JPS59129752A - Induction hardenable material - Google Patents

Induction hardenable material

Info

Publication number
JPS59129752A
JPS59129752A JP58004968A JP496883A JPS59129752A JP S59129752 A JPS59129752 A JP S59129752A JP 58004968 A JP58004968 A JP 58004968A JP 496883 A JP496883 A JP 496883A JP S59129752 A JPS59129752 A JP S59129752A
Authority
JP
Japan
Prior art keywords
carbon
induction
hardenable material
life
hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58004968A
Other languages
Japanese (ja)
Inventor
Masayuki Tsushima
対馬 全之
Ikuo Sugiura
杉浦 郁生
Hirokazu Nakajima
中島 碩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP58004968A priority Critical patent/JPS59129752A/en
Publication of JPS59129752A publication Critical patent/JPS59129752A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To obtain an inexpensive induction hardenable material having a long life for roller bearing parts by properly regulating the amounts of C, Mn and Cr in a steel composition, and making use of an element having a small affinity for C. CONSTITUTION:This induction hardenable material for parts of a roller bearing, a ball screw, etc. consists of, by weight, 0.5-0.7% C, 1.0-1.5% Mn, 0.6- 1.0% Cr and the balance Fe. Mn in the composition contributes largely to the improvement of the hardenability and has a small affinity for C. Cr contributes to the improvement of the hardenability and prolongs the rolling life. By the composition the hardenable material has a long rolling life after induction hardening without using any expensive alloying element.

Description

【発明の詳細な説明】 ば〕 産業上の利用分野 この発明は高周波焼入して転動都伺の素材として使用す
る転がシ軸受、ボールネジ智の部品用高周波焼入祠に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an induction hardening process for parts of rolling bearings and ball screws which are induction hardened and used as materials for rolling pins.

←)従来技術 最近、原価低減の観点から、高周波焼入された軸受部品
の使用が多くなってきている。’t’lll 受部品と
して使用される素材は、熱処理後、表面硬度HRojJ
?〜tyの高硬度を持つことが必須で、高周波焼入によ
ってHROj(f′以上の硬さを有るには、炭素含有量
としてO,グ%以上が必要であシ、この様な材料には、
例えはJ工S 規格によればSりj?0XS300.8
330、Sj♂0、SOMグダj、SN0Mグ5/2.
5trp/3.5UP7、SUJ /、5UJ−等が有
する。しかしながら、この様な材料を使用して起周波焼
入された軸受部品の転動寿命は1、従来の軸受銅酸いI
′i浸炭劇を使用する軸受部品に較べて充分り云えない
のが現状である。これは、銅の熱処理工程に於いて、合
金元素の多い程、焼入性が良く硬化深さは得られ易いが
、炭素の固溶化に対して時間が必要であり、筒周被焼入
の如き短時間加熱では、篩値度が得られにくいからであ
る。その為、S(IMダタjなどの合金鋼ではS負、焼
準々どの前処理が必要となっている。また、よシ筒淘に
加熱することも必要で、その為組錫の粗大化が生じる。
←) Prior art Recently, from the viewpoint of cost reduction, the use of induction hardened bearing parts has been increasing. 't'llll The material used as the receiving part has a surface hardness HRojJ after heat treatment.
? It is essential to have a high hardness of ~ty, and in order to have a hardness of HROj (f' or higher) by induction hardening, the carbon content must be at least O,g%. ,
For example, J Engineering S. According to the standard, S R j? 0XS300.8
330, Sj♂0, SOMgudaj, SN0Mgu5/2.
5trp/3.5UP7, SUJ/, 5UJ-, etc. However, the rolling life of bearing parts made of such materials and subjected to frequency hardening is 1, compared to that of conventional bearings made of copper oxide.
At present, it cannot be said that this is sufficient compared to bearing parts that use carburizing. This is because in the heat treatment process of copper, the more alloying elements there are, the better the hardenability is and the harder the hardening depth can be obtained, but it takes time for the carbon to become a solid solution, and the cylindrical periphery is hardened. This is because it is difficult to obtain a sieve value with such short-time heating. For this reason, alloy steels such as S (IM Data J) require pretreatment such as S negative and semi-hardening.It is also necessary to thoroughly heat the steel, which prevents the coarsening of the assembled tin. arise.

