JPS59132170A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59132170A
JPS59132170A JP702083A JP702083A JPS59132170A JP S59132170 A JPS59132170 A JP S59132170A JP 702083 A JP702083 A JP 702083A JP 702083 A JP702083 A JP 702083A JP S59132170 A JPS59132170 A JP S59132170A
Authority
JP
Japan
Prior art keywords
silicon film
film
polycrystalline silicon
silicon
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP702083A
Other languages
Japanese (ja)
Inventor
Akira Nishimoto
西本 章
Hirokazu Miyoshi
三好 寛和
Akira Ando
安東 亮
Moriyoshi Nakajima
盛義 中島
Hiroshige Takahashi
高橋 広成
Yoko Matsuno
松野 葉子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP702083A priority Critical patent/JPS59132170A/en
Publication of JPS59132170A publication Critical patent/JPS59132170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Abstract

PURPOSE:To improve writing efficiency and retaining characteristics, by providing a specific value or more of the concentration of impurities, which are added into polycrystal silicon constituting a floating gate. CONSTITUTION:An oxide film 2 is formed on a silicon substrate 1, and thereafter a first silicon oxide film 3 is formed by heat treatment. Then a first polycrystal silicon film 7 is grown on said silicon film 3. Thereafter, phosphorus is added into the silicon film at a concentration of 1X10<20>cm<-3>. Then the silicon films 3 and 7 are selectively removed, and a second silicon film 5 is formed on the substrate exposed by the removal. A silicon film 6 is formed, and phosphorus is diffused in the silicon film 6 at a concentration of e.g., about 2X10<20>cm<-3>. Thereafter, the silicon films 3 and 5-7 are selectively removed in a self-aligning way, and As is implanted. Thus source and drain regions are formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体装置、特にフローティングゲートをも
つ、二重ゲート型の不揮発性記憶装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to a double-gate nonvolatile memory device having a floating gate.

〔従来技術〕[Prior art]

第1図(a)および第1図中)は従来の半導体装置を示
す主な製造工程別の断面図である。同図において、(1
)ijシリコン基板、(2)はこのシリコン基板0)上
の不活性領域上に選択的に形成した比較的厚い酸化膜、
(3)は活性領域上に形成した比較的薄い例えば100
OAの第1の酸化シリコン膜、(4)はこの第1の酸化
シリコン膜0)上に例えば3000Aの厚さに形成した
第1の多結晶シリコン膜、6)は比較的薄い例えば10
0OXの厚さの第2の酸化シリコン膜、(6)は例えば
3500Aの厚さに形成した第2の多結晶シリコン膜で
ある。
FIG. 1(a) and FIG. 1(a) are cross-sectional views showing a conventional semiconductor device according to the main manufacturing steps. In the same figure, (1
)ij silicon substrate, (2) is a relatively thick oxide film selectively formed on the inactive region on this silicon substrate 0),
(3) is a relatively thin film formed on the active region, e.g.
The first silicon oxide film of OA, (4) is a first polycrystalline silicon film formed to a thickness of, for example, 3000A on this first silicon oxide film (0), and (6) is a relatively thin film of, for example, 10A.
The second silicon oxide film (6) with a thickness of 0OX is a second polycrystalline silicon film formed with a thickness of 3500A, for example.

次に上記構成による半導体装置の製造工程について説明
する。まず、シリコン基板(1)上の不活性領域に比較
的厚い酸化膜C2)を選択的に形成したのち、活性領域
上に例えば950℃、Hν喝、雰囲気で熱処理すること
によシ、比較的薄い例えば100OAの第1の酸化シリ
コン膜(3)全生成する。次に、この第1の酸化シリコ
ン膜(3)上に第1の多結晶シリコン膜(4)を例えば
減圧気相成長法によシ、例えば3000Aの厚さに成長
させる。次に、°例えば900℃。
Next, the manufacturing process of the semiconductor device with the above configuration will be explained. First, a relatively thick oxide film C2) is selectively formed on the inactive region on the silicon substrate (1), and then a relatively thick oxide film C2) is formed on the active region by heat treatment at, for example, 950° C. in an atmosphere. A first silicon oxide film (3) having a thickness of, for example, 100 OA is completely formed. Next, a first polycrystalline silicon film (4) is grown on this first silicon oxide film (3) to a thickness of, for example, 3000 Å by, for example, a low pressure vapor phase growth method. Next, °for example 900 °C.

