JPS59132007A - Guiding method of unattended vehicle - Google Patents

Guiding method of unattended vehicle

Info

Publication number
JPS59132007A
JPS59132007A JP58005548A JP554883A JPS59132007A JP S59132007 A JPS59132007 A JP S59132007A JP 58005548 A JP58005548 A JP 58005548A JP 554883 A JP554883 A JP 554883A JP S59132007 A JPS59132007 A JP S59132007A
Authority
JP
Japan
Prior art keywords
mark
light
sensor
unmanned vehicle
marks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58005548A
Other languages
Japanese (ja)
Inventor
Hirotaka Miwa
三輪 博孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Original Assignee
Daifuku Co Ltd
Daifuku Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd, Daifuku Machinery Works Ltd filed Critical Daifuku Co Ltd
Priority to JP58005548A priority Critical patent/JPS59132007A/en
Publication of JPS59132007A publication Critical patent/JPS59132007A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To improve economization and stability of following-up control by making guide marks of an unattended vehicle discontinuous at proper intervals. CONSTITUTION:An unattended vehicle A is provided with a motor M1, which steers and turns a steering frame 3, in the front part of a running frame 1 and is provided with a pair of left and right driving wheels 5 in the rear part and is guided along a prescribed course. In this case, discontinuous running guide marks, for example, light-reflective marks 6 are provided in the running direction at proper intervals on the floor surface side, and the side of the unattended vehicle A is provided with an optical sensor 7, which detects the transversal displacement quantity of the vehicle body to light-reflective marks 6, and a steering driving mechanism 8 for the motor M1. The mechanism 8 is controlled on a basis of the detection result of this optical sensor 7, and the unattended vehicle A is run automatically along light-reflective marks 6 while following-up them.

Description

【発明の詳細な説明】 本発明は、倉庫設備や組立て生産ライン等においてワー
クの搬送などに用いられる無人車の誘導方法で、詳しく
は、床面VC設けた誘導マークに対する機体の横変位量
を検出するセンサー及び操向駆動機構を備えた無人車を
、前記センサーの検出結果に基づいてA71記操向駆動
機轡を制御することにより前記誘導マークに沿って自動
的に追従走行させる無人車の誘導方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for guiding an unmanned vehicle used for transporting workpieces in warehouse facilities, assembly production lines, etc. An unmanned vehicle equipped with a detection sensor and a steering drive mechanism automatically follows the guidance mark by controlling the steering drive mechanism described in A71 based on the detection result of the sensor. Regarding the guidance method.

従来の無人車誘導方法は、光反射テープ等の誘導マーク
を走行経路の全長に亘って連続的に設けていたのである
が、これによる場合は次の(41、(口1 、(ハ)で
示すような欠点があった。
In the conventional unmanned vehicle guidance method, guidance marks such as light-reflecting tape were placed continuously over the entire length of the driving route, but in this case, the following (41, (Part 1, (c)) There were drawbacks as shown.

(イ)前記誘導マークの使用量が多く、しかも、それに
伴なって施工手間も増大するため、設備費が高騰し易い
(a) Since the amount of guide marks used is large, and the construction effort increases accordingly, equipment costs tend to rise.

(ロ)誘導マークが台車やフォークリフト、作業車等の
横断によって汚損されたり、破損されたりし易く、特に
、誘導マークが光反射テープの場合には、この汚損又は
破損箇所でセンサーが誤検出作動する確率が極めて高く
、蛇行や脱線といったトラブルを招来し易い。
(b) Guidance marks are easily soiled or damaged by trolleys, forklifts, work vehicles, etc. crossing, and especially if the guidance marks are made of light-reflecting tape, the sensor may cause false detection at this soiled or damaged location. The probability of this happening is extremely high, and it is easy to cause problems such as meandering and derailment.

(ハ)走行経路のコーナ一部の曲率を設定するに当って
、前記誘導マークの屈曲性によっては無人車自身の最小
可能旋回半径よりも大なる曲率に設定しなければならな
い場合があり、走行ライン設計の自由度が低く、スペー
ス面でロスを招き易い。
(c) When setting the curvature of a part of the corner of the driving route, depending on the flexibility of the guidance mark, it may be necessary to set the curvature to be larger than the minimum possible turning radius of the unmanned vehicle itself. The degree of freedom in line design is low, which tends to lead to loss of space.