従って、高周波炉人材では合金元素量を増すことは、高
硬度を得る点ではマイナスの作用をもたらす。また、軸
受部品の転動寿命は品硬度であること以外に1焼入の際
の冷却速度が重髪な因子であることが最近用らかにされ
ている。即ち、冷却速度を小さくすること沈よシ、マル
テン 、サイトの亀裂敏感性が小さくなシ、転勤寿命が
向上する。言い換えればか゛6人性の良い鋼を時間をか
けて焼入することが長寿命へつながるのである。
Therefore, increasing the amount of alloying elements in high frequency furnace materials has a negative effect on obtaining high hardness. In addition to the hardness of the product, it has recently been found that the cooling rate during one quenching is an important factor in determining the rolling life of bearing parts. That is, by reducing the cooling rate, the crack sensitivity of the marten site is reduced, and the rolling life is improved. In other words, taking the time to harden a steel that is easy to work with will lead to a long life.

以上の点から考察するに、高周波焼入軸受部品の短寿命
の原因は、高周波加熱と云う短時間加熱の為、合金元素
の拡散が充分に行なわれないとと及びその為に冷却速度
を大きくしなければ高硬度が得られないことに起因する
と推考される。
Considering the above points, the reason for the short life of induction hardened bearing parts is that due to short-time heating called high frequency heating, the alloying elements do not diffuse sufficiently, and therefore the cooling rate is increased. This is thought to be due to the fact that high hardness cannot be obtained otherwise.

ハ0発明の目的 との発明は、前述した高周波焼入材の低寿命を考慮して
、焼入性に寄与し、かつ、炭素との親和力(炭素と結び
ついて炭化物を形成し易い力)の小さい元素の活用によ
って、長寿命かつ安価な転がシ軸受部品用高周波焼人材
を提供せんとするものである。
Considering the short lifespan of induction hardening materials mentioned above, the invention contributes to hardenability and has an affinity for carbon (ability to easily combine with carbon to form carbide). By utilizing small elements, we aim to provide long-life and inexpensive induction firing materials for rolling bearing parts.

に) 発明の構成 この発明は、重量比にして炭素0. j −0,2%−
マンガン/、0〜/、j%、クロムθ、Δ〜/、0%及
び残部鉄を含む転がシ軸受、ボールネジ等の部品用高周
波焼入材を要旨とするものである。
2) Structure of the Invention This invention has a carbon content of 0.0% by weight. j −0.2%−
The gist is an induction hardened material for parts such as roller bearings and ball screws containing manganese/, 0~/, j%, chromium θ, Δ~/, 0%, and the balance iron.

(ホ)実施例 この発明の転がシ軸受、ポールネジ等の部品用高周波焼
入材の化学成分を前記の範囲に限定した理由は次の通シ
である。
(e) Example The reason why the chemical composition of the induction hardened material for parts such as rolling bearings and pole screws of the present invention is limited to the above range is as follows.

高周波焼入は短時間加熱なので、加熱前、炭化物として
存在する合金元素が加熱によシ炭素から離れてマトリッ
クス(オーステナイト相)に拡散固溶し、焼入性に寄与
しなけれにならない。そこで、同一含有量で比較すれば
、一般的な合金元素例えばマンガン(MQ)、モリブデ
ン(MP)、クロム(Or)、珪素(Sl)、ニッケル
(N1)の中では、Mnは最も焼入性への寄与率が高く
、以下はMo、 Or、 Si、Niの順に低下する。
Since induction hardening requires heating for a short time, the alloying elements existing as carbides must be separated from the carbon by heating and diffused into the matrix (austenite phase) to contribute to hardenability. Therefore, if we compare the same content, Mn has the highest hardenability among common alloying elements such as manganese (MQ), molybdenum (MP), chromium (Or), silicon (Sl), and nickel (N1). The contribution rate is high, and the contribution rate decreases in the following order: Mo, Or, Si, and Ni.

また、炭素との親和力は、Mo、 Or、 Mn、N1
、Slの順になっている。Mnは残留オーステナイト量
を多くする成分であって転勤特命に対して有効であシ、
従って、Mnは多い方が良い。但し、多過ぎると炭素と
炭化物を作る量が増加するので、同−加熱温度に対して
オーステナイトへの炭素固溶量が減少し、好ましくない
。MOは炭素との親和力が大きく、また、これらの合金
元素の中で最も高価である為、不適当である。また、O
rはMnと同様の働きをするが、焼入性の寄与率及び残
留オーステナ・イト飯を多くすることに関してはlJn
よシ劣り、炭素との親和力もMnjシ大きい為よシ好ま
しいとはいえない。
In addition, the affinity with carbon is Mo, Or, Mn, N1
, Sl. Mn is a component that increases the amount of retained austenite and is effective against special transfer orders.
Therefore, it is better to have more Mn. However, if it is too large, the amount of carbon and carbide formed increases, and the amount of carbon dissolved in austenite decreases at the same heating temperature, which is not preferable. MO is unsuitable because it has a large affinity for carbon and is the most expensive of these alloying elements. Also, O
r has the same function as Mn, but lJn contributes to hardenability and increases residual austenite.
It is inferior to Mnj, and its affinity with carbon is also large, so it cannot be said to be preferable.

