JPS59131803A - Steam injection control system - Google Patents

Steam injection control system

Info

Publication number
JPS59131803A
JPS59131803A JP425883A JP425883A JPS59131803A JP S59131803 A JPS59131803 A JP S59131803A JP 425883 A JP425883 A JP 425883A JP 425883 A JP425883 A JP 425883A JP S59131803 A JPS59131803 A JP S59131803A
Authority
JP
Japan
Prior art keywords
steam
nox concentration
outlet port
gas turbine
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP425883A
Other languages
Japanese (ja)
Inventor
Takeshi Minagawa
皆川 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP425883A priority Critical patent/JPS59131803A/en
Publication of JPS59131803A publication Critical patent/JPS59131803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)

Abstract

PURPOSE:To suppress the lowering of the heat efficiency by appropriately controlling the steam injection (S/I) quantity based on the performance of an exhaust gas denitration device, in a combined plant in which a gas turbine, an exhaust heat recovery type boiler, and a steam turbine are combined. CONSTITUTION:The NOX concentration C2 22 at the outlet port of the boiler is subtracted in a subtractor 23 from the NOX concentration C1 21 at the outlet port of the gas turbine, and the output X of the subtractor 23 is divided in a divider 24 by the difference Y between the NOX concentration C10 at the outlet port of the gas turbine and the NOX concentration C20 at the outlet port of the boiler prior to the aged deterioration of the denitration device so as to obtain a denitration performance coefficient K. Furthermore, an S/I injection quantity correction bias L is obtained by a function 25. On the other hand, an S/I steam flow quantity M is calculated from a fuel quantity F1 20 in a function 26, and integrated with the S/I steam flow quantity correction bias L in a multiplier 27 to calculate the S/I quantity to be injected. A difference between the calculated value and the S/I quantity detected by a detector 28 is obtained by a subtractor 29, and P+I operation is added to the deviation in an operation device 30 thereby to control an S/I control valve 13.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、I)eNOx  制御方式に係り、特にコン
バインドプラントに好適な蒸気(又は水)注入法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to I) an eNOx control method, and particularly to a steam (or water) injection method suitable for a combined plant.

〔従来技術〕[Prior art]

従来の蒸気噴射方式(以下S/1と略−r)においては
、ガスタービンの燃料流量Gの関数P= Func (
G) として算出し制御している。
In the conventional steam injection method (hereinafter referred to as S/1 and abbreviated as -r), the function of the fuel flow rate G of the gas turbine is P = Func (
G) is calculated and controlled as follows.

最近のプラントにおいては、排煙脱硝装置と8/1  
とに組合わせたDeNOxシステムが一般的であり、こ
の脱硝装置性能を考慮し、S/1 景を極力低く抑える
ことが効率低下全抑制するという点で棒めて重要となる
。しかも、この脱硝装置は経年劣化を伴うため、この点
を含めた形でのDeNOx制御システムを確立する必要
がある。
In recent plants, flue gas denitrification equipment and 8/1
A DeNOx system in combination with the above is common, and considering the performance of the denitrification equipment, it is extremely important to keep the S/1 ratio as low as possible in order to completely suppress the decline in efficiency. Moreover, since this denitrification device is subject to deterioration over time, it is necessary to establish a DeNOx control system that takes into account this point.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ガスタービン、排熱回収型ボイラ、蒸
気タービンを組合わせたコンバインドプラントにおいて
、排煙脱硝装置性能に基づき、S/1 量な適正制御す
ることにより、熱効率低下に抑制することにある。
The purpose of the present invention is to suppress a decrease in thermal efficiency in a combined plant that combines a gas turbine, an exhaust heat recovery boiler, and a steam turbine by appropriately controlling the amount of S/1 based on the performance of the flue gas denitrification equipment. It is in.

〔発明の概要〕[Summary of the invention]

コンバインドプラントにおいては、排熱回収ボイラ内に
設置する排煙脱硝装置とガスタービン燃焼器へ蒸気(又
は水)を注入するS/1(又uw7t)の併用により、
脱硝効果を達成している。しかしながら、その両者は対
象とする主機が異々るため、(ガスタービンと排熱回収
型ボイラ)各々独立に制御されてきた。このため、排ガ
ス中のNOx規制値を達成する十で、過剰にS/1(又
はW/1)’に行ない熱効率の大巾な低下をもたらして
いた。
In a combined plant, a flue gas denitrification device installed in the exhaust heat recovery boiler and S/1 (also UW7T), which injects steam (or water) into the gas turbine combustor, are used in combination.
Achieves denitrification effect. However, since the two systems target different main engines (gas turbine and exhaust heat recovery boiler), they have been controlled independently. For this reason, in order to achieve the regulation value of NOx in exhaust gas, the temperature is excessively increased to S/1 (or W/1)', resulting in a significant decrease in thermal efficiency.