本発明は、一般に走行経路が直線と曲線との組合せから
構成され、直線経路では前記無人車を間欠的に操向制御
するだけでも該無人車を所定の走行経路から許容範囲以
上に逸走させることなく追従走行σせることかできる点
に看目し、誘導マーク側の合理的な対策でもって前述の
従来欠点を改善する点に目的を有する。
The present invention provides that a traveling route is generally composed of a combination of straight lines and curved lines, and that on a straight route, even by intermittently controlling the steering of the unmanned vehicle, the unmanned vehicle can deviate from the predetermined traveling route beyond a permissible range. The purpose of this invention is to improve the above-mentioned conventional drawbacks by taking reasonable measures on the guide mark side, taking into account the fact that it is possible to follow the vehicle without any problem.

かかる目的を達成する九めになされた本発明による無人
車の誘導方法の特徴は、前記誘導マークを走行方向に適
宜間隔を隔てて位置する不連続状のものにした点にある
A feature of the unmanned vehicle guidance method according to the present invention, which achieves the above object, is that the guidance marks are discontinuous and are located at appropriate intervals in the traveling direction.

上記特徴方法による作用は次の通りである。The effects of the above characteristic method are as follows.

つまり、誘導式無人車は元来、操向による誘導であるか
ら、その操向を止めればそれによって指向された方向に
走行を継続する性質を備えたものであり、この性質を利
用して無人車を所定の走行経路に沿って追従走行させる
だめの操向制御を間欠制御とすることにより、その制御
間隔は走行速度等によって変動するものの比較的長い間
隔であるから、前記誘導マークを不連続状にしても許容
範囲以上の逸走を防止して所期の追従走行作用を安全に
行なわせることができる。
In other words, since guidance-type unmanned vehicles are originally guided by steering, they have the property of continuing to travel in the direction directed when the steering is stopped.Using this property, unmanned vehicles can By using intermittent steering control to make the car follow a predetermined driving route, the control interval varies depending on the driving speed, etc., but is a relatively long interval, so the guidance marks are made discontinuous. Even if the vehicle is set in a fixed position, it is possible to prevent the vehicle from running away beyond the permissible range and safely perform the desired follow-up operation.

上記作用による効果は次の通りである。The effects of the above action are as follows.

(Il  前記誘導マークの使用量を可及的に削減する
ことができるばかりでなく、これに伴なって施工手間も
少なくなり、無人車の搬送設備を経済面で有利に構成す
ることができる。
(Il) Not only can the amount of the guide marks used be reduced as much as possible, but the construction effort is also reduced accordingly, and the transport equipment for unmanned vehicles can be configured economically.

(■) 誘導マークが台車の横断等によって汚損された
り、破損されたりすることが少なくなり、このような誘
導マークの汚損、又は破損に起因するセンサーの誤検出
を極力、抑制して、追従制御の安定化を図ることができ
る。
(■) Guidance marks are less likely to be soiled or damaged by vehicles crossing, etc., and follow-up control is achieved by suppressing false detections by sensors due to such defacement or damage to guidance marks as much as possible. can be stabilized.

@)走行経路のコーナ一部の曲率を設定するに当っても
、従来のようVC誘導マークの屈曲性、施工性を考慮に
入れる必要がなく、走行ライン設計の自由度を可及的に
高め得るに至った。
@) When setting the curvature of a part of the corner of the travel route, there is no need to take into account the flexibility and workability of the VC guide mark as in the past, increasing the degree of freedom in design of the travel line as much as possible. I ended up getting it.

以下、本発明方法の実施例を図面に基づいて説明する。Hereinafter, embodiments of the method of the present invention will be described based on the drawings.

第1図、第2図で示す無人車^)、つまり、走行フレー
ムil+の前部に、左右一対のステアリングホイール+
21 、 +!+を文承する縦軸芯(P1周りで回動自
在な操向フレームtar及びこの操向フレームts」を
チェーン等を介して操向回動させるモータyυを配備し
、かつ、その後部には、モータ(M g ) vcよシ
駆動される左右一対の駆動車輪(5)。
The unmanned vehicle shown in Figures 1 and 2 ^), that is, a pair of left and right steering wheels + at the front of the running frame il +.
21, +! A motor yυ that steers and rotates the vertical axis (steering frame tar that can freely rotate around P1 and this steering frame ts) that supports the + is provided via a chain, etc., and at the rear thereof , a pair of left and right drive wheels (5) driven by a motor (M g ) VC.

