liquid two-phase flow including water and steam generated by the condenser 22 A water vapor separator 42 that separates into water, a steam supply path 44 that supplies the steam separated by the water vapor separator 42 to an external steam utilization facility, and water that is separated by the water vapor separator 42 is supplied from the water supply path 30. And a water circulation path 46 that joins the water to be led from the condenser 22 to the water vapor separator 42.

水蒸気分離器42は、鉛直方向に沿った円筒状容器で構成され、下端壁に接続された水循環経路46に接続された給水経路30から水が給水補給されることで容器内部に水を貯留する。給水経路30は、図示しない水道管や水タンクからの水(給水)を給水ポンプ48によって加熱器28を経て水循環経路46まで導入する。給水ポンプ48は制御部18の制御下に、水蒸気分離器42内に貯留された水の水位を測定する水位センサ50の検出値(水位)に基づきインバータ(INV)52を介してその運転回転数が制御される。水蒸気分離器42には、内部の蒸気圧が所定圧力以上になった際に開放される圧力逃がし弁54が接続されている。   The water vapor separator 42 is formed of a cylindrical container along the vertical direction, and stores water inside the container by supplying water from the water supply path 30 connected to the water circulation path 46 connected to the lower end wall. . In the water supply path 30, water (water supply) from a water pipe or a water tank (not shown) is introduced to the water circulation path 46 through the heater 28 by the water supply pump 48. Under the control of the control unit 18, the feed water pump 48 is operated at its rotational speed via an inverter (INV) 52 based on a detection value (water level) of a water level sensor 50 that measures the water level of water stored in the water vapor separator 42. Is controlled. Connected to the water vapor separator 42 is a pressure relief valve 54 that is opened when the internal vapor pressure exceeds a predetermined pressure.

水循環経路46は、水蒸気分離器42の下端壁から凝縮器22までを連通する液管46aと、凝縮器22から水蒸気分離器42の上部側壁までを連通する蒸気管46bとから構成されている。液管46aには水が流通し、蒸気管46bには水及び蒸気を含む気液二相流が流通する。液管46aには循環ポンプ56が設けられている。循環ポンプ56は制御部18の制御下に、インバータ(INV)58を介してその運転回転数が制御される。   The water circulation path 46 includes a liquid pipe 46 a that communicates from the lower end wall of the water vapor separator 42 to the condenser 22, and a vapor pipe 46 b that communicates from the condenser 22 to the upper side wall of the water vapor separator 42. Water flows through the liquid pipe 46a, and a gas-liquid two-phase flow containing water and steam flows through the steam pipe 46b. A circulation pump 56 is provided in the liquid pipe 46a. The operation speed of the circulation pump 56 is controlled through an inverter (INV) 58 under the control of the control unit 18.

蒸気供給経路44は、水蒸気分離器42の上端壁に接続され、蒸気管46bから当該水蒸気分離器42内に供給され、ここで水が分離された後の蒸気Hを外部に送り出す経路である。蒸気供給経路44には、流れる蒸気Hの圧力を調整する圧力調整弁60が設置されている。圧力調整弁60は、制御部18の制御下に、圧力センサ62で測定される水蒸気分離器42内の蒸気圧力に基づきその開度が調整される。圧力調整弁60の開度を適宜調整することにより、蒸気生成装置2から外部に送り出される蒸気Hの流量や圧力を制御できる。蒸気供給経路44を流れる蒸気の圧力を調整する蒸気圧力調整手段としては、圧力調整弁60に代えて又はこれと共に蒸気を圧縮する蒸気圧縮機を用いてもよい。   The steam supply path 44 is a path that is connected to the upper end wall of the water vapor separator 42 and is supplied into the water vapor separator 42 from the steam pipe 46b and sends out the steam H after the water is separated therefrom. A pressure adjusting valve 60 that adjusts the pressure of the flowing steam H is installed in the steam supply path 44. The pressure adjustment valve 60 is adjusted in opening degree based on the vapor pressure in the water vapor separator 42 measured by the pressure sensor 62 under the control of the control unit 18. By appropriately adjusting the opening degree of the pressure regulating valve 60, the flow rate and pressure of the steam H sent out from the steam generating device 2 can be controlled. As the steam pressure adjusting means for adjusting the pressure of the steam flowing through the steam supply path 44, a steam compressor that compresses steam instead of or together with the pressure adjusting valve 60 may be used.

