JP3886252B2 - Driving control method of automatic guided vehicle - Google Patents

Driving control method of automatic guided vehicle Download PDF

Info

Publication number
JP3886252B2
JP3886252B2 JP13273798A JP13273798A JP3886252B2 JP 3886252 B2 JP3886252 B2 JP 3886252B2 JP 13273798 A JP13273798 A JP 13273798A JP 13273798 A JP13273798 A JP 13273798A JP 3886252 B2 JP3886252 B2 JP 3886252B2
Authority
JP
Japan
Prior art keywords
automatic guided
guided vehicle
vehicle
traveling
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13273798A
Other languages
Japanese (ja)
Other versions
JPH11312016A (en
Inventor
浩一 中野
輝夫 浦崎
宏光 加藤
藤男 上田
博之 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Hitachi Plant Technologies Ltd
Original Assignee
Sharp Corp
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Hitachi Plant Technologies Ltd filed Critical Sharp Corp
Priority to JP13273798A priority Critical patent/JP3886252B2/en
Publication of JPH11312016A publication Critical patent/JPH11312016A/en
Application granted granted Critical
Publication of JP3886252B2 publication Critical patent/JP3886252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無人搬送車の走行制御方法に関し、特に、有軌道又は無軌道にかかわらず、予め定められた走行路に沿って走行する複数台の無人搬送車が、曲線走行路を先行する無人搬送車に衝突することなく、安全かつ円滑に走行するようにした無人搬送車の走行制御方法に関するものである。
【0002】
【従来の技術】
予め定められた走行路に沿って走行する複数台の無人搬送車を同時に走行させながら、物品の積み込み、搬送、荷降ろしを行うようにした搬送装置において、無人搬送車の走行制御、特に、同一の搬送路上に搬送効率向上のため、同時に複数台の搬送車を走行させる場合、曲線走行路上で先行する無人搬送車に衝突することなく、安全かつ円滑に走行するように走行制御することは、きわめて重要な課題である。
このための無人搬送車の走行制御方法として、例えば、特開平5−53644号公報に開示されたものがある。
この無人搬送車の走行制御方法は、無人搬送車の後端部に設けた反射体を検出する反射形光電センサを無人搬送車の前端部に右カーブ検出用、直進検出用及び左カーブ検出用の計3個を設け、かつ、曲線走行路を走行中において走行制御装置の誤動作を防止するため、曲線走行路の右カーブ又は左カーブに応じて切り替えて検出する光電センサを右カーブ検出用と、左カーブ検出用とを選別する機構を設けるようにしている。
【0003】
【発明が解決しようとする課題】
ところで、上記従来の無人搬送車の走行制御方法は、曲線走行路走行中において、先行する無人搬送車の後端部に設けた反射体と、無人搬送車の前端部に設けた、反射体を検出する反射形光電センサを対向させるようにして取り付ける必要があるとともに、特に、精度良く検出するためには反射形光電センサによる検出角度にも限度がある。このため、図5に示すように、先行する無人搬送車2Aが、曲線走行路を走行する場合には、後続の無人搬送車2の前端部に設けた反射形光電センサが機能せず、後続の無人搬送車2の走行制御を確実に行うことができる曲線走行路の曲率半径に限界があるという問題があった。
さらに、曲線走行路の曲率半径は必ずしも一定ではなく、同じ1つのカーブにおいても曲率半径が大きい部分と小さな部分が連続して構成される場合があり、このような複雑な曲線路には適用できないという問題があった。
【0004】
本発明は、上記従来の無人搬送車の走行制御方法の有する問題点を解決し、走行路に沿って走行する無人搬送車が、同一の曲線走行路において2台以上が走行する場合でも先行する無人搬送車に衝突することなく、安全かつ円滑に走行することができる無人搬送車の走行制御方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の無人搬送車の走行制御方法は、予め定められた走行路に沿って走行する無人搬送車の後端側に反射体を取り付けるとともに、前端側に複数個の先行車検知センサを取り付け、前記反射体からの反射信号を受信して衝突を防止する無人搬送車の走行制御方法において、直線走行路と曲線走行路との接続部近傍位置に設置した位置表示部材を搬送車側に設けた位置検出センサにて検出するようにし、無人搬送車が位置表示部材の位置に到達したことを検出したとき、仮想的に曲線走行路に沿って所定間隔に複数のアドレスを設定するとともに、走行距離計により位置表示部材からの走行距離に基づいて無人搬送車の現位置の仮想アドレスを特定し、このアドレス検知信号にて前記無人搬送車に取り付けた先行車検知センサを順次切り替えて曲線走行路における先行無人搬送車を検出して衝突を防止することを特徴とする。