次に、転動寿命に□゛対するMnの有効性は、高周波焼
入材に対してよりw効であると考える。即ち、高周波焼
入は短時間加熱、水冷で行なわれる為、高合金fi%は
加熱の際の炭素の溶は込み不足、冷却に際[7ては統制
れの為適さない。鋼中の合金元素は、室温では炭素と結
びついて炭化物を形成しているが、A1点(223°0
)以上に加熱されることによシフニライト相はオーステ
ナイト相に変態し、その時、炭化物は分解し、炭素及び
合金元素はオーステナイトに固溶する。
Next, it is considered that the effectiveness of Mn on rolling life is greater than on induction hardened materials. That is, since induction hardening is performed by heating for a short time and cooling with water, high alloy fi% is not suitable due to insufficient penetration of carbon during heating and uncontrolled cooling. Alloying elements in steel combine with carbon to form carbides at room temperature, but at point A1 (223°0
) By heating above, the sifunirite phase transforms into the austenite phase, at which time the carbides are decomposed and carbon and alloying elements are dissolved in the austenite.

焼入(冷却)によシ、オーステナイトはマルテンサイト
変態(冷却が充分速い場合)或いはトルースタイト変態
(冷却がゆるい場合)するが、オーステナイトに固溶し
た合金元素はトルースタイト変態を抑制、即ち焼入性を
上げる役割をし、また、オーステナイトに固溶していた
炭素はマルテンサイトの硬さを高める。従って、炭素と
の親和力が高い元素が存在すれば、加熱しても炭化物は
分解しにくいので焼入性も小さく、マルテンサイトの硬
さもでないことになる炭素は硬さを高くするに何、心積
の成分で、例えばHRcIzO以上を得るには0.5%
以上が必要となる。一方、辰索が0.2%以上であれば
、高周波焼入の様に短時向加mb、7jC冷の工程をと
る場合、オーステナイトに溶は込む炭素量の調整が−[
<(加熱温度が高くなると、オーステナイト中の炭素量
が増える)、0.2%以上の炭素が溶は込んだ場合には
、焼餉れの危険性が犬となる。
Upon quenching (cooling), austenite undergoes martensitic transformation (if cooling is fast enough) or troostite transformation (if cooling is slow), but alloying elements dissolved in austenite suppress troostite transformation, that is, troostite transformation. In addition, carbon dissolved in austenite increases the hardness of martensite. Therefore, if there is an element that has a high affinity for carbon, the carbide will be difficult to decompose even when heated, so the hardenability will be low, and it will not have the hardness of martensite. Product component, for example, 0.5% to obtain HRcIzO or higher
The above is required. On the other hand, if the cinnabar content is 0.2% or more, the amount of carbon that melts into the austenite cannot be adjusted when using a short-time heating process such as induction hardening and 7JC cooling.
(As the heating temperature increases, the amount of carbon in the austenite increases.) If 0.2% or more of carbon is injected into the austenite, there is a high risk of burnout.

(へ)゛発明の効果 表−/は炭素量約O1j%で代表的な軸受部品用高周波
焼人材である5joa及びA1817750表−/には
軸支!1.2種(B U’T −,2)のずぶ部品のデ
ータも加えであるが、これに較べてこれらの鋼の高周波
焼入品の転動寿命はθ1g倍強であり、充分であるとは
云えない。そこで、Mnを/1.2%に増量し、or量
をo、o7%からo、 z 7%迄変えた0、5%0の
炭素鋼を作製し、高周波焼入後の転動疲労強度を調べた
結果を表−2に示す。
(f) ゛Table of effects of the invention-/A table of 5joa and A1817750, which are typical induction firing materials for bearing parts with a carbon content of about O1J%-/A pivot support! The data for the 1.2 type (B U'T -, 2) parts are also added, but compared to this, the rolling life of induction hardened steel products is more than 1g times θ, which is sufficient. I can't say that. Therefore, we created 0,5%0 carbon steel with Mn increased to /1.2% and the or amount changed from o, o7% to o,z 7%, and the rolling contact fatigue strength after induction hardening was The results of the investigation are shown in Table 2.

−以  下  余  白  − 表一コ 高周波焼入品の転勤寿命 (O,、S%0炭素
#り上記実験結果によれは、or′&tが増すにつれて
転動寿命が増大することが判り、安定して長寿命t−得
るには09g%以上のOr量が必要である。
- Below margin - Table 1 Co. Rolling life of induction hardened products (O,,S%0 carbon #) According to the above experimental results, it was found that as or'& t increases, the rolling life increases and becomes stable. In order to obtain a long life t-, an amount of Or of 09 g% or more is required.