(6)を配備しである無人単回を所定経路に沿って誘導
するに、床面(FL)側に、走行方向に適宜間隔を隔て
て位置する不連続状の走行誘導マー/ りの−例である光反射マーク(6)を設けるとともに、
前記無人車(AJ側には、光反射マーク+61 VC対
する機体の横変位量を検出する光センサ−(7)及び前
記操向用モータ(M、)K対する操向駆動機構(8)を
装備させ、もって、前記光センサ−(7)の検出結果に
基づいて前記操向駆動機構(8)を制御することにより
、無人単回を前記光反射マーク(6)に沿って自動的に
追従走行させるようにしている。
(6) is deployed to guide an unmanned vehicle along a predetermined route. In addition to providing a light reflective mark (6) as an example,
The unmanned vehicle (AJ side is equipped with a light reflection mark +61, an optical sensor (7) for detecting the amount of lateral displacement of the vehicle with respect to VC, and a steering drive mechanism (8) for the steering motor (M,)K) By controlling the steering drive mechanism (8) based on the detection result of the optical sensor (7), the unmanned single run automatically follows the light reflective mark (6). I try to let them do it.

前記光センサ−(7)は、前記光反射マーク(6)側に
向かつて光を照射する発光部(7a)、(7a′)、(
7aつと光反射マーク(6)の左右両横外側脇相当箇所
及び左右[p中央相当箇所に配設した3つの受光部(7
b)、(7b′)及び(7bつとから構成されている。
The optical sensor (7) has light emitting parts (7a), (7a'), (
7a and the three light receiving sections (7
b), (7b') and (7b).

前記操向駆動機構(8)は、第8図でも示すように、前
記操向用モータ(yiL)Q駆動回路中に、前記受光0
部(7b)、(7b’) ticアンズ+91 、 (
9’)を介シテ接続されたリレー(Rυ、(R2)vc
応動するa接点(R1−a) −(Rg −a )−及
び同じくb接点ux−b)。
As shown in FIG. 8, the steering drive mechanism (8) includes the light reception 0 in the steering motor (yiL) Q drive circuit.
Part (7b), (7b') tic apricot +91, (
9') connected to the relay (Rυ, (R2)vc
A responsive a contact (R1-a)-(Rg-a)- and also a b-contact ux-b).

(R2b)、F ツ(7,) トランジスタ(rt )
 〜(T4 )、−!つのダイオード(DI)、(D2
)、モータ(Ml)への電流供に用端子uo+ 、 (
+1、トランジスタのベースへの供給電流用端子’+2
1 、 (+31を介在して、具体的には次のような制
御を行なうべく構成されている。
(R2b), F tsu (7,) transistor (rt)
~(T4),-! one diode (DI), (D2
), terminal uo+ for supplying current to the motor (Ml), (
+1, terminal for supplying current to the base of the transistor'+2
1, (+31), specifically, it is configured to perform the following control.

即ち、無人車(Nが左にそれ、右受光部(7b)が感受
するとリレー(R4)が作動し、a接点−(Rt a)
をオン、b接点(Rt b)をオフにする。
In other words, when the unmanned vehicle (N deviates to the left and the right light receiving part (7b) senses it, the relay (R4) is activated and the a contact - (Rt a)
is turned on, and the b contact (Rt b) is turned off.

トランジスタ(T+)がオン、トランジスタ(T2)が
オフとなる。 グラス端子(1o)から電流がトランジ
スタ(T1)→モータ(Ml)→トランジスタ(T4)
を通してマイナス端子(11)、へと流れる。  これ
により無人車[Alが右へ修正される。 この修正によ
って右受光部(7b)が非感受となった瞬間、モー タ
+CM I外の通電が断れる。  モータ(Mt)H発
電作用をなし、ダイオード(D2)とトランジスタ(T
2)を巡る電流を生じてブレーキ作用を司る。
The transistor (T+) is turned on and the transistor (T2) is turned off. Current flows from the glass terminal (1o) to the transistor (T1) → motor (Ml) → transistor (T4)
and flows to the negative terminal (11). As a result, the unmanned vehicle [Al is corrected to the right. With this modification, the moment the right light receiving part (7b) becomes insensitive, the power to the motor + CMI is cut off. The motor (Mt) has a power generation function, and the diode (D2) and transistor (T
2) generates a current that circulates and controls the braking action.

無人単回が左にそnfcときの作用はこれと丁度逆であ
る。 ブレーキ作用の電流はダイオード(Dθとトラン
ジスタ(T4)を巡る。
When an unmanned single NFC is placed on the left, the effect is exactly the opposite. The braking current flows through the diode (Dθ) and the transistor (T4).