【0006】
この無人搬送車の走行制御方法は、走行路に沿って走行する無人搬送車が、走行路の曲線走行路に到達すると、仮想的に曲線走行路に沿って所定間隔に設定されたアドレスを順次検知し、このアドレス検知信号にて無人搬送車の走行位置を検出するようにする。
そして、この無人搬送車の走行位置に合わせて、後続の無人搬送車に取り付けた複数個の先行車検知センサのうち、曲線走行路における先行無人搬送車の検出に最も適した先行車検知センサに順次切り替えるようにしているので、曲線走行路の曲率半径の大小及び曲率半径の異同に関係なく、先行車検知を確実に、しかも予め設定した近距離範囲でも精度良く検出できる。
【0007】
この場合において、左カーブ用及び右カーブ用の先行車検知センサを、それぞれ複数種類配設することができる。
【0008】
これにより、無人搬送車が曲線走行路の左カーブ、右カーブの方向に合わせて走行する場合にも先行する無人搬送車の検知を正確に行うことができる。
【0009】
【発明の実施の形態】
以下、本発明の無人搬送車の走行制御方法の実施の形態を図面に基づいて説明する。
【0010】
図1〜図4は、本発明の無人搬送車の走行制御方法の一実施例を示す。
この無人搬送車の走行制御方法は、図1に示すように、直線走行路10より曲線走行路11を経て再び他方の直線走行路12と連続的に接続して構成する走行路1に沿って、無人搬送車2,2Aが、直線走行路10、曲線走行路11、直線走行路12の順に走行する場合において、同一の曲線走行路11内にて無人搬送車2が先行する無人搬送車2Aに衝突することなく、安全かつ円滑に走行させるためのものである。
【0011】
無人搬送車2,先行する無人搬送車2Aは、共に同じ構造を有しており、走行用の車輪W、駆動装置、制御装置等を搭載し、これにより、走行路1上を走行し、地上側設備、例えば、積荷の積み降ろしを行うステーション前にて走行を停止し、必要な積荷の積み降ろしを行うことができるように構成するとともに、走行方向前端部に、先行する無人搬送車2Aの有無の検知を行う複数個の先行車検知センサ31,32,33,41,42,43及び搬送車側下面に位置検出センサ5を設けるとともに、後端部に反射体6を設けるようにして構成する。
【0012】
この場合、無人搬送車2、先行する無人搬送車2Aに設ける先行車検知センサ31,32,33,41,42,43と反射体6とは、無人搬送車が直線走行路10から曲線走行路11に移って、曲線走行路11を走行する際、曲線走行路11上にて先行する無人搬送車2Aの後端側に設けた反射体6と、後続の無人搬送車2の前端側に設けた左カーブ用の先行車検知センサ31,32,33のうちのいずれか1つ、又は右カーブ用の先行車検知センサ41,42,43のうちのいずれか1つとが、選択的に対向するように配設するようにする。
より具体的には、左カーブ用の先行車検知センサ31,32,33は、図3に示すように、無人搬送車の進行方向に対し、それぞれ、検出角度を異ならして取り付け、これにより、先行する無人搬送車2Aの後端側に設けた反射体6の位置又は曲線走行路11のカーブの方向、曲率の大小に応じて、いずれかの先行車検知センサ31,32,33にて先行する無人搬送車2Aを検知できるようにする。
また、右カーブ用の先行車検知センサ41,42,43も、左カーブ用の先行車検知センサ31,32,33と同様、それぞれ、検出角度を異ならして取り付けるようにする。
【0013】
この無人搬送車の先行車検知センサ31,32,33,41,42,43には、回帰反射型センサを用い、また反射体6には回帰反射板を用いることが好ましく、これにより、所定の光源以外からの入光信号や壁面などからの乱反射による無人搬送車の有無の検出誤りを防止して検出精度を向上させることができる。
ここで、回帰反射型センサとは、本体に内蔵された、例えば、横方向の偏光フィルタにより、投光側から横方向の光のみが投光され、マイクロプリズム(三角錐)にて構成された回帰反射板に反射すると、光は横方向から縦方向に変え、この反射光を、回帰反射型センサに内蔵された縦方向の偏光フィルタを通過させて受光素子に入射させるようにする。これにより、回帰反射板からの反射光のみを検出することができるようにしたものである。
【0014】
また、直線走行路10と曲線走行路11との接続部近傍位置に、マグネット等の位置表示部材7を設置し、これにより無人搬送車が直線走行路10より曲線走行路11にさしかかったことを、この位置表示部材7を搬送車側に設けた位置検出センサ5にて検出できるようにする。
【0015】
さらに、走行路側には曲線走行路11に沿って、曲線走行路11のほぼ全長に亘って所定間隔毎にアドレス表示部材A1,A2,A3,A4,A5...Anを設定する。
この曲線走行路11に沿うアドレスは、仮想アドレスとすることも、実アドレスとすること(参考例)もできる。