制御部18は、制御部10からの出力指令値が示す蒸気出力となるように、圧縮機20の運転回転数を制御する。なお、制御部18は、さらに給水ポンプ48、循環ポンプ56及び圧力調整弁60の制御を行う。また、制御部18は、各センサ34〜38の検出値に基づき圧縮機20の運転制御を行うことで、ヒートポンプ部16の加熱出力を制御する。すなわち、制御部18は、各センサ34〜38の検出値をもとに、圧縮機20の吐出側から膨張機構24の入口側までの冷媒のエンタルピ差と、ヒートポンプサイクルの冷媒循環量との積であるヒートポンプ加熱出力を算出し、この算出したヒートポンプ加熱出力が目標加熱出力となるように、圧縮機20の運転回転数を制御する。   The control unit 18 controls the operating rotational speed of the compressor 20 so that the steam output indicated by the output command value from the control unit 10 is obtained. The control unit 18 further controls the water supply pump 48, the circulation pump 56, and the pressure adjustment valve 60. In addition, the control unit 18 controls the heating output of the heat pump unit 16 by performing operation control of the compressor 20 based on the detection values of the sensors 34 to 38. That is, the control unit 18 calculates the product of the refrigerant enthalpy difference from the discharge side of the compressor 20 to the inlet side of the expansion mechanism 24 and the refrigerant circulation amount of the heat pump cycle based on the detection values of the sensors 34 to 38. The heat pump heating output is calculated, and the operation rotational speed of the compressor 20 is controlled so that the calculated heat pump heating output becomes the target heating output.

(出力配分制御処理)
ここで、図3に示したフローチャートを参照して、出力配分制御部10aによる出力配分制御処理手順について説明する。図3に示すように、出力配分制御部10aは、記憶部70に記憶された出力係数情報Dを取得する(ステップS101)。この出力係数情報Dには、各蒸気生成装置2の出力係数が記述されている。その後、出力配分制御部10aは、各蒸気生成装置2の出力配分比計算を行う(ステップS102)。この出力配分比計算は、出力配分比の総和が1となるように、出力係数が大きい蒸気生成装置ほど出力配分比を大きくし、出力係数が小さい蒸気生成装置ほど出力配分比を小さくする。
(Output distribution control processing)
Here, with reference to the flowchart shown in FIG. 3, the output distribution control processing procedure by the output distribution control unit 10a will be described. As illustrated in FIG. 3, the output distribution control unit 10a acquires the output coefficient information D stored in the storage unit 70 (step S101). The output coefficient information D describes the output coefficient of each steam generator 2. Thereafter, the output distribution control unit 10a calculates the output distribution ratio of each steam generation device 2 (step S102). In this output distribution ratio calculation, the steam generation apparatus having a larger output coefficient increases the output distribution ratio so that the sum of the output distribution ratios becomes 1, and the steam generation apparatus having a smaller output coefficient decreases the output distribution ratio.

その後、出力配分制御部10aは、蒸気生成システムの要求出力と出力配分比をもとに各蒸気生成装置2の出力設定値を決定し、各蒸気生成装置2に指示する(ステップS103)。その後、システム停止の指示があったか否かを判断する(ステップS104)。システム停止の指示がない場合(ステップS104,No)には、ステップS103に移行して上述した処理を繰り返し、システム停止の指示があった場合(ステップS104,Yes)には、本処理を終了する。   Thereafter, the output distribution control unit 10a determines the output set value of each steam generation device 2 based on the required output of the steam generation system and the output distribution ratio, and instructs each steam generation device 2 (step S103). Thereafter, it is determined whether or not there has been an instruction to stop the system (step S104). If there is no instruction to stop the system (No in step S104), the process proceeds to step S103 and the above-described processing is repeated. .

(出力配分制御処理の具体例)
図4は、出力配分制御処理の具体例を説明する説明図である。この具体例では、各蒸気生成装置2a〜2dの出力係数Ra〜Rdがそれぞれ、1.0、1.1、1.1、0.9であり、システム全体の要求出力が100kWであり、システム全体の必要流量が5000kg/hであるとして説明する。すなわち、蒸気生成装置2b,2cの出力係数が大きく、蒸気生成装置2dの出力係数が小さい場合について説明する。
(Specific example of output distribution control processing)
FIG. 4 is an explanatory diagram illustrating a specific example of the output distribution control process. In this specific example, the output coefficients Ra to Rd of the steam generators 2a to 2d are 1.0, 1.1, 1.1, and 0.9, respectively, and the required output of the entire system is 100 kW. The description will be made assuming that the total required flow rate is 5000 kg / h. That is, the case where the output coefficients of the steam generators 2b and 2c are large and the output coefficient of the steam generator 2d is small will be described.

各蒸気生成装置2a〜2dの出力配分比PDa〜PDdは、上述したように、出力配分比の総和が1となるように、出力係数が大きい蒸気生成装置ほど出力配分比を大きくし、出力係数が小さい蒸気生成装置ほど出力配分比を小さくする。具体的な出力配分比PDa〜PDdは、出力係数Ra〜Rdの総和に対する各出力係数Ra〜Rdの比として求める。すなわち、
PDa=Ra/(Ra+Rb+Rc+Rd)
PDb=Rb/(Ra+Rb+Rc+Rd)
PDc=Rc/(Ra+Rb+Rc+Rd)
PDd=Rd/(Ra+Rb+Rc+Rd)
として求める。
As described above, the output distribution ratios PDa to PDd of the respective steam generators 2a to 2d increase the output distribution ratio as the steam generator has a larger output coefficient so that the sum of the output distribution ratios becomes 1. The smaller the steam generator, the smaller the power distribution ratio. The specific output distribution ratios PDa to PDd are obtained as ratios of the output coefficients Ra to Rd with respect to the sum of the output coefficients Ra to Rd. That is,
PDa = Ra / (Ra + Rb + Rc + Rd)
PDb = Rb / (Ra + Rb + Rc + Rd)
PDc = Rc / (Ra + Rb + Rc + Rd)
PDd = Rd / (Ra + Rb + Rc + Rd)
Asking.