前記光反射マーク+61は、第4図で示すように、光反
射部の高いa造又は材質で製作された偏平状の光反射部
(6a)と床面(FL) K対する打込み固定部(6b
)とから構成されている。 尚、このような打込み固定
部(6b)を設ける代わりに、第7図で示す如く、光反
射部(6a)の裏面に両面接着テープ(6c)を貼付け
る或いは接着剤を塗布して実施しても良い。
As shown in FIG. 4, the light reflecting mark +61 includes a flat light reflecting part (6a) made of a material with a high light reflecting part and a driving fixing part (6b) to the floor (FL) K.
). Incidentally, instead of providing such a driving fixing part (6b), as shown in FIG. It's okay.

捷た、第5図、第6図で示すように、前記光センサ−(
))の検出信号(atを、前記走行用モータ(M2)の
走行駆動機構(14)に対する制御部!5)及び無人単
回の走行速度、光反射マークの取付はピッチから割り出
される光センサ−(7)の最大検出時間間隔よりも少し
犬なる時間(tl K亘って作動するタイマー川に入力
する。 このタイマー06)は光センサ−(7)の検出
信f(alの立上が’) (a’t)VC基づいて作動
開始し、かつ、この限時作動時間(1)内に次回の検出
信f(atが入力ざ′rLfCとき、その検出信8(a
)の立上がり(a2)に基づいてリセットされるよう[
構成されている。
As shown in FIGS. 5 and 6, the optical sensor (
)) detection signal (at) is sent to the control unit for the travel drive mechanism (14) of the travel motor (M2)! This timer 06 is input to a timer that operates for a time slightly longer than the maximum detection time interval of (7). ) (a't) When the operation starts based on VC and the next detection signal f(at is input Z'rLfC within this limited operation time (1), the detection signal 8(a
) is reset based on the rising edge (a2) of [
It is configured.

前記制御部側においては、前記タイマー◇6)の限詩作
時聞it) 17j vc次回の検出信号が入力されな
かったとき、無人単回が脱線したと判断し、前記走行駆
動機構−π対して停止のための制御信号を出力するよう
に構成ざnている。
On the control unit side, when the timer ◇6) does not receive the next detection signal, it determines that the unmanned single run has derailed, and controls the traveling drive mechanism -π. It is configured to output a control signal for stopping.

前記光反射マーク(6)を走行経路に治って取付ける場
合、この光反射マーク(6)の取付はピッチは、例えば
、直線部けJθ0闘〜3θθ卵ピッチ、コーナ一部は7
002mピッチにするといった具合に、無人車(3)の
走行速度、床面の構造、走行経路の曲り具合等の諸条件
VC応じて設定する。
When the light reflective mark (6) is installed along the driving route, the pitch of the light reflective mark (6) is, for example, Jθ0 pitch to 3θθ egg pitch for the straight part, and 7 for the corner part.
002 m pitch, etc., in accordance with various conditions VC such as the traveling speed of the unmanned vehicle (3), the structure of the floor surface, and the degree of curvature of the traveling route.

第8図は別の実施例を示し、この方法による場合は、3
つの受光部(7b)、(7b′)、(7bf)を有する
光センサ−(7)を、前記光反射マーク(6)の取付は
ピッチ(P)の号の間隔(J) e前後方向に隔てて2
組設けている。 この方法では、次のマークまでの走行
時間、即ち、走行距離が半分になり、マーク設置数を半
減できる。
FIG. 8 shows another embodiment, in which 3
The optical sensor (7) having three light receiving sections (7b), (7b'), and (7bf) is attached with the light reflecting mark (6) at a pitch (P) at an interval (J) e in the front-rear direction. Separate 2
We have set up a group. With this method, the travel time to the next mark, that is, the travel distance, is halved, and the number of marks installed can be halved.

第9図は別の実施例を示し、Cの方法にょる場合は、光
センサ−(7)の受光部(7b)を左右方向に等間隔を
隔てて多数並設し、これら各受光部(7b)−・に対応
してステアリング角度を決めている。
FIG. 9 shows another embodiment, and in the case of method C, a large number of light receiving parts (7b) of the optical sensor (7) are arranged side by side at equal intervals in the left and right direction, and each of these light receiving parts ( 7b) The steering angle is determined in accordance with.

尚、この方法の変形として、前記受光部(7b)・拳を
千鳥状又は前後複数段状VC配列しても良く、−1た、
受光M= (7b)・・の検出光量変化でステアリング
操作量を決定しても良い。
In addition, as a modification of this method, the light receiving portion (7b) and the fist may be arranged in a staggered manner or in multiple steps in the front and back, and -1,
The amount of steering operation may be determined based on the change in the detected light amount of received light M= (7b).