仮想アドレスとする場合は、無人搬送車に搭載した位置検出センサ5にて搬送車が位置表示部材7の位置に到達したとき、位置表示部材7により無人搬送車の位置を確認したときから無人搬送車に搭載した走行距離計8、例えば、エンコーダにより、走行距離を積算し、この走行距離により、アドレスA1,A2,A3,・・・,Anを設定、検出するようにする。この場合、アドレスA1,A2,A3,・・・,Anは、視認等することはできないが、無人搬送車は走行距離計8にて検出可能となる。
一方、実アドレスとする場合は、曲線走行路11のほぼ全長に亘って所定間隔毎に位置検出センサ5による検出可能なマグネット等の位置表示部材を用いてアドレスA1,A2,A3,・・・,Anを設定(設置)するようにする。
【0016】
次に、この無人搬送車における走行制御方法の動作を図1に示す説明図により説明する。
無人搬送車2が直線走行路10上を走行し、曲線走行路11にさしかかった時、例えば、仮想アドレスによる場合には(実アドレスによる場合も実質的に同じ。)、無人搬送車に設置した位置検出センサ5により位置表示部材7を検出すると、走行距離計(エンコーダ)の動作により位置表示部材7からの走行距離を走行パルス値にて、曲線走行路11に沿って走行する無人搬送車2の現位置がアドレスA1,A2,A3,・・・,Anのうち、どのアドレス位置に位置するかを確認する。
この場合、アドレスA1,A2,A3,・・・,Anの検出信号に基づいて、切替器を介して、先行する無人搬送車2Aの後端側に設けた反射体6の位置又は曲線走行路11のカーブの方向、曲率の大小等に応じて、先行する無人搬送無人搬送車に取り付けた先行車検知センサ31,32,33,41,42,43を順次切り替えて、先行車検知センサ31,32,33,41,42,43のうち、曲線走行路11における先行無人搬送車A2の検出に最も適した先行車検知センサに切り替えるようにする。
【0017】
これにより、従来のように先行する無人搬送車2Aの検知死角がなくなり、例えば、数台の無人搬送車を、その間隔を近接させて、同一曲線走行路11を、互いに衝突することなく、走行させることが可能となり、搬送効率を向上させることができるものとなる。
【0018】
【発明の効果】
本発明の無人搬送車の走行制御方法によれば、走行路に沿って走行する無人搬送車が、走行路の曲線走行路に到達すると、仮想的に曲線走行路に沿って所定間隔に設定されたアドレスを順次検知し、このアドレス検知信号にて無人搬送車の走行位置を検出するようにする。
そして、この無人搬送車の走行位置に合わせて、後続の無人搬送車に取り付けた複数個の先行車検知センサのうち、曲線走行路における先行無人搬送車の検出に最も適した先行車検知センサに順次切り替えるようにしているので、曲線走行路の曲率半径の大小及び曲率半径の異同に関係なく、先行車検知を確実に、しかも予め設定した近距離範囲でも精度良く検出できるので、同一の曲線走行路でも複数台の搬送車を走行させても、衝突することがなく、搬送効率を向上させることができる。
【0019】
また、左カーブ用及び右カーブ用の先行車検知センサを、それぞれ複数種類配設することにより、無人搬送車が曲線走行路の左カーブ、右カーブの方向に合わせて走行する場合にも先行する無人搬送車の検知を正確に行うことができる。
【図面の簡単な説明】
【図1】 本発明の無人搬送車の走行制御方法の一実施例の説明図である。
【図2】 無人搬送車に設置された先行車検知センサの検知角度を示す説明図である。
【図3】 無人搬送車の平面図である。
【図4】 無人搬送車の説明図で、(A)は正面図、(B)は前面図、(C)は後面図である。
【図5】 従来の走行制御方法の説明図である。
【符号の説明】
1 走行路
11 直線走行路
12 曲線走行路
13 直線走行路
2 無人搬送車
2A 先行する無人搬送車
31,32,33 左カーブ用の先行車検知センサ
41,42,43 右カーブ用の先行車検知センサ
5 アドレス検出用センサ
6 反射板
7 位置表示部材
8 走行距離計(エンコーダ)
A1,A2,A3,・・・,An アドレス表示部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a traveling control method for an automated guided vehicle, and more particularly, an automated guided vehicle in which a plurality of automated guided vehicles traveling along a predetermined traveling path regardless of a tracked or untracked track precedes a curved traveling path. The present invention relates to a traveling control method for an automatic guided vehicle that can travel safely and smoothly without colliding with a vehicle.
[0002]
[Prior art]