Pu510.雰囲気で熱処理することはよシ、前記第1
の多結晶シリコン膜(4)中にリンを拡散し、1×10
”OF+−’程度の濃【にする。次に、この第1の多結
晶シリコン膜(4)および第1の酸化シリコン膜(3)
を選択的に除去する。次に例えば950℃Hz10s雰
囲気で熱処理することによシ、第1の多結晶シリコン膜
(4)および先のt択除去にょシ露出したシリコン基板
(1)上に比較的薄い例えばxooo′Aの厚さに第2
の酸化シリコン膜(5渣生成する。次に、第2の多結晶
シリコン膜(6渣減圧気相成長法にょシ、例えば350
0Aの厚さに生成する。次に、第2の多結晶シリコン膜
(6)中に、?’il エバ1000p 、 PHa 
10゜雰囲気で熱処理することにょシ、リンを例えば2
×10t1n  程度に拡散する。次に、第2の多結晶
シリコン膜(6)、第2の酸化シリコ/1(5)、i 
1の多結晶シリコン膜(4)および第1の酸化シリコン
膜(3)を自己整合的に、連続的にかつ選択的に除去す
る。次に、例えばイオン注入法でAsを注入し、ソース
領域およびドレイン領域を形成する。次に表面平坦化工
程、コンタクト工程、配線工程1表面保護工程をへて、
フローティングゲート型、不揮発生記憶装置の記憶素子
部を形成することができる。このとき、第1の多結晶シ
リコン膜(4)はフローティングゲルトとして動作し、
第2の多結晶シリコン膜(6)は制御ゲートとして動作
する。
Pu510. It is better not to perform heat treatment in an atmosphere.
Phosphorus is diffused into the polycrystalline silicon film (4) of 1×10
The density should be about "OF+-".Next, this first polycrystalline silicon film (4) and first silicon oxide film (3)
selectively remove. Next, a relatively thin layer of, for example, 2nd in thickness
Next, a second polycrystalline silicon film (6 residues) is formed by low pressure vapor phase epitaxy, e.g.
Produced to a thickness of 0A. Next, in the second polycrystalline silicon film (6), ? 'il Eva 1000p, PHa
For example, when heat-treating in a 10° atmosphere, phosphorus is
Diffusion to approximately ×10t1n. Next, the second polycrystalline silicon film (6), the second silicon oxide/1 (5), i
The first polycrystalline silicon film (4) and the first silicon oxide film (3) are removed continuously and selectively in a self-aligned manner. Next, As is implanted using, for example, an ion implantation method to form a source region and a drain region. Next, through the surface flattening process, contact process, wiring process 1 surface protection process,
A storage element portion of a floating gate type nonvolatile storage device can be formed. At this time, the first polycrystalline silicon film (4) operates as a floating gel,
The second polycrystalline silicon film (6) operates as a control gate.

なお、上述の構成による記憶装置ではドレインに例えば
18.V奪印加し、制御ゲートに例えば 25Vを印加
すると、ソースとドレイン間でポットエレクトロンを形
成し、これを゛制御ゲートと容量的に結合し、高・電位
に力っているフローティングゲートに注入すΣ。このエ
レクトロンが70−ティングゲートに保持されることに
ょシ、このMO8素子の閾値電圧が増加することにょシ
、記憶の有無が判別でき名。そして、制御ゲートに印加
する電圧をエレクトロンの注入前の閾値電圧とエレクト
ロンが注入された後の閾値電圧の中間値に設定すること
により、エレクトロン注入の有無を外部的に簡単に読み
出すことができる。
Note that in the storage device having the above-described configuration, for example, 18. When V is deprived and, for example, 25V is applied to the control gate, pot electrons are formed between the source and drain, which are capacitively coupled to the control gate and injected into the floating gate, which is being applied to a high potential. Σ. If these electrons are held in the 70-digit gate, the threshold voltage of this MO8 element increases, and the presence or absence of memory can be determined. By setting the voltage applied to the control gate to an intermediate value between the threshold voltage before electron injection and the threshold voltage after electron injection, the presence or absence of electron injection can be easily read externally.

しかしながら、従来の半導体装置では自己整合的にエツ
チングする際、第2の多結晶シリコン膜(6)、第λの
酸化シリコン膜6)を除去したのち、第1の多結晶シリ
コン膜(4)を除去する際、第1の多結晶シリコン膜(
4)のP濃度が低いため、エツチング速展が遅く、これ
にょ広 P濃度の高い第2のす結晶シリコーン膜(6)
のサイドエッチが進み、制御ゲートとフローティングゲ
ートの容量が減少し、・エレクトロン注入時(書き込み
時)に、フローティング電圧が上がらず、書き込み効率
が低下し、書き込み不良が発生し易くなる。また、第2
の酸化シリコン膜(5)を生成したのち、第1の多結晶
シリコン膜(4)のエツジの下側が鋭角と彦り、第1の
多籍晶シリコン膜(4)と第2の多結晶シリコン膜(6
)の間の耐圧が悪く、−フローティングゲートに注入さ
れたエレクトロンが、この間を通して流れ易くなシ、エ
レクトロンの保持が悪く、揮発し易くなるなどの欠点が
あった。
However, in conventional semiconductor devices, when performing self-aligned etching, after removing the second polycrystalline silicon film (6) and the λth silicon oxide film (6), the first polycrystalline silicon film (4) is removed. When removing, the first polycrystalline silicon film (
Since the P concentration in 4) is low, the etching rate is slow and this is wide.Second crystalline silicone film with high P concentration (6)
As side etching progresses, the capacitance of the control gate and floating gate decreases. - During electron injection (writing), the floating voltage does not rise, writing efficiency decreases, and writing failures are more likely to occur. Also, the second
After forming the silicon oxide film (5), the lower side of the edge of the first polycrystalline silicon film (4) turns into an acute angle, and the first polycrystalline silicon film (4) and the second polycrystalline silicon film Membrane (6
), the electrons injected into the floating gate do not easily flow through this gap, and the electrons are poorly retained and easily volatilized.

〔発明の概要〕[Summary of the invention]

したがって、この発明の目的は書き込み効率がよく、シ
かも保持特性のすぐれた二重ゲート型の不揮発性記憶装
置の半導体装置を提供するものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor device of a double gate type non-volatile memory device which has good write efficiency and excellent retention characteristics.

このような目的を達成するため、この発明はフローティ
ングゲートを構成する多結晶シリコン中に添加する不純
物濃#’t I X 10”0crn−”以上に形成す
るものであり、以下実施例を用いて詳細に説明する。
In order to achieve such an object, the present invention is to form a floating gate with an impurity concentration of #'t I Explain in detail.

〔発明の実施例〕[Embodiments of the invention]

第2図G)および第2図(ロ)はこの発明に係る半導体
装置の一実施例を示す主な工程別の断面図である。同図
において、(7)は不純物濃度を1 x 1o”Iyn
−8以上に添加したフローティングゲートとして動作す
る第1の多結晶シリコン膜である。なお、第3図は横軸
に第1の多結晶シリ、コン膜(7)のP濃度をとシ、縦
軸に第1の多結晶シリコン膜と第2の多結晶シリコン膜
との間に耐圧番とったときのP濃度依存性を示す図であ
る。
FIG. 2G) and FIG. 2(B) are sectional views showing one embodiment of the semiconductor device according to the present invention, showing each main process. In the same figure, (7) means that the impurity concentration is 1 x 1o"Iyn
This is a first polycrystalline silicon film that operates as a floating gate with a doping concentration of −8 or more. In addition, in FIG. 3, the horizontal axis shows the P concentration of the first polycrystalline silicon film (7), and the vertical axis shows the P concentration between the first polycrystalline silicon film and the second polycrystalline silicon film. FIG. 3 is a diagram showing the P concentration dependence when the breakdown voltage number is taken.