また、上述実施例では、前記光反射マーク(6)を平面
視において円形π形成したが、第10図で示すような正
四角形や第11図で示すような正三角形成いは五角形、
六角形、菱形等に形成して実施しても良い。
In the above-described embodiment, the light reflection mark (6) is formed into a circular π shape in plan view, but it may also be formed into a regular square as shown in FIG. 10, an equilateral triangle as shown in FIG. 11, or a pentagon.
It may be formed into a hexagonal shape, a diamond shape, or the like.

第12図は別の実施例を示し、この方法による場合は、
前記誘導マーク(6)として磁石製マークを使用すると
ともに、前記センサー(7)として磁気センサーを使用
している。 この場合、前記磁石製マ〜り(6)を床面
(FL)に而−又けほぼ面一状mで埋設している。
FIG. 12 shows another embodiment, in which according to this method,
A magnetic mark is used as the guide mark (6), and a magnetic sensor is used as the sensor (7). In this case, the magnetic mall (6) is buried in the floor (FL) almost flush with the floor (FL).

第18図は別の実施例を示し、この方法にょ°る場合は
、前記誘導マーク(6)として鉄、ステンレス、アルミ
等の金属板(6d)を床面への打込み固定部(6b)上
面に貼付けてなる金属製マークを使用するとともに、前
記センサー(7)として金属感知センサーを使用する。
Fig. 18 shows another embodiment, and when this method is used, a metal plate (6d) made of iron, stainless steel, aluminum, etc. is driven into the floor surface as the guide mark (6), and the upper surface of the fixing part (6b) is A metal mark affixed to the metal mark is used, and a metal detection sensor is used as the sensor (7).

この方法の変形として、前記金属板(6d)と打込み固
定部(6b)とを一体構成する。
As a modification of this method, the metal plate (6d) and the driving fixing part (6b) are integrally constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

¥11図、第2図は無人車の走行関係を示す側面図と平
面図、第8図は操向駆動機構の回路図、第4図は誘導マ
ークの正面図、第5図、第6図社走行制御系のブロック
線図とそれのタイムチャート、第7図乃至第18図は大
々別の実施例を示し、第7図#′i:誘導マークの正面
図、第8図乃至第11図は大々誘導マーク及びセンサー
の受光部を示す平面図、第12図、第18図は夫々誘導
マーク及びセンサーを示す正面図である。
Figure 11 and Figure 2 are side and plan views showing the running relationship of the unmanned vehicle, Figure 8 is a circuit diagram of the steering drive mechanism, Figure 4 is a front view of the guidance mark, Figures 5 and 6. A block diagram of the company running control system and its time chart, FIGS. 7 to 18 show largely different embodiments, FIG. 7 #'i: front view of the guidance mark, and FIGS. The figure is a plan view showing the guide mark and the light receiving part of the sensor, and FIGS. 12 and 18 are front views showing the guide mark and the sensor, respectively.

Claims (1)

【特許請求の範囲】 ■ 床面Vc設けた誘導マーク+61 VC対する機体
の横変位量を検出するセンサー(7)及び操向駆動機構
(8)を備えた無人単回を、前記センサー(7)の検出
結果に基づいて前記操向駆動機構(8)を制御すること
により前記誘導マーク(61Vc沿って自動的に追従走
行1せる無人車の誘導方法であって、前記誘導マーク(
6)を走行方向に適宜間隔を隔てて位置する不連続状の
ものにしであることを特徴とする無人車の誘導方法。 ■ 前記誘導マーク(6)が光反射マークであり、かつ
、前記センサーが光センサーである特許請求の範囲第0
項に記載の無人車の誘導方法。 ■ 前記誘導マーク(6)が磁石製マークであり、かつ
、前記センサー(7)が磁気センサーである特許請求の
範囲第0項に記載の無人車の誘導方法。 ■ 前記誘導マーク(6)が金属製マークであり、かつ
、前記センサー(7)が金属感知センサーである特許請
求の範囲第0項に記載の無人車の誘導方法。
[Claims] ■ Guidance mark provided on the floor Vc A method for guiding an unmanned vehicle to automatically follow the guidance mark (61Vc) by controlling the steering drive mechanism (8) based on the detection result of the guidance mark (61Vc).
6) A method for guiding an unmanned vehicle, characterized in that the steps are arranged discontinuously at appropriate intervals in the direction of travel. ■ Claim 0, wherein the guide mark (6) is a light reflective mark, and the sensor is a light sensor.
The unmanned vehicle guidance method described in section. (2) The method for guiding an unmanned vehicle according to claim 0, wherein the guiding mark (6) is a magnetic mark and the sensor (7) is a magnetic sensor. (2) The method for guiding an unmanned vehicle according to claim 0, wherein the guiding mark (6) is a metal mark and the sensor (7) is a metal sensing sensor.
JP58005548A 1983-01-17 1983-01-17 Guiding method of unattended vehicle Pending JPS59132007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58005548A JPS59132007A (en) 1983-01-17 1983-01-17 Guiding method of unattended vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005548A JPS59132007A (en) 1983-01-17 1983-01-17 Guiding method of unattended vehicle