In a transport device that loads, transports, and unloads articles while simultaneously traveling a plurality of automatic guided vehicles traveling along a predetermined traveling path, it is particularly preferable to control the traveling of the automatic guided vehicle. In order to improve the conveyance efficiency on the conveyance path, when traveling a plurality of conveyance vehicles at the same time, traveling control so as to travel safely and smoothly without colliding with the preceding automatic guided vehicle on the curved traveling path, This is a very important issue.
For example, Japanese Laid-Open Patent Publication No. 5-53644 discloses a driving control method for an automatic guided vehicle for this purpose.
In this automatic guided vehicle traveling control method, a reflective photoelectric sensor for detecting a reflector provided at the rear end of the automatic guided vehicle is used for detecting a right curve, detecting a straight line, and detecting a left curve at the front end of the automatic guided vehicle. In order to prevent malfunction of the travel control device while traveling on a curved road, a photoelectric sensor that switches and detects the right curve or the left curve of the curved road is used for right curve detection. A mechanism for selecting the left curve detection is provided.
[0003]
[Problems to be solved by the invention]
By the way, the traveling control method for the conventional automatic guided vehicle includes a reflector provided at a rear end portion of a preceding automatic guided vehicle and a reflector provided at a front end portion of the automatic guided vehicle during traveling on a curved traveling path. The reflection type photoelectric sensor to be detected needs to be mounted so as to face each other, and in particular, there is a limit to the detection angle by the reflection type photoelectric sensor for accurate detection. For this reason, as shown in FIG. 5, when the preceding automatic guided vehicle 2A travels on a curved traveling path, the reflective photoelectric sensor provided at the front end of the subsequent automatic guided vehicle 2 does not function, and the subsequent There is a problem that there is a limit to the radius of curvature of the curved traveling path that can reliably perform traveling control of the automatic guided vehicle 2.
Further, the radius of curvature of the curved road is not necessarily constant, and even in the same curve, a portion having a large curvature radius and a portion having a small curvature may be continuously formed, and cannot be applied to such a complicated curved road. There was a problem.