次に、上記構成による半導体装置、特に二重ゲート型子
揮発J1生記憶装置の製造工程について説明する。まず
、シリコン基板(1)上の不活性領域に比較的厚い酸化
膜(2)全選択的に形成したのち、活性領域上に例えば
950℃’ 、 Hz 102雰囲気で熱処理すること
によシ、比較的薄い例えば100OAの第1の酸化シリ
コン族(3)全生成する。次に、この第1の酸化シリコ
ン族(3)上に第1−の多結晶シリコン膜(7)ヲ例え
ば減圧気相成長法によシ例えば3000Aの厚さに成長
させる。次に、例えば1000℃、 PHs/Q’s雰
囲気で熱処理することによシ、前記第1の多結晶シリコ
ン、@(7)中にリンを拡散し、2 X 10”on 
’程度の濃度にする。次に、この第1の多結晶シリコン
膜(7)および第1の酸化シリコン膜(3)を選択的に
除去する。次に、例えば95Q℃ I(tlo、雰囲気
で熱処理することにより、第1の多結晶シリコン膜σ)
コン膜(5)全生成する。次に、第2の多結晶シリコン
膜(6)ヲ例えば減圧気相成長法により3500Aの厚
さに生成する。そして、1000℃、 PH510,雰
囲気で熱処理することによシ、前記第2の多藷晶シリコ
ン膜(6)中にリンを拡散し、例えば2×10110Q
n−8程度の濃度にする。次に、第2の多%iii品シ
リコシ膜(6)、第2の酸化シ・リコン膜(5)、第1
の多結晶シリコン族(7)および第1の酸化シリコンN
(3)k自己整合的に連続的に・力・つ選択的に除去す
る。次に例えばイオン注入法で砒素(A8)を注入し、
ソース領域およびドレイン領域を形成する。次に、表面
平坦化工程、コンタクト工程、配線工程2表面保護工程
をへて、二重ゲート型不揮発柱記憶装置の記憶素子部を
形成することができる。このとき、第1の多結晶シリコ
ン膜(7)はフローティングゲートとして動作し、2:
2の多結晶シリコン膜(6)は制御ゲートとして動作す
る。
Next, the manufacturing process of the semiconductor device having the above structure, particularly the double gate type volatile J1 raw memory device, will be explained. First, a relatively thick oxide film (2) is completely selectively formed on an inactive region on a silicon substrate (1), and then a heat treatment is performed on the active region in an atmosphere of 950° C. and 102 Hz for comparison. A first silicon oxide group (3) with a thin target, for example, 100 OA is produced. Next, a first polycrystalline silicon film (7) is grown on the first silicon oxide group (3) to a thickness of, for example, 3000 Å by, for example, a low pressure vapor phase growth method. Next, phosphorus is diffused into the first polycrystalline silicon @(7) by heat treatment at 1000° C. in a PHs/Q's atmosphere, for example, to form a 2×10”on
Make the concentration about '. Next, this first polycrystalline silicon film (7) and first silicon oxide film (3) are selectively removed. Next, for example, the first polycrystalline silicon film σ is heated at 95Q°C I (tlo) by heat treatment in an atmosphere.
Con membrane (5) is completely generated. Next, a second polycrystalline silicon film (6) is formed to a thickness of 3500 Å by, for example, low pressure vapor phase epitaxy. Then, phosphorus is diffused into the second polycrystalline silicon film (6) by heat treatment at 1000° C. and pH 510 in an atmosphere to form, for example, 2×10110Q.
Make the concentration about n-8. Next, the second polyurethane silicone film (6), the second silicon oxide film (5), and the first
of the polycrystalline silicon group (7) and the first silicon oxide N
(3) k Self-aligned continuous/force/selective removal. Next, for example, arsenic (A8) is implanted by ion implantation method,
Form source and drain regions. Next, through a surface flattening process, a contact process, a wiring process, and a surface protection process, a memory element portion of a double-gate nonvolatile columnar memory device can be formed. At this time, the first polycrystalline silicon film (7) operates as a floating gate, and 2:
The polycrystalline silicon film (6) of No. 2 operates as a control gate.

なお、上述の実施例では第1の多結晶シリコン膜(7)
f:2 X 10  cm  程度の濃度にしたが、l
Xl0”cm−”以上であればよいことはもちろんであ
る。また、この第1の多結晶シリコン膜(7)および第
2の多結晶シリコン膜(6)の成長に、減圧気相成長法
を用いたが、常圧気相成長法、プラズマ気相成長法。
Note that in the above embodiment, the first polycrystalline silicon film (7)
f: The density was set to about 2 x 10 cm, but l
Of course, it is sufficient if it is not less than Xl0"cm-". Further, although the first polycrystalline silicon film (7) and the second polycrystalline silicon film (6) were grown using a low pressure vapor phase epitaxy method, a normal pressure vapor phase epitaxy method and a plasma vapor phase epitaxy method were used.

スパッター法2分子線成長法を用いてもよいことはもち
ろんである。また、不純物として、リン使)を用いたが
・砒素(As)tボロン(B)、アンチモン(sb)な
どを用いてもよいことはもちろんである。
Of course, the sputtering bimolecular beam growth method may also be used. Further, although phosphorus (phosphorus) was used as an impurity, it goes without saying that arsenic (As), boron (B), antimony (sb), etc. may also be used.

また、不純物の導入は多結晶シリコン成長時に行ない、
イオン注入法、他の熱拡散法を用いてもよいことはもち
ろんであ゛る。
In addition, impurities are introduced during polycrystalline silicon growth.
Of course, ion implantation and other thermal diffusion methods may be used.

〔発明の効果〕 以上詳細に説明したように、この発明に係る半導体装置
によれば自己整合的にエツチングした際に、第1の多結
晶シリコン層の除去を行なうときに、第2の多結晶シリ
コン層のサイドエッチ量が軽減され、書き込み効率がよ
くなる。また、第2の酸化シリコン膜を形成したのち、
第1の多結晶シリコン膜のエツジが丸みを持ち、第1の
多結晶シリコン膜と第2の多結晶シリコン膜間の耐圧が
飛躍的に向上し、フローティングゲートに注入されたエ
レクトロンの保持特性が飛謂的に向上するなどの効果が
ある。
[Effects of the Invention] As explained in detail above, according to the semiconductor device according to the present invention, when the first polycrystalline silicon layer is removed during self-aligned etching, the second polycrystalline silicon layer is removed. The amount of side etching of the silicon layer is reduced, improving writing efficiency. Further, after forming the second silicon oxide film,
The edges of the first polycrystalline silicon film are rounded, and the breakdown voltage between the first polycrystalline silicon film and the second polycrystalline silicon film is dramatically improved, and the retention characteristics of electrons injected into the floating gate are improved. It has the effect of dramatically improving performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置を示す菫な製造工程別の断面
図、第2図はこの発明に係る半導体装置の一実施例を示
す主な製造工程別の断面図、第3゛・図は第2図のP濃
度依存性を示す図である。 (1)・・・・シリコン基板、C2)・・・・比較的厚
い酸化膜、(3)・・・・第1の酸化シリコンi、(4
)・・・・第1の多結晶シリコン膜、(5)・・・・第
2の酸化シリコン膜、(6)・・・・第2の多結晶シリ
コン膜、(7)・・・・第1の多結晶シリコン膜。 なお、図中、同一符号は同一または相当部分を示す。 代  理  人      葛  野  信  −第3
図 γ149峠10シリコン P導度 手続補正書(自発) 2、発明の名称 半導体装置 3、補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者片山仁八部 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書第3頁第2行のr1000λ」をr1200A」
と補正する。 以  上
FIG. 1 is a cross-sectional view showing a conventional semiconductor device according to various manufacturing steps, FIG. 2 is a cross-sectional view showing an embodiment of a semiconductor device according to the present invention according to main manufacturing steps, and FIG. FIG. 3 is a diagram showing the P concentration dependence of FIG. 2; (1)...Silicon substrate, C2)...Relatively thick oxide film, (3)...First silicon oxide i, (4
)...first polycrystalline silicon film, (5)...second silicon oxide film, (6)...second polycrystalline silicon film, (7)...second 1 polycrystalline silicon film. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Makoto Kuzuno - 3rd
Figure γ149 Pass 10 Silicon P conductivity procedural amendment (voluntary) 2. Name of the invention Semiconductor device 3. Relationship with the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name ( 601) Mitsubishi Electric Co., Ltd. Representative Hitoshi Katayama 4, Agent 5, Detailed explanation of the invention column 6 of the specification to be amended, page 3, line 2 of the specification of the contents of the amendment, r1000λ'' to r1200A''
and correct it. that's all