そして、各蒸気生成装置2a〜2dに対する各出力設定値Pra〜Prdは、各出力配分比PDa〜PDdに蒸気生成システム1の要求出力Ptotalを乗算した値として算出する。すなわち、各出力設定値Pra〜Prdは、
Pra=PDa×Ptotal
=1.0/(1.0+1.1+1.1+0.9)×100[kW]
=24.4[kW]
Prb=PDb×Ptotal
=1.1/(1.0+1.1+1.1+0.9)×100[kW]
=26.8[kW]
Prc=PDc×Ptotal
=1.1/(1.0+1.1+1.1+0.9)×100[kW]
=26.8[kW]
Prd=PDd×Ptotal
=0.9/(1.0+1.1+1.1+0.9)×100[kW]
=22.0[kW]
として算出される。
And each output setting value Pra-Prd with respect to each steam production | generation apparatus 2a-2d is calculated as a value which multiplied each output distribution ratio PDa-PDd by the request | requirement output Ptotal of the steam production system 1. FIG. That is, the output set values Pra to Prd are
Pra = PDa × Ptotal
= 1.0 / (1.0 + 1.1 + 1.1 + 0.9) × 100 [kW]
= 24.4 [kW]
Prb = PDb × Ptotal
= 1.1 / (1.0 + 1.1 + 1.1 + 0.9) × 100 [kW]
= 26.8 [kW]
Prc = PDc × Ptotal
= 1.1 / (1.0 + 1.1 + 1.1 + 0.9) × 100 [kW]
= 26.8 [kW]
Prd = PDd × Ptotal
= 0.9 / (1.0 + 1.1 + 1.1 + 0.9) × 100 [kW]
= 22.0 [kW]
Is calculated as

なお、図4に示すように、各蒸気生成装置2a〜2dに対する流量配分比は均等であり、各蒸気生成装置2a〜2dの流量設定値Fa〜Fdは、同じ流量(1250kg/h)が供給される。   In addition, as shown in FIG. 4, the flow rate distribution ratio with respect to each steam generator 2a-2d is equal, and the same flow rate (1250 kg / h) is supplied as the flow rate setting values Fa-Fd of each steam generator 2a-2d. Is done.

本実施の形態1では、出力配分制御部10aが、出力係数の小さい蒸気生成装置に対して、小さい出力設定値を配分して運転効率の低下を抑え、これにより、システム全体の運転効率の悪化を抑えることができる。   In the first embodiment, the output distribution control unit 10a distributes a small output set value to the steam generation device having a small output coefficient to suppress a decrease in operation efficiency, thereby deteriorating the operation efficiency of the entire system. Can be suppressed.

[実施の形態2]
(全体構成)
図5は、本発明の実施の形態2である蒸気生成システム1の全体構成を示すブロック図である。本実施の形態2は、上述した実施の形態1の出力配分制御部10aに替えて流量配分制御部10bを設けている。制御部10は、各蒸気生成装置2a〜2dに対して同じ出力設定を行って運転制御を行う。流量配分制御部10bは、記憶部70の出力係数情報Dを参照して、各蒸気生成装置2a〜2dにおけるそれぞれの出力係数に基づき、各蒸気生成装置2a〜2dに対する流量配分比を決定し、決定した流量配分比と蒸気生成システム1の必要流量により各蒸気生成装置2a〜2dの流量設定値を可変とする流量配分制御処理を行う。
[Embodiment 2]
(overall structure)
FIG. 5 is a block diagram showing an overall configuration of the steam generation system 1 according to the second embodiment of the present invention. In the second embodiment, a flow rate distribution control unit 10b is provided in place of the output distribution control unit 10a of the first embodiment described above. The control unit 10 performs operation control by setting the same output for each of the steam generation devices 2a to 2d. The flow rate distribution control unit 10b refers to the output coefficient information D of the storage unit 70, determines the flow rate distribution ratio for each of the steam generation devices 2a to 2d based on the output coefficient of each of the steam generation devices 2a to 2d, A flow rate distribution control process is performed in which the flow rate setting values of the respective steam generators 2a to 2d are made variable according to the determined flow rate distribution ratio and the required flow rate of the steam generation system 1.