本発明では、排煙脱硝装置の脱硝性能を十分に生かし、
その能力を超える脱硝効果衾S/1 (又けW/1)に
て実現することにより、S/1(駕W/1)によるガス
タービン燃焼温昨低下に伴う、熱効率低下を抑制するも
のである。
In the present invention, the denitrification performance of the flue gas denitrification equipment is fully utilized,
By achieving a denitrification effect that exceeds the capacity of S/1 (straight W/1), it suppresses the decrease in thermal efficiency due to the recent drop in gas turbine combustion temperature due to S/1 (W/1). be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を適用せる例(蒸気注入の場合)全軍1図
、第2図を用いて説明する。第1図において、ガスター
ビンな出た燃焼ガスはダクト2を通り、ボイラ3に入り
、ボイラ3内に設置される脱硝装置4を通過後、ダクト
5衾介して煙突へ向う。一方給水ボンプ6より吐出され
た給水は、給水管7を通り、ボイラ3へ送られ、ここで
熱交換後蒸気となり、蒸気管8により蒸気タービン9へ
送られ、復水器10にて復水にもどされ再び給水ポンプ
へ向う。
Hereinafter, an example to which the present invention is applied (in the case of steam injection) will be explained using Figures 1 and 2. In FIG. 1, combustion gas from a gas turbine passes through a duct 2, enters a boiler 3, passes through a denitrification device 4 installed in the boiler 3, and then heads to a chimney via a duct 5. On the other hand, the feed water discharged from the water supply pump 6 passes through the water supply pipe 7 and is sent to the boiler 3, where it becomes steam after heat exchange, is sent to the steam turbine 9 through the steam pipe 8, and is condensed in the condenser 10. Returned to the water pump again.

蒸気タービンよりの抽気は、蒸気管11を通り、減温器
12にて減温後、8/1  制御弁13にて流量制御さ
れ、蒸気管148介して、燃焼器15へ注入される。
Extracted air from the steam turbine passes through the steam pipe 11, is cooled down by the attemperator 12, is flow-controlled by the 8/1 control valve 13, and is injected into the combustor 15 through the steam pipe 148.

寸た燃料は、燃料流量制研弁16にて流量調節後配管1
7を介して、燃焼器15へ送られる。
After adjusting the flow rate of the fuel with the fuel flow control valve 16, the fuel is transferred to the pipe 1.
7 to the combustor 15.

一方、アンモニアはアンモニア流量調節弁18にて流量
調節後、配管19を介してボイラ3へ送られる。
On the other hand, ammonia is sent to the boiler 3 via a pipe 19 after its flow rate is adjusted by an ammonia flow control valve 18 .

燃料流量に検出器20、ガスタービン出口N()x濃度
を検出器21、ボイラ出口N Ox濃度を検出器22に
て検出し、各信号を割部1装置23に取り込み、第2図
に示すような制御を行なう。その詳細につき以下説明す
る。
The fuel flow rate is detected by a detector 20, the gas turbine outlet N()x concentration is detected by a detector 21, and the boiler outlet NOx concentration is detected by a detector 22, and each signal is taken into the split section 1 device 23, as shown in FIG. Perform such control. The details will be explained below.

ガスタービン出口N Ox濃度C,21,1:リボイラ
出口N Ox濃度C7227減算器23にて減算し、そ
の出力Xと脱硝装置4の経年劣化前におけるガスタービ
ン出口NOx濃明C7゜とボイラ出口NOx濃度C2o
の差Y(基準値として与えらる、一定値)にIす、除算
器24にて除算し、脱硝性能係数に?得る。さらにこれ
全入力とし、関数25にてS/1 注入量補正バイアス
Lt得る。
Gas turbine outlet NOx concentration C, 21, 1: Reboiler outlet NOx concentration C7227 Subtracted by subtractor 23, its output Concentration C2o
The difference Y (constant value given as a reference value) is divided by the divider 24 to obtain the denitrification performance coefficient ? obtain. Furthermore, all these inputs are used to obtain S/1 injection amount correction bias Lt using function 25.

一方、燃料流量1?’、20rす、関数26にてS/1
  蒸気流1″IVI算出l〜、前記S/1蒸気流量補
正バイアスLと乗算器27にて積翳し、注入すべきS/
1  f%′を算出する。この値と検出器28にて検出
されるS/1 tとの偏差を減算器29にて求め、これ
に演算器30にてP+I動作を付加し、S/1  制(
財)弁13衾制御する。
On the other hand, fuel flow rate 1? ', 20rs, S/1 in function 26
Steam flow 1″
1 Calculate f%'. The subtractor 29 calculates the deviation between this value and S/1 t detected by the detector 28, and the arithmetic unit 30 adds the P+I operation to the difference, and the S/1 control (
Financial) Control valve 13.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、排煙脱硝装置の性能変化舎検出し、(
脱硝装f−の経年劣化を含む)これ’ThS/1制御に
反映し、トータルとしてDeNOx制at行なうための
必要最小限の8/1量を算出し、制御する機能を達成す
ることにより、過度のS/1による熱効率の低下を抑制
することが可能となり、あわせて、蒸気タービン抽 の
減少により、従来に比べ大巾な効率向上を達成しうる。
According to the present invention, a change in performance of a flue gas denitrification device is detected, and (
This is reflected in ThS/1 control, and by achieving a control function that calculates the minimum required amount of 8/1 to control DeNOx as a total, It becomes possible to suppress the decrease in thermal efficiency due to S/1 of the steam turbine, and at the same time, by reducing steam turbine extraction, it is possible to achieve a large efficiency improvement compared to the conventional method.

また、環境性能の面からも、大気へ放出される水蒸気量
が抑制されることにIり能性向上管はかることができ、
これに伴いプラントとして消費する給水を節減すること
ができる。
In addition, from the perspective of environmental performance, performance-enhancing pipes can be used to suppress the amount of water vapor released into the atmosphere.
Accordingly, the amount of water consumed by the plant can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のプラントの系統図、第2図
は同じく制御系統図である。
FIG. 1 is a system diagram of a plant according to an embodiment of the present invention, and FIG. 2 is a control system diagram.

Claims (1)

【特許請求の範囲】[Claims] 1、乾式アンモニア接触還元法に基づく排煙脱硝装置と
燃焼器内に蒸気(又は水)全注入する蒸気注入法(又は
水注入法)を組合せて行なう排煙ガスの低NOx化技法
において、排煙脱硝装置の脱硝能力に基つき、熱効率低
下を抑制し、かつ所定の環境性能ケ達成することを特徴
とする蒸気噴射軸(財)方式。
1. In the NOx reduction technique of flue gas, which is performed by combining a flue gas denitrification device based on the dry ammonia catalytic reduction method and a steam injection method (or water injection method) that completely injects steam (or water) into the combustor, Based on the denitrification ability of the smoke denitrification equipment, this steam injection shaft system is characterized by suppressing the decline in thermal efficiency and achieving specified environmental performance.
JP425883A 1983-01-17 1983-01-17 Steam injection control system Pending JPS59131803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP425883A JPS59131803A (en) 1983-01-17 1983-01-17 Steam injection control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP425883A JPS59131803A (en) 1983-01-17 1983-01-17 Steam injection control system

Publications (1)

Publication Number Publication Date
JPS59131803A true JPS59131803A (en) 1984-07-28

Family

ID=11579509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP425883A Pending JPS59131803A (en) 1983-01-17 1983-01-17 Steam injection control system

Country Status (1)

Country Link
JP (1) JPS59131803A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590829A2 (en) * 1992-09-15 1994-04-06 Westinghouse Electric Corporation Apparatus and method of automatic NOx control for a gas turbine
WO2008056650A1 (en) * 2006-11-08 2008-05-15 Babcock-Hitachi K.K. Pulverized coal boiler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590829A2 (en) * 1992-09-15 1994-04-06 Westinghouse Electric Corporation Apparatus and method of automatic NOx control for a gas turbine
EP0590829A3 (en) * 1992-09-15 1994-10-12 Westinghouse Electric Corp Apparatus and method of automatic NOx control for a gas turbine.
WO2008056650A1 (en) * 2006-11-08 2008-05-15 Babcock-Hitachi K.K. Pulverized coal boiler
JP5095628B2 (en) * 2006-11-08 2012-12-12 バブコック日立株式会社 Pulverized coal fired boiler

Similar Documents

Publication Publication Date Title
US4751054A (en) Apparatus for removing NOx from a gas
JP5946279B2 (en) Control of gaseous components in gas turbine power plants with flue gas recirculation.
JPH0429923B2 (en)
JPH0588379B2 (en)
CN102900530A (en) Method for operating gas turbine power plant with flue gas recirculation
US6266953B1 (en) Method of operating a gas and steam turbine plant
JPS59131803A (en) Steam injection control system
JP2588279B2 (en) Waste heat recovery heat exchanger
JP3831804B2 (en) Exhaust gas denitration equipment
CN205570100U (en) Hot female pipe SCR flue gas denitration system of converging
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
RU2144994C1 (en) Combined-cycle plant
JP2544453B2 (en) Turbin plant
JP3491967B2 (en) Gas turbine exhaust gas temperature control device
JPH1181918A (en) White smoke of exhaust gas preventing method in gas turbine device and exhaust gas system in gas turbine device
JP7308719B2 (en) Exhaust heat recovery system
JP2803592B2 (en) Combined plant
JPH0261329A (en) Nitrogen oxide controller for gas turbine
JPS6335814B2 (en)
JPH0627484B2 (en) Operating method of combined plant
JPS6128704A (en) Operating method of combined plant
JPH08326508A (en) Denitration control device
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant
JPS5845566B2 (en) combined cycle power plant
JPH0611379B2 (en) Exhaust heat recovery heat exchanger