Claims (1)

【特許請求の範囲】[Claims] 二重ゲート型不揮発生記憶装置などの半導体装置におい
て、フローティングゲートを構成する多結晶シリコシ中
に添加する不純物濃度をI×10″6の 以上に形成し
たことを特徴とする半導体装置。
1. A semiconductor device such as a double-gate non-volatile memory device, characterized in that the impurity concentration added to polycrystalline silicon constituting a floating gate is I×10″6 or higher.
JP702083A 1983-01-17 1983-01-17 Semiconductor device Pending JPS59132170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP702083A JPS59132170A (en) 1983-01-17 1983-01-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP702083A JPS59132170A (en) 1983-01-17 1983-01-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59132170A true JPS59132170A (en) 1984-07-30

Family

ID=11654351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP702083A Pending JPS59132170A (en) 1983-01-17 1983-01-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59132170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120472A (en) * 1984-11-16 1986-06-07 Hitachi Ltd Manufacture of semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61120472A (en) * 1984-11-16 1986-06-07 Hitachi Ltd Manufacture of semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
US5731608A (en) One transistor ferroelectric memory cell and method of making the same
KR100375747B1 (en) C-axis oriented thin film ferroelectric transistor memory cell and its manufacturing method
JPH08264669A (en) Ferroelectric substance memory device and its preparation
JPS63140581A (en) Vertical mos transistor
US5932904A (en) Two transistor ferroelectric memory cell
JP2826982B2 (en) Crystallization method and method of manufacturing thin film transistor using the same
JP3541958B2 (en) Nonvolatile semiconductor memory device
US5942776A (en) Shallow junction ferroelectric memory cell and method of making the same
JP2777988B2 (en) Semiconductor memory and manufacturing method thereof
JP2764395B2 (en) Method for manufacturing thin film transistor
JP2624709B2 (en) Method for manufacturing semiconductor device
JPS59132170A (en) Semiconductor device
US6018171A (en) Shallow junction ferroelectric memory cell having a laterally extending p-n junction and method of making the same
JP3916049B2 (en) Method for manufacturing ferroelectric memory transistor
GB2314680A (en) Semiconductor device with triple well structure
JP3140023B2 (en) Semiconductor device and manufacturing method thereof
JPH11238871A (en) Semiconductor device
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
KR0136532B1 (en) Thin film transistor
JP2900717B2 (en) Semiconductor device
JP2635086B2 (en) Method for manufacturing semiconductor device
JPH08124872A (en) Manufacture of thin film semiconductor device
JP2004214605A (en) Method of manufacturing merged dram with logic device
JPH01108776A (en) Manufacture of semiconductor storage device
JP3120428B2 (en) Method for manufacturing MOS type semiconductor device