[0004]
The present invention solves the problems of the above conventional automatic guided vehicle traveling control method, and precedes even when two or more automated guided vehicles traveling along the traveling path travel on the same curved traveling path. It is an object of the present invention to provide a traveling control method for an automatic guided vehicle that can travel safely and smoothly without colliding with the automatic guided vehicle.
[0005]
[Means for Solving the Problems]
To achieve the above object, the travel control method of the automatic guided vehicle of the present invention, a plurality Rutotomoni, the front end fitted with a reflector on the rear side of the automatic guided vehicle to travel along a traveling path predetermined In a traveling control method for an automated guided vehicle that receives a reflected signal from the reflector and prevents a collision, a position display installed at a position in the vicinity of a connecting portion between a straight traveling path and a curved traveling path The member is detected by a position detection sensor provided on the conveyance vehicle side, and when it is detected that the automatic guided vehicle has reached the position of the position display member, a plurality of pieces are virtually arranged at predetermined intervals along the curved traveling path. it sets the address to identify the virtual address of the current position of the automatic guided vehicle based on the travel distance from the position indicating member by odometer preceding vehicle attached to the AGV in this address detection signal Characterized in that to prevent detection and collision preceding AGV in the curve travel path are sequentially switched intellectual sensor.
[0006]
In this unmanned guided vehicle traveling control method, when the automated guided vehicle traveling along the traveling path reaches the curved traveling path of the traveling path, the addresses set virtually at predetermined intervals along the curved traveling path are sequentially This is detected, and the traveling position of the automatic guided vehicle is detected by this address detection signal.
And, according to the traveling position of this automatic guided vehicle, among the multiple preceding vehicle detection sensors attached to the following automatic guided vehicle, the preceding vehicle detection sensor most suitable for detecting the preceding automatic guided vehicle on the curved traveling road Since the switching is performed sequentially, the preceding vehicle can be detected reliably and accurately even in a preset short distance range regardless of the curvature radius of the curved road and the difference in curvature radius.
[0007]
In this case, a plurality of types of preceding vehicle detection sensors for the left curve and the right curve can be provided.
[0008]
Thereby, the preceding automatic guided vehicle can be accurately detected even when the automatic guided vehicle travels in the direction of the left curve and the right curve of the curved traveling path.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a traveling control method for an automatic guided vehicle according to the present invention will be described below with reference to the drawings.
[0010]
1 to 4 show an embodiment of a traveling control method for an automatic guided vehicle according to the present invention.
As shown in FIG. 1, this automatic guided vehicle travel control method is performed along a travel path 1 constituted by connecting a straight travel path 10 to a straight travel path 11 and continuously connecting to the other straight travel path 12 again. When the automatic guided vehicle 2, 2 </ b> A travels in the order of the straight traveling path 10, the curved traveling path 11, and the straight traveling path 12, the automatic guided vehicle 2 </ b> A preceded by the automatic guided vehicle 2 in the same curved traveling path 11. For safe and smooth travel without collision.
[0011]
Both the automatic guided vehicle 2 and the preceding automatic guided vehicle 2A have the same structure, and are equipped with traveling wheels W, a driving device, a control device, and the like so that the vehicle travels on the traveling path 1 and is grounded. Side equipment, for example, it is configured so that traveling can be stopped in front of a station for loading and unloading, and necessary loading and unloading can be performed, and at the front end of the traveling direction, the preceding automatic guided vehicle 2A A plurality of preceding vehicle detection sensors 31, 32, 33, 41, 42, 43 for detecting presence / absence and a position detection sensor 5 on the lower surface of the transport vehicle and a reflector 6 at the rear end are provided. To do.
[0012]
In this case, the preceding vehicle detection sensors 31, 32, 33, 41, 42, and 43 and the reflector 6 provided in the automatic guided vehicle 2 and the preceding automatic guided vehicle 2 </ b> A are configured so that the automatic guided vehicle travels from the straight traveling path 10 to the curved traveling path. 11, when traveling on the curved traveling road 11, the reflector 6 provided on the rear end side of the preceding automatic guided vehicle 2 </ b> A on the curved traveling path 11 and the front end side of the subsequent automatic guided vehicle 2 are provided. Any one of the preceding vehicle detection sensors 31, 32, 33 for the left curve or any one of the preceding vehicle detection sensors 41, 42, 43 for the right curve is selectively opposed. It arrange | positions so that.