Publications (1)

Publication Number Publication Date
JPS59132007A true JPS59132007A (en) 1984-07-30

Family

ID=11614238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005548A Pending JPS59132007A (en) 1983-01-17 1983-01-17 Guiding method of unattended vehicle

Country Status (1)

Country Link
JP (1) JPS59132007A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621209U (en) * 1985-06-20 1987-01-07
CN103970132A (en) * 2013-01-31 2014-08-06 鸿富锦精密工业(武汉)有限公司 Method and system utilizing infrared detection technology to realize object movement
CN104216411A (en) * 2014-09-27 2014-12-17 江阴润玛电子材料股份有限公司 Line patrolling method used for electronic circuit
CN109739266A (en) * 2018-12-03 2019-05-10 中国北方车辆研究所 A kind of follow-up control method of the unmanned shipping platform in ground

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338516A (en) * 1976-09-20 1978-04-08 Kubota Ltd Reaperrharvester
JPS5551203A (en) * 1978-10-09 1980-04-14 Mitsubishi Heavy Ind Ltd Pressure change operation boiler
JPS5762422A (en) * 1980-10-01 1982-04-15 Shinko Electric Co Ltd Run control system for unmanned moving vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338516A (en) * 1976-09-20 1978-04-08 Kubota Ltd Reaperrharvester
JPS5551203A (en) * 1978-10-09 1980-04-14 Mitsubishi Heavy Ind Ltd Pressure change operation boiler
JPS5762422A (en) * 1980-10-01 1982-04-15 Shinko Electric Co Ltd Run control system for unmanned moving vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621209U (en) * 1985-06-20 1987-01-07
JPH0435925Y2 (en) * 1985-06-20 1992-08-25
CN103970132A (en) * 2013-01-31 2014-08-06 鸿富锦精密工业(武汉)有限公司 Method and system utilizing infrared detection technology to realize object movement
CN104216411A (en) * 2014-09-27 2014-12-17 江阴润玛电子材料股份有限公司 Line patrolling method used for electronic circuit
CN109739266A (en) * 2018-12-03 2019-05-10 中国北方车辆研究所 A kind of follow-up control method of the unmanned shipping platform in ground

Similar Documents

Publication Publication Date Title
JPS6063617A (en) Run controlling method of unmanned running car
JPS59132007A (en) Guiding method of unattended vehicle
JP3991623B2 (en) Driving control method for self-propelled vehicles
JP2771366B2 (en) Traveling vehicle safety devices
JPS61265606A (en) Obstacle processor for unmanned carrying car
JP3886252B2 (en) Driving control method of automatic guided vehicle
KR0168701B1 (en) Method for controlling carriage running speed in separation of conveyor
JPS59132009A (en) Automatic operation controller of unattended vehicle
JPH0358105A (en) Stering controller of self-running car
JPH1185282A (en) Travel control system for travel truck
JP3341490B2 (en) Automatic guided vehicle
CN217689388U (en) Trolley walking distance measuring device
JPS6226513A (en) Unmanned trackless trolly car
JPS6288006A (en) Obstacle evading device for unmanned conveyance vehicle
JPH0542002B2 (en)
JPS6077208A (en) Unmanned carrier car
JPS6081609A (en) Supporting device of travelling course of omnidirectional movable truck
JP2851157B2 (en) Travel safety equipment for mobile vehicles
JPS598015A (en) Guide device of self-traveling dolly
JPH0219483B2 (en)
JPS57100509A (en) Track detecting system of self-travelling cart
JPH02129706A (en) Position control system for automatic running body
JPS62274314A (en) Run position detecting method for moving device
JPH0348646Y2 (en)
JPS62140106A (en) Dive control equipment for traveling vehicle