(流量配分制御処理)
ここで、図6に示したフローチャートを参照して、流量配分制御部10bによる流量配分制御処理手順について説明する。図6に示すように、流量配分制御部10bは、記憶部70に記憶された出力係数情報Dを取得する(ステップS201)。この出力係数情報Dには、各蒸気生成装置2の出力係数が記述されている。その後、流量配分制御部10bは、各蒸気生成装置2の流量配分比計算を行う(ステップS202)。この流量配分比計算は、流量配分比の総和が1となるように、出力係数が大きい蒸気生成装置ほど流量配分比を小さくし、出力係数が小さい蒸気生成装置ほど流量配分比を大きくする。
(Flow distribution control processing)
Here, the flow rate distribution control processing procedure by the flow rate distribution control unit 10b will be described with reference to the flowchart shown in FIG. As shown in FIG. 6, the flow distribution control unit 10b acquires the output coefficient information D stored in the storage unit 70 (step S201). The output coefficient information D describes the output coefficient of each steam generator 2. Thereafter, the flow rate distribution control unit 10b performs flow rate distribution ratio calculation of each steam generator 2 (step S202). In this flow rate distribution ratio calculation, the steam generation device having a larger output coefficient has a smaller flow rate distribution ratio and the steam generation device having a smaller output coefficient has a larger flow rate distribution ratio so that the sum of the flow rate distribution ratios becomes 1.

その後、流量配分制御部10bは、蒸気生成システムの必要流量と流量配分比をもとに各蒸気生成装置2の流量設定値を決定し、各蒸気生成装置2の各流量調整弁5a〜5dに指示する(ステップS203)。その後、システム停止の指示があったか否かを判断する(ステップS204)。システム停止の指示がない場合(ステップS204,No)には、ステップS203に移行して上述した処理を繰り返し、システム停止の指示があった場合(ステップS204,Yes)には、本処理を終了する。   Thereafter, the flow rate distribution control unit 10b determines the flow rate setting value of each steam generation device 2 based on the required flow rate and the flow rate distribution ratio of the steam generation system, and applies to each flow rate adjustment valve 5a to 5d of each steam generation device 2. An instruction is given (step S203). Thereafter, it is determined whether or not there has been an instruction to stop the system (step S204). If there is no instruction to stop the system (step S204, No), the process proceeds to step S203 and the above-described processing is repeated. If there is an instruction to stop the system (step S204, Yes), this process ends. .

(流量配分制御処理の具体例)
図7は、流量配分制御処理の具体例を説明する説明図である。この具体例では、実施の形態1と同様に、各蒸気生成装置2a〜2dの出力係数Ra〜Rdがそれぞれ、1.0、1.1、1.1、0.9であり、システム全体の要求出力が100kWであり、システム全体の必要流量が5000kg/hであるとして説明する。
(Specific example of flow distribution control processing)
FIG. 7 is an explanatory diagram illustrating a specific example of the flow distribution control process. In this specific example, as in the first embodiment, the output coefficients Ra to Rd of the respective steam generators 2a to 2d are 1.0, 1.1, 1.1, and 0.9, respectively. A description will be given assuming that the required output is 100 kW and the required flow rate of the entire system is 5000 kg / h.

各蒸気生成装置2a〜2dの流量配分比FDa〜FDdは、上述したように、流量配分比の総和が1となるように、出力係数が大きい蒸気生成装置ほど流量配分比を小さくし、出力係数が小さい蒸気生成装置ほど流量配分比を大きくする。具体的な流量配分比FDa〜FDdは、出力係数Ra〜Rdの逆数の総和に対する各出力係数Ra〜Rdの逆数の比として求める。すなわち、
FDa=(1/Ra)/((1/Ra)+(1/Rb)+(1/Rc)+(1/Rd))
FDb=(1/Rb)/((1/Ra)+(1/Rb)+(1/Rc)+(1/Rd))
FDc=(1/Rc)/((1/Ra)+(1/Rb)+(1/Rc)+(1/Rd))
FDd=(1/Rd)/((1/Ra)+(1/Rb)+(1/Rc)+(1/Rd))
として求める。
As described above, the flow rate distribution ratios FDa to FDd of the steam generation devices 2a to 2d are such that the steam generation device having a larger output coefficient reduces the flow rate distribution ratio so that the sum of the flow rate distribution ratios becomes 1. The smaller the steam generator, the larger the flow distribution ratio. The specific flow distribution ratios FDa to FDd are obtained as the ratio of the reciprocal of each output coefficient Ra to Rd with respect to the sum of the reciprocals of the output coefficients Ra to Rd. That is,
FDa = (1 / Ra) / ((1 / Ra) + (1 / Rb) + (1 / Rc) + (1 / Rd))
FDb = (1 / Rb) / ((1 / Ra) + (1 / Rb) + (1 / Rc) + (1 / Rd))
FDc = (1 / Rc) / ((1 / Ra) + (1 / Rb) + (1 / Rc) + (1 / Rd))
FDd = (1 / Rd) / ((1 / Ra) + (1 / Rb) + (1 / Rc) + (1 / Rd))
Asking.

そして、各蒸気生成装置2a〜2dに対する各流量設定値Fra〜Frdは、各流量配分比FDa〜FDdに蒸気生成システム1の要求流量Ftotalを乗算した値として算出する。すなわち、各流量設定値Fra〜Frdは、
Fra=FDa×Ftotal
=(1/1.0)/((1/1.0)+(1/1.1)+(1/1.1)+(1/0.9))×5000[kg/h]
=1272[kg/h]
Frb=FDb×Ftotal
=(1/1.1)/((1/1.0)+(1/1.1)+(1/1.1)+(1/0.9))×5000[kg/h]
=1157[kg/h]
Frc=FDc×Ftotal
=(1/1.1)/((1/1.0)+(1/1.1)+(1/1.1)+(1/0.9))×5000[kg/h]
=1157[kg/h]
Frd=FDd×Ftotal
=(1/0.9)/((1/1.0)+(1/1.1)+(1/1.1)+(1/0.9))×5000[kg/h]
=1414[kg/h]
として算出される。
And each flow set value Fra-Frd with respect to each steam production | generation apparatus 2a-2d is calculated as a value which multiplied each flow distribution ratio FDa-FDd by the request | requirement flow volume Ftotal of the steam production system 1. FIG. That is, each flow rate setting value Fra to Frd is
Fra = FDa × Ftotal
= (1 / 1.0) / ((1 / 1.0) + (1 / 1.1) + (1 / 1.1) + (1 / 0.9)) × 5000 [kg / h]
= 1272 [kg / h]
Frb = FDb × Ftotal
= (1 / 1.1) / ((1 / 1.0) + (1 / 1.1) + (1 / 1.1) + (1 / 0.9)) × 5000 [kg / h]
= 1157 [kg / h]
Frc = FDc × Ftotal
= (1 / 1.1) / ((1 / 1.0) + (1 / 1.1) + (1 / 1.1) + (1 / 0.9)) × 5000 [kg / h]
= 1157 [kg / h]
Frd = FDd × Ftotal
= (1 / 0.9) / ((1 / 1.0) + (1 / 1.1) + (1 / 1.1) + (1 / 0.9)) × 5000 [kg / h]
= 1414 [kg / h]
Is calculated as

なお、図7に示すように、各蒸気生成装置2a〜2dに対する出力配分比は均等であり、各蒸気生成装置2a〜2dの出力設定値Pa〜Pdは、同じ値(25kW)である。   In addition, as shown in FIG. 7, the output distribution ratio with respect to each steam generation apparatus 2a-2d is equal, and output setting value Pa-Pd of each steam generation apparatus 2a-2d is the same value (25 kW).

本実施の形態2では、出力係数が大きい蒸気生成装置ほど流量配分比を小さくし、出力係数が小さい蒸気生成装置ほど流量配分比を大きくする流量配分を行っているので、出力係数が小さくて運転効率の悪い蒸気生成装置に供給する熱量が増大し、この出力係数の小さい蒸気生成装置の運転がアシストされ、運転効率が向上する。一方、出力係数の大きい蒸気生成装置は、供給する熱量が減少しても、低減していた圧縮機の回転数を無理なく増大するに過ぎず、運転効率は悪化しない。これによって、システム全体の運転効率の悪化を抑えることができる。   In the second embodiment, since the steam generation device having a larger output coefficient reduces the flow distribution ratio and the steam generation device having a smaller output coefficient performs flow distribution that increases the flow distribution ratio, the operation is performed with a smaller output coefficient. The amount of heat supplied to the inefficient steam generator increases, and the operation of the steam generator with a small output coefficient is assisted, thereby improving the operation efficiency. On the other hand, a steam generator with a large output coefficient, even if the amount of heat supplied decreases, only increases the number of rotations of the compressor, which has been reduced, without impairing operating efficiency. Thereby, it is possible to suppress the deterioration of the operation efficiency of the entire system.

[実施の形態3]
図8は、本発明の実施の形態3である蒸気生成システム1の全体構成を示すブロック図である。図8に示すように、本実施の形態3では、出力配分制御部10a及び流量配分制御部10bを備えるとともに、出力配分制御部10aによる出力配分制御処理または流量配分制御部10bによる流量配分制御処理のいずれかに選択切替指示する操作部71を備える。また、記憶部70には、操作部71によって選択切替指示された選択情報DSが保持される。
[Embodiment 3]
FIG. 8 is a block diagram showing the overall configuration of the steam generation system 1 according to Embodiment 3 of the present invention. As shown in FIG. 8, the third embodiment includes an output distribution control unit 10a and a flow rate distribution control unit 10b, and an output distribution control process by the output distribution control unit 10a or a flow rate distribution control process by the flow rate control unit 10b. An operation unit 71 for instructing selection switching is provided. The storage unit 70 holds selection information DS instructed to be switched by the operation unit 71.

本実施の形態3では、出力配分制御処理または流量配分制御処理のいずれかを任意に選択して、処理させることができる。   In the third embodiment, either the output distribution control process or the flow distribution control process can be arbitrarily selected and processed.

[実施の形態4]
(全体構成)
図9は、本発明の実施の形態4である蒸気生成システム1の全体構成を示すブロック図である。図9に示すように、本実施の形態4では、出力配分制御部10a、流量配分制御部10b、及び自動切替制御部10cを備える。自動切替制御部10cは、温度センサ7が検出する熱源温水Wの温度が所定値以上の場合、流量配分制御処理を行わせ、温度センサ7が検出する熱源温水Wの温度が所定値未満の場合、出力配分制御処理を行わせる制御を行う。
[Embodiment 4]
(overall structure)
FIG. 9 is a block diagram showing an overall configuration of the steam generation system 1 according to Embodiment 4 of the present invention. As shown in FIG. 9, the fourth embodiment includes an output distribution control unit 10a, a flow rate distribution control unit 10b, and an automatic switching control unit 10c. When the temperature of the heat source hot water W detected by the temperature sensor 7 is equal to or higher than a predetermined value, the automatic switching control unit 10c performs the flow distribution control process, and the temperature of the heat source hot water W detected by the temperature sensor 7 is lower than the predetermined value. Then, control for performing the output distribution control process is performed.

(自動切替制御処理)
ここで、図10に示したフローチャートを参照して、自動切替制御部10cによる自動切替制御処理手順について説明する。図10に示すように、自動切替制御部10cは、温度センサ7が検出した熱源温水Wの温度が所定値以上であるか否かを判断する(ステップS301)。熱源温水Wの温度が所定値以上である場合(ステップS301,Yes)には、図6で示した、流量配分制御部10bによる流量配分制御処理を行い(ステップS302)、熱源温水Wの温度が所定値以上でない場合(ステップS301,No)には、図3で示した、出力配分制御部10aによる出力配分制御処理を行う(ステップS303)。そして、所定期間ごとに上述した処理を繰り返す。
(Automatic switching control processing)
Here, the automatic switching control processing procedure by the automatic switching control unit 10c will be described with reference to the flowchart shown in FIG. As illustrated in FIG. 10, the automatic switching control unit 10c determines whether or not the temperature of the heat source hot water W detected by the temperature sensor 7 is equal to or higher than a predetermined value (step S301). When the temperature of the heat source hot water W is equal to or higher than the predetermined value (step S301, Yes), the flow distribution control process by the flow distribution control unit 10b shown in FIG. 6 is performed (step S302), and the temperature of the heat source hot water W is changed. If it is not equal to or greater than the predetermined value (No at Step S301), the output distribution control process by the output distribution control unit 10a shown in FIG. 3 is performed (Step S303). And the process mentioned above is repeated for every predetermined period.

本実施の形態4では、熱源温水Wの流量が多い場合には、熱源温水Wの熱量を活用して流量配分制御処理を優先的に行うようにしているので、さらにシステム全体の運転効率を向上させることができる。なお、所定値は、任意に設定変更可能である。   In the fourth embodiment, when the flow rate of the heat source hot water W is large, the heat distribution of the heat source hot water W is used to preferentially perform the flow distribution control process, so that the operation efficiency of the entire system is further improved. Can be made. Note that the predetermined value can be arbitrarily changed.

1 蒸気生成システム
2,2a〜2d 蒸気生成装置
3 温水タンク
4 ポンプ
5,5a〜5d 流量調整弁
6,50 水位センサ
7 温度センサ
10,18 制御部
10a 出力配分制御部
10b 流量配分制御部
10c 自動切替制御部
12 蒸気生成部
14 温水供給部
16 ヒートポンプ部
20 圧縮機
22 凝縮器
24 膨張機構
26 蒸発器
28 加熱器
29 蒸発器本体温度センサ
30 給水経路
32 温水経路
34 吸入圧力センサ
35 吸入温度センサ
36 吐出圧力センサ
37 吐出温度センサ
38 入口温度センサ
42 水蒸気分離器
44 蒸気供給経路
46 水循環経路
48 給水ポンプ
50 水位センサ
54 圧力逃がし弁
56 循環ポンプ
60 圧力調整弁
62 圧力センサ
70 記憶部
71 操作部
D 出力係数情報
DS 選択情報
Fa〜Fd,Fra〜Frd 流量設定値
Ftotal 要求流量
H 蒸気
Pa〜Pd,Pra〜Prd 出力設定値
DESCRIPTION OF SYMBOLS 1 Steam generation system 2, 2a-2d Steam generation apparatus 3 Hot water tank 4 Pump 5, 5a-5d Flow control valve 6, 50 Water level sensor 7 Temperature sensor 10, 18 Control part 10a Output distribution control part 10b Flow rate distribution control part 10c Automatic Switching control unit 12 Steam generation unit 14 Hot water supply unit 16 Heat pump unit 20 Compressor 22 Condenser 24 Expansion mechanism 26 Evaporator 28 Heater 29 Evaporator body temperature sensor 30 Water supply path 32 Hot water path 34 Suction pressure sensor 35 Suction temperature sensor 36 Discharge pressure sensor 37 Discharge temperature sensor 38 Inlet temperature sensor 42 Steam separator 44 Steam supply path 46 Water circulation path 48 Water supply pump 50 Water level sensor 54 Pressure relief valve 56 Circulation pump 60 Pressure adjustment valve 62 Pressure sensor 70 Storage part 71 Operation part D Output Coefficient information DS Selection information Fa to Fd, Fra to Frd Flow rate Value Ftotal required flow H steam Pa~Pd, Pra~Prd output set value

Claims (8)

熱源温水からヒートポンプで回収した熱を被加熱水に伝熱することで蒸気を生成する複数台の蒸気生成装置を並列に接続した蒸気生成システムであって、
前記蒸気生成装置におけるそれぞれの出力係数に基づき、出力配分比または流量配分比を決定し、前記出力配分比と前記蒸気生成システムの要求出力により各蒸気生成装置の出力設定値を可変とする出力配分制御処理、または前記流量配分比と前記蒸気生成システムの必要流量により各蒸気生成装置の流量設定値を可変とする流量配分制御処理を行うことを特徴とする蒸気生成システム。
A steam generation system in which a plurality of steam generators that generate steam by transferring heat recovered from a heat source hot water with a heat pump to heated water are connected in parallel,
An output distribution in which an output distribution ratio or a flow distribution ratio is determined based on each output coefficient in the steam generation device, and an output set value of each steam generation device is variable according to the output distribution ratio and a required output of the steam generation system A steam generation system characterized by performing a control process, or a flow distribution control process in which a flow rate setting value of each steam generation device is made variable according to the flow rate distribution ratio and a required flow rate of the steam generation system.
前記出力配分制御処理は、前記出力係数が大きい前記蒸気生成装置ほど前記出力配分比を大きくし、前記出力係数が小さい前記蒸気生成装置ほど前記出力配分比を小さくすることを特徴とする請求項1に記載の蒸気生成システム。   2. The output distribution control process is characterized in that the steam generation device having a larger output coefficient increases the output distribution ratio, and the steam generation device having a smaller output coefficient decreases the output distribution ratio. The steam generation system as described in. 各蒸気生成装置に対する各出力設定値は、各蒸気生成装置の前記出力係数の総和に対する各蒸気生成装置個別の前記出力係数の比に前記蒸気生成システムの要求出力を乗算した値に基づき設定されることを特徴とする請求項1または2に記載の蒸気生成システム。   Each output set value for each steam generating device is set based on a value obtained by multiplying the ratio of the output coefficient of each steam generating device to the sum of the output coefficients of each steam generating device by the required output of the steam generating system. The steam generation system according to claim 1, wherein the system is a steam generation system. 前記流量配分制御処理は、前記出力係数が大きい前記蒸気生成装置ほど前記流量配分比を小さくし、前記出力係数が小さい前記蒸気生成装置ほど前記流量配分比を大きくすることを特徴とする請求項1に記載の蒸気生成システム。   The flow rate distribution control process is characterized in that the flow rate distribution ratio is decreased as the steam generation device having a larger output coefficient, and the flow rate distribution ratio is increased as the steam generation device has a smaller output coefficient. The steam generation system as described in. 各蒸気生成装置に対する各流量設定値は、各蒸気生成装置の前記出力係数の逆数の総和に対する各蒸気生成装置個別の前記出力係数の逆数の比に前記蒸気生成システムの必要流量を乗算した値に基づき設定されることを特徴とする請求項1または4に記載の蒸気生成システム。   Each flow rate setting value for each steam generator is obtained by multiplying the ratio of the reciprocal of the output coefficient of each steam generator to the sum of the reciprocal of the output coefficient of each steam generator by the required flow rate of the steam generation system. The steam generation system according to claim 1, wherein the steam generation system is set based on the setting. 前記出力配分制御処理と前記流量配分制御処理との切替指示を行う操作部を備え、前記操作部の切替指示に従って前記出力配分制御処理と前記流量配分制御処理とを切り替えることを特徴とする請求項1〜5のいずれか一つに記載の蒸気生成システム。   The operation unit for instructing switching between the output distribution control process and the flow rate distribution control process, and switching between the output distribution control process and the flow rate distribution control process according to the switching instruction of the operation unit. The steam generation system according to any one of 1 to 5. 前記熱源温水の温度が所定値以上の場合、前記流量配分制御処理を行い、前記熱源温水の温度が所定値未満の場合、前記出力配分制御処理を行う自動切替制御部を備えたことを特徴とする請求項1〜5のいずれか一つに記載の蒸気生成システム。   An automatic switching control unit is provided that performs the flow distribution control process when the temperature of the heat source hot water is equal to or higher than a predetermined value, and performs the output distribution control process when the temperature of the heat source hot water is less than a predetermined value. The steam generation system according to any one of claims 1 to 5. 熱源温水からヒートポンプで回収した熱を被加熱水に伝熱することで蒸気を生成する複数台の蒸気生成装置を並列に接続した蒸気生成システムの制御方法であって、
前記蒸気生成装置におけるそれぞれの出力係数に基づき、出力配分比または流量配分比を決定し、前記出力配分比と前記蒸気生成システムの要求出力により各蒸気生成装置の出力設定値を可変とする出力配分制御処理、または前記流量配分比と前記蒸気生成システムの必要流量により各蒸気生成装置の流量設定値を可変とする流量配分制御処理を行うことを特徴とする蒸気生成システムの制御方法。
A method for controlling a steam generation system in which a plurality of steam generators that generate steam by transferring heat recovered from a heat source hot water with a heat pump to water to be heated are connected in parallel,
An output distribution in which an output distribution ratio or a flow distribution ratio is determined based on each output coefficient in the steam generation device, and an output set value of each steam generation device is variable according to the output distribution ratio and a required output of the steam generation system A control method of a steam generation system, characterized by performing a control process or a flow distribution control process in which a flow rate setting value of each steam generation device is variable according to the flow rate distribution ratio and a required flow rate of the steam generation system.
JP2016255122A 2016-12-28 2016-12-28 Steam generation system and control method of steam generation system Active JP6844254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016255122A JP6844254B2 (en) 2016-12-28 2016-12-28 Steam generation system and control method of steam generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016255122A JP6844254B2 (en) 2016-12-28 2016-12-28 Steam generation system and control method of steam generation system

Publications (2)

Publication Number Publication Date
JP2018105586A true JP2018105586A (en) 2018-07-05
JP6844254B2 JP6844254B2 (en) 2021-03-17

Family

ID=62784684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016255122A Active JP6844254B2 (en) 2016-12-28 2016-12-28 Steam generation system and control method of steam generation system

Country Status (1)

Country Link
JP (1) JP6844254B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060504U (en) * 1983-09-30 1985-04-26 三菱重工業株式会社 Load distribution control device
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device
JPH0455601A (en) * 1990-06-22 1992-02-24 Kawasaki Steel Corp Automatic control method for load distribution of boiler
JPH05223204A (en) * 1991-12-13 1993-08-31 Nishiyodo Kuuchiyouki Kk Generating method for vapor utilizing heat pump
JP2006017426A (en) * 2004-07-05 2006-01-19 Kansai Electric Power Co Inc:The Heat pump type steam/hot water generator
JP2008008595A (en) * 2006-06-30 2008-01-17 Kansai Electric Power Co Inc:The Heat pump type heat recovering device
JP2014228263A (en) * 2013-05-27 2014-12-08 三浦工業株式会社 Boiler system
US9377229B2 (en) * 2011-10-27 2016-06-28 Korea Institute Of Energy Research Broadband heat pump system
JP2016200314A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060504U (en) * 1983-09-30 1985-04-26 三菱重工業株式会社 Load distribution control device
JPS61125547A (en) * 1984-11-21 1986-06-13 株式会社東芝 Heat pump type boiler device
JPH0455601A (en) * 1990-06-22 1992-02-24 Kawasaki Steel Corp Automatic control method for load distribution of boiler
JPH05223204A (en) * 1991-12-13 1993-08-31 Nishiyodo Kuuchiyouki Kk Generating method for vapor utilizing heat pump
JP2006017426A (en) * 2004-07-05 2006-01-19 Kansai Electric Power Co Inc:The Heat pump type steam/hot water generator
JP2008008595A (en) * 2006-06-30 2008-01-17 Kansai Electric Power Co Inc:The Heat pump type heat recovering device
US9377229B2 (en) * 2011-10-27 2016-06-28 Korea Institute Of Energy Research Broadband heat pump system
JP2014228263A (en) * 2013-05-27 2014-12-08 三浦工業株式会社 Boiler system
JP2016200314A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Heat pump type steam creation device and operational method of the heat pump type steam creation device

Also Published As

Publication number Publication date
JP6844254B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP5605991B2 (en) Steam generator
EP2998524B1 (en) Energy recovery device and compression device, and energy recovery method
CN102748906B (en) Control algolithm for electronic expansion valve regulation
JP5871661B2 (en) Binary power generator control method
JP5596606B2 (en) Power generator
JP5788235B2 (en) Steam generator
JP2011069570A (en) Heat pump cycle device
JP2012247146A (en) Heat pump steam generator
JP6394472B2 (en) Heat pump type steam generator and operation method of heat pump type steam generator
CN107763857A (en) Frequency conversion air injection enthalpy increasing heat pump water heater frequency dynamic optimizes and control method
JP5918117B2 (en) Power generator
JP7143751B2 (en) Steam generating heat pump device
JP6844256B2 (en) Steam generation system
JP2017161105A (en) Heat pump type steam generator
JP2018105586A (en) Steam generating system and control method for steam generating system
JP6497111B2 (en) Heat pump steam generator
JP6052215B2 (en) Heat storage device
JP2008032250A (en) Method and device for controlling refrigerating air-conditioning system
JP2017014986A (en) Binary power generation system and binary power generation method
JP6528467B2 (en) Heat pump type steam generating device and operating method of heat pump type steam generating device
JP7056246B2 (en) Heat pump steam generation system
JP2014005961A (en) Refrigeration cycle device and hot water generator including the same
JP6613886B2 (en) Heat pump type steam generator, steam generation system and operation method thereof
JP6455348B2 (en) Heat pump steam generator and method of operating the heat pump steam generator
JP5943126B1 (en) Heat pump steam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6844254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250