More specifically, as shown in FIG. 3, the preceding vehicle detection sensors 31, 32, and 33 for the left curve are attached with different detection angles with respect to the traveling direction of the automatic guided vehicle. Depending on the position of the reflector 6 provided on the rear end side of the preceding automatic guided vehicle 2A, the direction of the curve of the curved traveling path 11, and the magnitude of the curvature, the preceding vehicle detection sensor 31, 32, 33 leads. The automatic guided vehicle 2A to be detected can be detected.
Also, the preceding vehicle detection sensors 41, 42, and 43 for the right curve are attached with different detection angles, similarly to the preceding vehicle detection sensors 31, 32, and 33 for the left curve.
[0013]
For the preceding vehicle detection sensors 31, 32, 33, 41, 42, and 43 of the automatic guided vehicle, it is preferable to use a retroreflective sensor, and it is preferable to use a retroreflector for the reflector 6. It is possible to improve detection accuracy by preventing detection errors in the presence or absence of an automatic guided vehicle due to an incident signal from a light source other than the light source or diffuse reflection from a wall surface.
Here, the retroreflective sensor is composed of, for example, a micro prism (triangular pyramid), in which only lateral light is projected from the light projecting side by, for example, a lateral polarization filter built in the main body. When reflected by the retroreflective plate, the light changes from the horizontal direction to the vertical direction, and this reflected light passes through the vertical polarization filter built in the retroreflective sensor and is incident on the light receiving element. Thereby, only the reflected light from the regressive reflection plate can be detected.
[0014]
In addition, a position display member 7 such as a magnet is installed in the vicinity of the connecting portion between the straight traveling path 10 and the curved traveling path 11, so that the automatic guided vehicle has approached the curved traveling path 11 from the straight traveling path 10. The position display member 7 can be detected by the position detection sensor 5 provided on the transport vehicle side.
[0015]
Further, the address display members A1, A2, A3, A4, A5... Are provided at predetermined intervals along the curved traveling path 11 along the curved traveling path 11 over almost the entire length of the curved traveling path 11. . . Set An.
The address along the curved road 11 can be a virtual address or a real address (reference example) .
When the virtual address is used, the position detection sensor 5 mounted on the automatic guided vehicle reaches the position of the position display member 7 and when the position display member 7 confirms the position of the automatic guided vehicle, the automatic transfer is started. An odometer 8 mounted on the vehicle, for example, an encoder, accumulates the mileage, and addresses A1, A2, A3,..., An are set and detected based on the mileage. In this case, the addresses A1, A2, A3,..., An cannot be visually recognized, but the automatic guided vehicle can be detected by the odometer 8.
On the other hand, when the actual address is used, the addresses A1, A2, A3,... Are used by using position display members such as magnets that can be detected by the position detection sensor 5 at predetermined intervals over almost the entire length of the curved road 11. , An are set (installed).
[0016]
Next, the operation of the traveling control method in this automatic guided vehicle will be described with reference to the explanatory diagram shown in FIG.
When the automated guided vehicle 2 travels on the straight traveling path 10 and approaches the curved traveling path 11, for example, when using a virtual address (substantially the same when using a real address), it is installed in the automated guided vehicle. When the position detection member 5 is detected by the position detection sensor 5, the automatic guided vehicle 2 that travels along the curved travel path 11 using the travel pulse value for the travel distance from the position display member 7 by the operation of the odometer (encoder). The current position of the address A1, A2, A3,.