一方、これ迄の実験より\表−3に示した如<、017
%以上では先に述べた理由により、転動寿命は低下する
。従って、Or量の範囲はθ、Δ〜/、0%が適当であ
る。また、Mn量についても同様に多ければ、加熱に際
して炭素が溶は込みにくくなるので7.0〜/、5%が
適当である。
On the other hand, from the experiments so far, as shown in Table 3, 017
% or more, the rolling life decreases for the reasons mentioned above. Therefore, the appropriate range of the amount of Or is θ, Δ~/, 0%. Similarly, if the amount of Mn is large, it becomes difficult for carbon to melt in during heating, so a range of 7.0 to 5% is appropriate.

−以  下  余  白  − この発明は以上説明した様に炭素、マンガン、クロムの
量を適正に選択することによって、長寿命かつ安価な転
がシ軸受、ボールネジ等の部品用高周波焼入材を得るも
のである。
- Below margin - As explained above, this invention obtains an induction hardened material for parts such as roller bearings and ball screws that has a long life and is inexpensive by appropriately selecting the amounts of carbon, manganese, and chromium. It is something.

259259

Claims (1)

【特許請求の範囲】[Claims] (1)  重量比にして炭素Q、j〜02%、マンガン
/。0〜7.5%、クロムQ1g〜/、0%及び残部鉄
を含む高周波炉人材。
(1) Carbon Q, j~02%, manganese/by weight. High frequency furnace personnel containing 0~7.5%, chromium Q1g~/, 0% and the balance iron.
JP58004968A 1983-01-13 1983-01-13 Induction hardenable material Pending JPS59129752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004968A JPS59129752A (en) 1983-01-13 1983-01-13 Induction hardenable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004968A JPS59129752A (en) 1983-01-13 1983-01-13 Induction hardenable material

Publications (1)

Publication Number Publication Date
JPS59129752A true JPS59129752A (en) 1984-07-26

Family

ID=11598385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004968A Pending JPS59129752A (en) 1983-01-13 1983-01-13 Induction hardenable material

Country Status (1)

Country Link
JP (1) JPS59129752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125841A (en) * 1988-07-11 1990-05-14 Nippon Seiko Kk Rolling bearing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104426A (en) * 1982-12-03 1984-06-16 Daido Steel Co Ltd Preparation of steel for high frequency hardening

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104426A (en) * 1982-12-03 1984-06-16 Daido Steel Co Ltd Preparation of steel for high frequency hardening

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125841A (en) * 1988-07-11 1990-05-14 Nippon Seiko Kk Rolling bearing

Similar Documents

Publication Publication Date Title
US3860457A (en) A ductile iron and method of making it
JP2004285474A (en) Rolling member and its manufacturing method
JP3385722B2 (en) Carburizing and quenching method
JP2015203138A (en) Iron casting and manufacturing method therefor
CN103774085A (en) High-nitrogen austenite layer in low-carbon alloy steel surface preparation and preparation method thereof
Pisarevskii et al. Effect of N, Mo, and Si on local corrosion resistance of unstabilized Cr–Ni and Cr–Mn–Ni austenitic steels
JPS59129752A (en) Induction hardenable material
US3167423A (en) High temperature wear resisting steels
JPH05331615A (en) Rolling bearing parts made of nonmagnetic steel
CN112795722A (en) Austempering technology for austempered ductile iron
JPS61147815A (en) Production of roll having high hardened depth
JP2004244705A (en) Nb-CONTAINING CASE-HARDENING STEEL SUPERIOR IN CARBURIZATION PROPERTY
JP3492550B2 (en) Corrosion resistant steel for induction hardening
JPH0416538B2 (en)
Steed The Effects of Iron-Powder Contamination on the Properties of Powder-Forged Low-Alloy Steel
JPH07238348A (en) Steel with rust resistance and wear resistance for induction hardening
JP2009079253A (en) Shaft and manufacturing method therefor
Cryderman Metallurgical Strategies for Higher Strength Induction Hardened Parts
SU1668425A1 (en) Method for treatment of stainless steel of martensite class
JPS61253347A (en) Low carbon steel having superior cold workability
RU2020183C1 (en) Steel
JPH0881738A (en) Steel for induction hardening excellent in high bearing fatigue strength
Oruč et al. Effects of heat treatment on the properties of low carbon steel 19MnB4 for screws
JPH01127651A (en) Steel for bearing
JP3579879B2 (en) Warm forging steel excellent in induction hardenability and machinability, induction hardened part using this steel, and method of manufacturing this induction hardened part