In this case, based on the detection signals of the addresses A1, A2, A3,..., An, the position of the reflector 6 provided on the rear end side of the preceding automatic guided vehicle 2A or the curved travel path via the switch. The preceding vehicle detection sensors 31, 32, 33, 41, 42, and 43 attached to the preceding automatic guided unmanned guided vehicle are sequentially switched according to the direction of the curve of 11, the magnitude of the curvature, etc. Of 32, 33, 41, 42, and 43, the vehicle is switched to a preceding vehicle detection sensor that is most suitable for detecting the preceding automatic guided vehicle A2 on the curved traveling path 11.
[0017]
As a result, the detection blind spot of the preceding automatic guided vehicle 2A is eliminated as in the prior art. For example, several automatic guided vehicles are moved closer to each other on the same curved traveling path 11 without colliding with each other. Therefore, the conveyance efficiency can be improved.
[0018]
【The invention's effect】
According to the traveling control method of the automatic guided vehicle of the present invention, when the automatic guided vehicle traveling along the traveling path reaches the curved traveling path of the traveling path, it is virtually set at a predetermined interval along the curved traveling path. The address is sequentially detected, and the traveling position of the automatic guided vehicle is detected by the address detection signal.
And, according to the traveling position of this automatic guided vehicle, among the multiple preceding vehicle detection sensors attached to the following automatic guided vehicle, the preceding vehicle detection sensor most suitable for detecting the preceding automatic guided vehicle on the curved traveling road Since the switching is performed sequentially, it is possible to detect the preceding vehicle reliably and accurately in a preset short distance range regardless of the curvature radius of the curved road and the difference in curvature radius. Even if a plurality of transport vehicles are run on the road, there is no collision and the transport efficiency can be improved.
[0019]
In addition, by arranging a plurality of types of preceding vehicle detection sensors for the left curve and the right curve, the automatic guided vehicle also precedes when traveling in the direction of the left curve and the right curve of the curved traveling path. The automatic guided vehicle can be detected accurately.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of a traveling control method for an automatic guided vehicle according to the present invention.
FIG. 2 is an explanatory view showing a detection angle of a preceding vehicle detection sensor installed in the automatic guided vehicle.
FIG. 3 is a plan view of the automatic guided vehicle.
4A and 4B are explanatory diagrams of the automatic guided vehicle, in which FIG. 4A is a front view, FIG. 4B is a front view, and FIG. 4C is a rear view.
FIG. 5 is an explanatory diagram of a conventional traveling control method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Traveling path 11 Straight traveling path 12 Curved traveling path 13 Straight traveling path 2 Automatic guided vehicle 2A Prior automatic guided vehicle 31, 32, 33 The preceding vehicle detection sensor 41, 42, 43 for the left curve The preceding vehicle detection for the right curve Sensor 5 Address detection sensor 6 Reflector 7 Position display member 8 Odometer (encoder)
A1, A2, A3, ..., An Address display member

Claims (2)

予め定められた走行路に沿って走行する無人搬送車の後端側に反射体を取り付けるとともに、前端側に複数個の先行車検知センサを取り付け、前記反射体からの反射信号を受信して衝突を防止する無人搬送車の走行制御方法において、直線走行路と曲線走行路との接続部近傍位置に設置した位置表示部材を搬送車側に設けた位置検出センサにて検出するようにし、無人搬送車が位置表示部材の位置に到達したことを検出したとき、仮想的に曲線走行路に沿って所定間隔に複数のアドレスを設定するとともに、走行距離計により位置表示部材からの走行距離に基づいて無人搬送車の現位置の仮想アドレスを特定し、このアドレス検知信号にて前記無人搬送車に取り付けた先行車検知センサを順次切り替えて曲線走行路における先行無人搬送車を検出して衝突を防止することを特徴とする無人搬送車の走行制御方法。Predetermined travel path fitted with reflectors on the rear end side of the automatic guided vehicle to travel along the Rutotomoni, mounting a plurality preceding vehicle detection sensor on the front side, and receives a reflected signal from the reflector In the traveling control method of the automatic guided vehicle for preventing the collision, the position detection member provided in the vicinity of the connecting portion between the straight traveling path and the curved traveling path is detected by the position detection sensor provided on the transportation vehicle side. When it is detected that the transport vehicle has reached the position of the position display member, a plurality of addresses are virtually set at predetermined intervals along the curved travel path, and based on the travel distance from the position display member by the travel distance meter identify the virtual address of the current position of the AGV Te, the leading AGV in the curve travel path sequentially switching the preceding vehicle detection sensor attached to the AGV in this address detection signal Travel control method of the automatic guided vehicle, characterized in that to prevent a collision out. 左カーブ用及び右カーブ用の先行車検知センサを、それぞれ複数種類配設したことを特徴とする請求項1記載の無人搬送車の走行制御方法。  2. The traveling control method for an automatic guided vehicle according to claim 1, wherein a plurality of types of preceding vehicle detection sensors for the left curve and the right curve are provided.
JP13273798A 1998-04-27 1998-04-27 Driving control method of automatic guided vehicle Expired - Fee Related JP3886252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13273798A JP3886252B2 (en) 1998-04-27 1998-04-27 Driving control method of automatic guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13273798A JP3886252B2 (en) 1998-04-27 1998-04-27 Driving control method of automatic guided vehicle

Publications (2)

Publication Number Publication Date
JPH11312016A JPH11312016A (en) 1999-11-09
JP3886252B2 true JP3886252B2 (en) 2007-02-28

Family

ID=15088428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13273798A Expired - Fee Related JP3886252B2 (en) 1998-04-27 1998-04-27 Driving control method of automatic guided vehicle

Country Status (1)

Country Link
JP (1) JP3886252B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826479B2 (en) * 2002-06-03 2004-11-30 Visteon Global Technologies, Inc. Method and apparatus for target vehicle identification in automatic cruise control and collision avoidance systems
JP4352925B2 (en) * 2004-02-17 2009-10-28 アシスト テクノロジーズ ジャパン株式会社 Sensor control device for automatic guided vehicle and automatic guided system
JP4513673B2 (en) * 2005-07-01 2010-07-28 村田機械株式会社 Mobile system
JP2010286962A (en) * 2009-06-10 2010-12-24 Murata Machinery Ltd Traveling vehicle
EP2857918B1 (en) * 2012-05-28 2018-08-15 Murata Machinery, Ltd. Travelling vehicle system and method for controlling travel of travelling vehicle in curved section
WO2016151724A1 (en) * 2015-03-23 2016-09-29 富士機械製造株式会社 Moving body

Also Published As

Publication number Publication date
JPH11312016A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
CN101484344B (en) Method for assisting with the parking of a vehicle
JP3886252B2 (en) Driving control method of automatic guided vehicle
JP2003058998A (en) Vehicle parking system
JPH02181806A (en) Steering position detector for self-travelling vehicle and reference point detector for above device
JPH10124799A (en) Traveling safety detecting device for vehicle and traveling controller for vehicle
JP3690211B2 (en) Autonomous mobile trolley and its self-position estimation method
JP2000214928A (en) Automated guided vehicle
JPH02227708A (en) Position detecting device for self-traveling vehicle
KR100282903B1 (en) Lane departure prevention device
CN103732481B (en) The method supporting automobile driver when driver behavior
JPH0588746A (en) Safety device for automatically governed vehicle
JP2836314B2 (en) Self-propelled bogie collision prevention control method
JPH11202940A (en) Unmanned carrier
JPH09188247A (en) Vehicle coupling method
JPH06195122A (en) Running controller for moving body
JP2000020879A (en) Vehicle detecting device and controller for vehicle using the same
JP2523305Y2 (en) Automatic distance control system for carriers
JP7545825B2 (en) Stop position determination device, stop position determination method, and platform door system
JP2000010632A (en) Stopping position deciding device of automated guided vehicle
JPH069010B2 (en) Driving method of self-propelled cart
JPH02236707A (en) Travel controller for unmanned vehicle
JP2001249718A (en) Collision preventing device for carrier in rail carrying device
JPH11202939A (en) Travel controller for automated guided vehicle
JPH1020934A (en) Guide steering device for unmanned driving vehicle
JPH05274031A (en) Position detector and position and attitude angle detector for unmanned carriage

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees