JPH02125841A - Rolling bearing - Google Patents

Rolling bearing

Info

Publication number
JPH02125841A
JPH02125841A JP1157288A JP15728889A JPH02125841A JP H02125841 A JPH02125841 A JP H02125841A JP 1157288 A JP1157288 A JP 1157288A JP 15728889 A JP15728889 A JP 15728889A JP H02125841 A JPH02125841 A JP H02125841A
Authority
JP
Japan
Prior art keywords
heat treatment
weight
rolling
bearing
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1157288A
Other languages
Japanese (ja)
Other versions
JP2885829B2 (en
Inventor
Yasuo Murakami
保夫 村上
Yoichi Matsumoto
洋一 松本
Kazuhiro Kamimura
和宏 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP1157288A priority Critical patent/JP2885829B2/en
Publication of JPH02125841A publication Critical patent/JPH02125841A/en
Application granted granted Critical
Publication of JP2885829B2 publication Critical patent/JP2885829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PURPOSE:To prevent the cracks of the title bearing at the time of working and to prolong its service life by forming at least one of the inner ring, outer ring and rolling element in a rolling bearing with a medium carbon Mn steel having specific compsn., subjecting the steel to carburizing treatment and specifying the amt. of retained austenite on the surface layer. CONSTITUTION:At least one of the inner ring, outer ring and rolling element in a bearing is formed with the compsn. of a medium carbon Mn steel constituted of, by weight, 0.4 to 0.7% C, 0.15 to 1.2% Si, 1.2 to 1.7% Mn, 200 to 300ppm Al, <=40ppm Ti, 100 to 200ppm N, <=80ppm S, <=9ppm O and the balance Fe. The steel is worked into a rolling bearing, which is subjected to carburizing heat treatment or carbonitriding heat treatment to regulate the amt. of retained austenite in the surface layer part to 25 to 45vol.%. In this way, the coarsening of the crystal grains is prevented to prolong the service life of the bearing. At the time of furthermore incorporating at least one kind of 0.03 to 0.08% Nb and 0.1 to 0.15% V into the above steel, the crystal grains are converted into fine ones having >=8 of grain size number even after the carburizing heat treatment, by which the service life can moreover be prolonged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車、農業機械、建設機械及び鉄鋼機械等
に使用される転がり軸受に係り、特に、トランスミッシ
ョンやエンジン用として求められる長寿命な転がり軸受
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to rolling bearings used in automobiles, agricultural machinery, construction machinery, steel machinery, etc., and in particular, rolling bearings that have a long life required for transmissions and engines. Regarding rolling bearings.

〔従来の技術〕[Conventional technology]

従来から、例えば自動用に求められる高面圧の状態で使
用される転がり疲れ寿命(以下、寿命、とも鳳う)が長
い転がり軸受についでは、接触面圧に起因する内部せん
断応力分布に合わせて、硬さカーブを設定する必要から
、焼入性の良好な低炭素肌焼鋼5CR42011,SC
M420H,5AE8620H,5AE4320H等を
用い、これに浸炭熱処理又は浸炭窒化処理を施すごとに
より、内外輪及び転動体の表面部硬さがHRC58〜6
4であり、かつその芯部硬さがHRC30〜48になる
ようにして軸受全体の硬度を上げていた。
Conventionally, rolling bearings with a long rolling fatigue life (hereinafter also referred to as "life") that are used under conditions of high surface pressure required for automatic applications, for example, have been designed to Since it is necessary to set a hardness curve, low carbon case hardening steel 5CR42011, SC with good hardenability is used.
By using M420H, 5AE8620H, 5AE4320H, etc., and performing carburizing heat treatment or carbonitriding treatment, the surface hardness of the inner and outer rings and rolling elements becomes HRC58 to 6.
4, and the hardness of the entire bearing was increased so that the core hardness was HRC 30 to 48.

また、米国特許第4191599号では、高炭素合金鋼
を浸炭雰囲気下で加熱処理し、表面のMS点を芯部より
低くして、焼入れにより熱応力型の変態をさせ、表面に
圧縮の残留応力を残した長寿命の転がり軸受が開示され
ている。
In addition, in U.S. Patent No. 4,191,599, high carbon alloy steel is heat treated in a carburizing atmosphere, the MS point of the surface is lowered than the core, and thermal stress type transformation is caused by quenching, resulting in compressive residual stress on the surface. Disclosed is a rolling bearing with a long life.

さらに、米国特許第4023988号では、C:0.6
−1.5重量%、Cr、 Mn、 Ni、 Cu、 M
oから選ばれる熱間成形型の低合金鋼を用い、炭化物を
微細化した長寿命の転がり軸受が開示されている。
Further, in U.S. Pat. No. 4,023,988, C: 0.6
-1.5% by weight, Cr, Mn, Ni, Cu, M
A long-life rolling bearing is disclosed that uses a hot-forming low alloy steel selected from the following and has fine carbides.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来の肌焼鋼5CR42011等に
おいて、浸炭硬化層を深くしようとすると、基地の炭素
量(ベースカーボン量)が低いために、浸炭処理を高温
かつ長時間行なわなければならず、これでは熱処理生産
性が低下する。一方、表面炭素濃度を高くすると、上記
肌焼鋼のCr含有量が高いために初析が生じやすく、転
がり疲れIf命が低下する。ソコテ、S A E 86
201−1及びS A E 4320 IIでは、Cr
含有量を減じて他の元素(Ni、 Mo)を添加して焼
入性を確保しているが、これでは材料コストが増加する
。また、この肌焼鋼の浸炭熱処理または浸炭窒化熱処理
時、時として、結晶粒が粗大となり、これが応力集中源
となるため、転がり疲れ寿命が低下する。
However, when trying to deepen the carburized layer in the conventional case hardening steel 5CR42011, etc., the carburizing process must be carried out at high temperature and for a long time because the carbon content of the matrix (base carbon content) is low. Heat treatment productivity decreases. On the other hand, when the surface carbon concentration is increased, pro-eutectoid formation tends to occur due to the high Cr content of the case-hardened steel, resulting in a decrease in rolling fatigue life. Sokote, S A E 86
201-1 and S A E 4320 II, Cr
Hardenability is ensured by reducing the content and adding other elements (Ni, Mo), but this increases material cost. Further, during carburizing heat treatment or carbonitriding heat treatment of this case hardening steel, crystal grains sometimes become coarse, which becomes a stress concentration source, resulting in a reduction in rolling fatigue life.

一方、これ以外の従来例でも、高価なMo、Ni、Cr
等を含有しているために、長寿命な転がり軸受を得るに
は高コストとならざるを得なかった。そして、上記米国
特許第4023988号の従来例では、微細な炭化物を
形成するためには、例えば、spt+eroidzin
g anneal、rough forming、na
rdning austenitizingなどの複雑
な熱処理を必要とし、熱処理生産性の低下を避けること
ができなかった。
On the other hand, in other conventional examples, expensive Mo, Ni, and Cr
etc., it is necessary to increase the cost in order to obtain a long-life rolling bearing. In the conventional example of US Pat. No. 4,023,988, in order to form fine carbides, for example, spt+eroidzin
g anneal, rough forming, na
Complex heat treatments such as rdning, austenitizing, etc. are required, and a decrease in heat treatment productivity cannot be avoided.

米国特許第4191599号では高価な元素であるMo
、W、Crを比較的多く含有し、コスト高になると共に
、表面に残留の圧縮応力を付与する機構のみでは異物混
入潤滑下では長寿命とすることができなかった。
In US Pat. No. 4,191,599, Mo, an expensive element,
, W, and Cr, which leads to high costs, and it has not been possible to achieve a long life under lubrication contaminated with foreign matter only by a mechanism that applies residual compressive stress to the surface.

すなわち、転がり疲れ寿命が低下する原因として、軸受
潤滑油中に混入した金属の切粉、削り屑、ハリ、摩耗粉
等の異物により軸受表層部に生じた損傷(圧痕)を起点
として伝播するマイクロクランクによって発生するフレ
ーキング(ハクリ)、がある。そして、軸受の基地中に
存在し、硬度が高く塑性変形能が小さいために応力集中
源となる非金属介在物があり、この非金属介在物によっ
て応力集中緩和効果を十分達成し得ないことにっても上
記転がり疲れ寿命が低下する。
In other words, the cause of reduced rolling fatigue life is microscopic damage that originates from damage (indentation) caused on the bearing surface layer by foreign substances such as metal chips, shavings, firmness, and wear powder mixed in the bearing lubricating oil. There is flaking caused by cranks. Furthermore, there are non-metallic inclusions that exist in the base of the bearing and become sources of stress concentration due to their high hardness and low plastic deformability. However, the rolling fatigue life described above will be reduced.

さらに、上記従来のいずれの転がり軸受でも、加工率に
よっては鍛造等の軸受の前加工時割れを十分抑制できな
い課題があった。
Furthermore, in any of the above-mentioned conventional rolling bearings, cracking during pre-processing of the bearing, such as forging, cannot be sufficiently suppressed depending on the processing rate.

本発明はこのような各種の課題を解決するために、材料
コストが増加することなく熱処理生産性が良好で、かつ
、クリーンな潤滑下で軸受を使用する場合に加えて、異
物混入潤滑下で軸受を使用する場合においても、従来の
軸受に比べて長寿命であり、さらに、加工率の高い鍛造
等の前加工時割れが発生しない転がり軸受を提供するこ
と、をその目的としている。
In order to solve these various problems, the present invention aims to achieve good heat treatment productivity without increasing material costs, and to use bearings under clean lubrication as well as under lubrication contaminated with foreign matter. The purpose of the present invention is to provide a rolling bearing that has a longer lifespan than conventional bearings and does not crack during pre-processing such as forging, which requires a high processing rate.

〔課題を解決するための手段〕[Means to solve the problem]

請求項(1)記載の発明は、内輪、外輪及び転動体から
なる転がり軸受において、内輪、外輪及び転動体の少な
くとも一つが、C: 0.4〜0.7重量%、Si:0
.15〜1.2重量%、4121.2〜1.7重量%、
八j2:200〜300 ppm、Ti:40 ppm
以下、N: 10(1−200ppmX5:80 pp
m以下、0:9ppm以下、残部鉄の中炭素マンガン銅
1からなり、浸炭熱処理または浸炭窒化熱処理が施され
、表層部における残留オーステナイト量が25〜45 
vol%である、ことを特徴としている。
The invention according to claim (1) provides a rolling bearing comprising an inner ring, an outer ring, and a rolling element, in which at least one of the inner ring, outer ring, and rolling element contains C: 0.4 to 0.7% by weight, and Si: 0.
.. 15-1.2% by weight, 4121.2-1.7% by weight,
8j2: 200-300 ppm, Ti: 40 ppm
Below, N: 10 (1-200ppmX5:80pp
m or less, 0:9 ppm or less, the balance is iron, medium carbon manganese copper, and has been subjected to carburizing heat treatment or carbonitriding heat treatment, and the amount of retained austenite in the surface layer is 25 to 45.
It is characterized by being vol%.

また、請求項(2)記載の発明は、上記請求項(1)記
載の中炭素マンガン鋼に、さらにNb0.03〜0.0
8重量%およびV : 0.1〜0.15重量%の少な
くとも一種が含有されてなる、ことを特徴とするもので
ある。
Moreover, the invention described in claim (2) further provides the medium carbon manganese steel described in claim (1) with an additional content of Nb0.03 to 0.0.
It is characterized by containing at least one of 8% by weight and V: 0.1 to 0.15% by weight.

また、請求項(3)記載の発明は、内輪、外輪及び転動
体からなる転がり軸受において、内輪、外輪及び転動体
の少なくとも一つが、C: 0.4〜0.7重量%、S
i : 0.15〜1.2重量%、Mn:1.2〜1゜
7重量%、Ti:40ppm以下、S:80ppm以下
、○: 9 ppm以下、Nb: 0.03〜0.08
重量%およびV : 0.1〜0.15重量%の少なく
とも一種、残部鉄の中炭素マンガン鋼からなり、浸炭熱
処理または浸炭窒化熱処理が施され、表層部における残
留オーステナイト量が25〜45vo1%である、こと
を舶徴とするものである。
Further, the invention according to claim (3) provides a rolling bearing comprising an inner ring, an outer ring, and a rolling element, in which at least one of the inner ring, outer ring, and rolling element contains C: 0.4 to 0.7% by weight, S
i: 0.15 to 1.2% by weight, Mn: 1.2 to 1.7% by weight, Ti: 40 ppm or less, S: 80 ppm or less, ○: 9 ppm or less, Nb: 0.03 to 0.08
Weight% and V: 0.1 to 0.15% by weight of at least one medium carbon manganese steel with the balance being iron, subjected to carburizing heat treatment or carbonitriding heat treatment, and the amount of retained austenite in the surface layer is 25 to 45vo1%. It is a sign of a ship.

さらに、請求項(4)記載の発明は、前記中炭素マンガ
ン鋼Vat、浸炭熱処理または浸炭窒化熱処理後でも平
均結晶粒度番号が8以上の微結晶状である、ことを特徴
とするものである。
Furthermore, the invention according to claim (4) is characterized in that the medium carbon manganese steel Vat is microcrystalline with an average grain size number of 8 or more even after carburizing heat treatment or carbonitriding heat treatment.

〔作用] 本願発明者らは、転がり軸受鋼の長寿命化及び前加工時
の割れについて種々の検討を加えた結果、軸受表層部に
おける残留オーステナイト量と寿命との関係、結晶粒度
と寿命との関係、S含有量と前加工時の割れ発生率等と
の関係について種々の新しい知見を得るに到り、この知
見に基づき特許請求の範囲に記載の如くの本発明に到達
したものである。
[Function] As a result of various studies on extending the life of rolling bearing steel and cracking during pre-processing, the inventors of the present application have determined the relationship between the amount of retained austenite in the bearing surface layer and life, and the relationship between grain size and life. We have obtained various new knowledge regarding the relationship between the S content and the cracking incidence during pre-processing, and based on this knowledge, we have arrived at the present invention as described in the claims.

まず本発明において、C: 0.4〜0.7wt%の中
炭素マンガン鋼を用いている理由につい゛ζ説明する。
First, in the present invention, the reason why medium carbon manganese steel with C: 0.4 to 0.7 wt% is used will be explained.

本発明者らは、軸受表面層における残留オーステナイト
量を25〜45vo1%にすることにより、異物混入潤
滑下の転がり軸受の長寿命化を達成できることを見い出
した。しかしながら、軸受表層部における残留オーステ
ナイト量を上記値の範囲とするためには表面炭素濃度を
高めるごとが必要であるが、5CR42011SCM4
2011はCrの含有量が多いため、軸受の転がり疲れ
寿命に有害な初析を生じやすい。一方で、Crの含有量
を減少させると焼入性が低下し、転がり軸受として必要
な硬化層深さが得られなくなってしまう。そこで本発明
では、Cr含有量を0.35重量%未満とし、かつCr
含有量の低下による焼入性低下を避けるためにMnを添
加し、さらにはヘースカーボン量が多い中炭素マンガン
鋼を用いることにより初析の発生を抑え、軸受表層部に
おける残留オーステナイltを25〜45vol%の範
囲として、必要な硬化層深さを得るものである。
The present inventors have discovered that by setting the amount of retained austenite in the bearing surface layer to 25 to 45 vol%, it is possible to extend the life of a rolling bearing under foreign matter-containing lubrication. However, in order to keep the amount of retained austenite in the bearing surface layer within the above range, it is necessary to increase the surface carbon concentration, but 5CR42011SCM4
Since 2011 has a high Cr content, it tends to cause pro-eutectoid, which is harmful to the rolling fatigue life of the bearing. On the other hand, if the Cr content is reduced, the hardenability decreases, making it impossible to obtain the hardened layer depth necessary for a rolling bearing. Therefore, in the present invention, the Cr content is less than 0.35% by weight, and the Cr content is less than 0.35% by weight.
In order to avoid a decrease in hardenability due to a decrease in content, Mn is added, and by using a medium carbon manganese steel with a large amount of heath carbon, the occurrence of pro-eutectoid is suppressed, and the residual austenite in the bearing surface layer is reduced to 25 to 45 vol. % range to obtain the required hardened layer depth.

ここで、第1図から第4図を参照して、本発明の特徴で
ある残留オーステナイトの作用について説明する。
Here, the effect of retained austenite, which is a feature of the present invention, will be explained with reference to FIGS. 1 to 4.

異物混入潤滑下で軸受を使用する場合、異物との繰り返
し接触により内外輪及び転動体の各転動表面に第2図に
示すような圧痕が発生ずる。第2図に示ず圧痕の断面図
から分るように、圧痕にはエツジ部分が生し、このエツ
ジ部に最大応力p ma、がかかる。このエツジ部分の
曲率rと圧痕の半径Cとは以下説明するように残留オー
ステナイトと密接な関係がある。通常残留オーステナイ
トは、軟らかく、例えば■ν300くらい(但し素材の
炭素の含有率によっても異なる)である。したがって、
この残留オーステナイ1−を所望の割合で表面層に存在
せしめておくと、圧痕のエツジ部分における応力の集中
を緩和することができ、そのため圧痕生成後に圧痕部に
発生ずるマイクロクラックの伝播を遅らせることができ
る。表面層におレノる残留オーステナイトは、転勤時に
圧痕を通過する相手部月(例えば転動体に対して軌道輪
)の相対通過回数の所定数を過ぎると、表面に加わる変
形エネルギーによりマルテンサイト変態し、硬化する。
When a bearing is used under lubrication contaminated with foreign matter, impressions as shown in FIG. 2 are generated on the rolling surfaces of the inner and outer races and the rolling elements due to repeated contact with the foreign matter. As can be seen from the cross-sectional view of the indentation not shown in FIG. 2, an edge portion is formed in the indentation, and the maximum stress p ma is applied to this edge portion. The curvature r of this edge portion and the radius C of the indentation are closely related to retained austenite as will be explained below. Normally, retained austenite is soft, for example, about ■v300 (however, it varies depending on the carbon content of the material). therefore,
By allowing this retained austenite 1- to exist in the surface layer in a desired proportion, it is possible to alleviate stress concentration at the edge portion of the indentation, thereby delaying the propagation of microcracks that occur in the indentation area after the indentation is formed. Can be done. The retained austenite in the surface layer transforms into martensite due to the deformation energy applied to the surface after a predetermined number of relative passes of the partner part (for example, the rolling element to the raceway ring) passing through the indentation during transfer. , harden.

第3図は、r / cの値と残留オーステナイトT8と
の関係を示している。
FIG. 3 shows the relationship between the r/c value and retained austenite T8.

P、、、/P、を小さくする(すなわち、応力集中を緩
和する)ためには、Cを一定とするとrを大きくするこ
とが必要である。つまり、r / cの値は応力集中の
緩和程度を示すファクターであるので、この値が大きく
なれば寿命も延びることになる。しかしながら、第3図
から分るように、残留オーステナイトTRの割合を大き
くしても、r/Cの値は所定の水準で飽和してしまい、
一定板1−大きくならない。特に残留オーステナイトγ
、が45 vol%以上になると、これが顕著であり、
r / c i、l殆ど飽和してしまう。従って、γ8
をそれ以上大きくしてもかえって表面硬さを下げてしま
うだけであり、転がり疲れ寿命が低下する。
In order to reduce P, , /P (that is, to alleviate stress concentration), it is necessary to increase r, assuming C is constant. In other words, since the value of r/c is a factor indicating the degree of relaxation of stress concentration, the larger this value is, the longer the life will be. However, as can be seen from Figure 3, even if the proportion of retained austenite TR is increased, the value of r/C is saturated at a predetermined level,
Constant plate 1 - does not get bigger. Especially retained austenite γ
, becomes more than 45 vol%, this becomes noticeable.
r/c i,l is almost saturated. Therefore, γ8
If it is made larger than that, it will only lower the surface hardness and reduce the rolling fatigue life.

次に、本発明の特許請求の範囲に示された各数値限定の
臨界的意義について説明する。
Next, the critical significance of each numerical limitation indicated in the claims of the present invention will be explained.

先ず、内外輪及び転動体の異物混入潤滑上使用の寿命は
、第1図のグラフに示される軸受寿命と残留オーステナ
イトγR(vol%)との関係から明らかなように、フ
レーキングが生じるまでの経過時間で示される転がり疲
れ寿命L toは残留オステナイLrR量の変化に応し
て変化している。
First, the service life of inner and outer rings and rolling elements when used for foreign matter lubrication is determined by the time required until flaking occurs, as is clear from the relationship between bearing life and retained austenite γR (vol%) shown in the graph of Figure 1. The rolling fatigue life Lto indicated by the elapsed time changes in accordance with the change in the amount of residual austenite LrR.

すなわち、残留オーステナイトTRが25vo1%以上
になると転がり疲れ寿命LIOは向上するが、45vo
1%を越えると寿命は急激に低下する。したがって、内
外輪、転動体の表層部における残留オーステナイトは、
少なくとも20VO1%から45vo1%までの範囲に
なくてはならない。
In other words, when the retained austenite TR becomes 25vo1% or more, the rolling fatigue life LIO improves;
When it exceeds 1%, the life span decreases rapidly. Therefore, the retained austenite in the surface layer of the inner and outer rings and rolling elements is
It must be in the range of at least 20VO1% to 45VO1%.

特に、残留オーステナイトγ8が45vol%を越える
と、浸炭熱処理または浸炭窒化熱処理後の表面硬さが低
下するので好ましくない。
In particular, if the retained austenite γ8 exceeds 45 vol%, the surface hardness after carburizing heat treatment or carbonitriding heat treatment decreases, which is not preferable.

クリーンな潤滑下で従来の浸炭鋼軸受と同等以上の寿命
を得るためには、転動体についてII RCが63以上
であることが望ましく、内外輪についてはHRCが58
以上であることが好ましい。このためには、残留オース
テナイトTRが45vo1%以下であることが必要であ
る。
In order to obtain a life equivalent to or longer than that of conventional carburized steel bearings under clean lubrication, it is desirable that the II RC of the rolling elements is 63 or more, and the HRC of the inner and outer rings is 58.
It is preferable that it is above. For this purpose, it is necessary that the retained austenite TR is 45 vol% or less.

尚、第1IIの実験条件は以下の通りである。軸受寿命
試験は、日本精工(株)製 玉軸受寿命試験機を用いタ
ービン油〔日本石油(株)製FBKオイルRO68)に
銅粉(硬さ、Hv300・〜500、紛擾80〜160
μm〕を1100ppの混合比で加えた潤滑剤を用い、
軸受負荷荷重(ラジアル荷重)600kgf、軸受回転
数200Orpmで試験した。
Note that the experimental conditions of Part 1II are as follows. The bearing life test was conducted using a ball bearing life tester made by NSK Ltd. Copper powder (hardness, Hv300-500, turbidity 80-160
μm] at a mixing ratio of 1100pp,
The test was conducted at a bearing load (radial load) of 600 kgf and a bearing rotation speed of 200 rpm.

次に、本発明に用いられる中炭素マンガン鋼の含有元素
の作用及びその含有量の臨界的意義について説明する。
Next, the effects of the elements contained in the medium carbon manganese steel used in the present invention and the critical significance of their contents will be explained.

ANはA E 203などの酸化物系非金属介在物を形
成する。ごのA E 203は、硬度が高く塑性変形能
が小さいため、応力集中源となり転がり疲れ寿命を低下
させる原因となる。したがって、ANが含有量を低下す
ることが、軸受寿命向上のためには必要である。しかし
他方で、浸炭熱処理または浸炭窒化熱処理時の結晶粒粗
大化防止のためには、八2がiNの形で結晶粒界に析出
することが必要である。
AN forms oxide-based nonmetallic inclusions such as A E 203. Since A E 203 has high hardness and low plastic deformability, it becomes a stress concentration source and causes a reduction in rolling fatigue life. Therefore, it is necessary to reduce the AN content in order to improve bearing life. On the other hand, however, in order to prevent crystal grain coarsening during carburizing heat treatment or carbonitriding heat treatment, it is necessary for 82 to precipitate at grain boundaries in the form of iN.

そごで、請求項(])、 (2)記載の発明では、i含
有量を200〜300ppmとした。ANが200pp
m未満だと結晶粒が粗大となり軸受の転がり疲れ寿命が
低減し、かつ、八l 300ppmを越えると、A N
 203量が増加し寿命に悪影響を及ぼす。
In the invention described in claims (]) and (2), the i content is set to 200 to 300 ppm. AN is 200pp
If it is less than 300 ppm, the crystal grains will become coarse and the rolling fatigue life of the bearing will be reduced.
The amount of 203 increases, which has a negative effect on the lifespan.

TiはTiNの形で非金属介在物として出現する。Ti appears as a nonmetallic inclusion in the form of TiN.

TiNは硬度が高く塑性変形能が小さいため、応力集中
源となり転がり疲れ寿命に有害となる。そごで、Ti含
有量をできるだけ低下させる必要があり、上限を40p
pmとした。
Since TiN has high hardness and low plastic deformability, it becomes a stress concentration source and is detrimental to rolling fatigue life. Therefore, it is necessary to reduce the Ti content as much as possible, and the upper limit is 40p.
It was set as pm.

NはAlNを形成して結晶粒の粗大化を抑制する上で必
要である。しかし、N含有量が多いと、非金属介在物で
あるTiN量が多くなる。そこで、請求項(1)、 (
2)記載の発明では、N含有量を100〜200ppm
とした。N含有量が1100ppより少ないとINの析
出量が不足し結晶粒が粗大化しζしまい、200ppm
を越えるとTiN量が多くなって転がり疲れ寿命が低下
する。
N is necessary to form AlN and suppress coarsening of crystal grains. However, when the N content is high, the amount of TiN, which is a nonmetallic inclusion, increases. Therefore, claim (1), (
2) In the invention described, the N content is 100 to 200 ppm.
And so. If the N content is less than 1100 ppm, the amount of IN precipitated will be insufficient and the crystal grains will become coarse and ζ.
If it exceeds 100%, the amount of TiN increases and the rolling fatigue life decreases.

SはMnSなどの硫化物系非金属介在物生成の原因とな
る。MnSは硬度が低く、塑性変形能が大きいことから
鍛造、圧延などの内輪、外輪及び転勤体の少なくとも一
つの前加工時割れ発生の起点として作用する。したがっ
て、鍛造等の前加工時に割れ発生を防止し、より強力ロ
丁を可能にするためS含有量を低下さ−する必要があり
、上限を80ppmとした。
S causes the formation of sulfide-based nonmetallic inclusions such as MnS. Since MnS has low hardness and high plastic deformability, it acts as a starting point for cracking during pre-processing of at least one of the inner ring, outer ring, and transfer body during forging, rolling, etc. Therefore, in order to prevent the occurrence of cracks during pre-processing such as forging and to enable stronger cutting, it is necessary to reduce the S content, and the upper limit is set at 80 ppm.

0は酸化物系非金属介在物発生元素として転がり疲労寿
命を低下させるため、その含有量を極力低下させる必要
があり、そこで」二限を9 ppmとした。
0 decreases the rolling fatigue life as an element that generates oxide-based nonmetallic inclusions, so it is necessary to reduce its content as much as possible, so the second limit was set at 9 ppm.

Siは脱酸剤として必要であるため、その含有量を0.
15〜1.2重量%とした。0.15重世間未満である
と脱酸効果が十分でなく、1,2重量%を越えても脱酸
効果に変化がないため、含有量を上記範囲内とした。
Since Si is necessary as a deoxidizing agent, its content is reduced to 0.
The content was 15 to 1.2% by weight. If it is less than 0.15% by weight, the deoxidizing effect will not be sufficient, and if it exceeds 1.2% by weight, there will be no change in the deoxidizing effect, so the content was set within the above range.

MnはCr含有量減少による焼入性低下を補うために必
要であることから、その含有量を1.2〜1.7重量%
とじた。1.2重量%未満であると焼入性を向上するこ
とができず、また、1.7重量%を越えると、硬度が向
上し鍛造性、被削性等の機械加工性が低下するため、含
有量を上記範囲内とした。
Since Mn is necessary to compensate for the decrease in hardenability due to the decrease in Cr content, the content is set at 1.2 to 1.7% by weight.
Closed. If it is less than 1.2% by weight, hardenability cannot be improved, and if it exceeds 1.7% by weight, hardness increases and machinability such as forgeability and machinability decreases. , the content was within the above range.

Nb、Vは、それ自体で結晶粒界に析出してその粗大化
を抑制し、結晶粒を微細にして軸受の長寿命化を図るた
めに有効な元素であり、加えてANNの結晶粒粗大化防
止作用をさらに増強する」−で効果的である。
Nb and V are effective elements for precipitating at grain boundaries by themselves and suppressing their coarsening, making the crystal grains finer and extending the life of the bearing. It is effective because it further enhances the anti-inflammatory effect.

すなわち、浸炭、浸炭窒化時間短縮のため高温熱処理(
950°C〜970°C)または長時間の熱処理を行う
と、ANNのみでは結晶粒の粗大化を十分防止できない
ことがある。そこで、請求項(2)記載の発明では、請
求項(1)記載の中炭素マンガン鋼に、Nb : 0.
03〜0.08重量%およびV : O,]〜0.15
重量%の少なくとも一種を含有した。
In other words, high-temperature heat treatment (
950° C. to 970° C.) or a long time heat treatment, ANN alone may not be able to sufficiently prevent crystal grain coarsening. Therefore, in the invention described in claim (2), Nb: 0.
03-0.08% by weight and V: O, ]-0.15
% by weight of at least one type.

また、請求項(3)の発明では、i、Nに代えて結晶粒
粗大化を防止するため、上記Nb:0.03〜0.08
重量%およびV : 0.1〜0.15重量%の少なく
とも一種を含有した。
In addition, in the invention of claim (3), in place of i and N, the above Nb: 0.03 to 0.08
Weight % and V: Contained at least one of 0.1 to 0.15 weight %.

Nb:Q、Q3重重量未満、V : 0.1重量%未満
だと結晶粒の粗大化を防止する上で効果が少なく、Nb
:0.08重量%、V : 0.15重量%を越えても
結晶粒の粗大化防止効果は向上せずかえって高コストと
なるためNbおよび■の含有量を上記の範囲内に選定し
た。
Nb: less than Q, Q3 weight, V: less than 0.1% by weight, there is little effect in preventing coarsening of crystal grains, and Nb
: 0.08% by weight, V : 0.15% by weight, the effect of preventing crystal grain coarsening will not improve and the cost will increase, so the contents of Nb and (2) were selected within the above ranges.

本発明で用いる炭素鋼のヘースカーボンの数値の臨界的
意義は、以下のとおりである。
The critical significance of the heath carbon value of the carbon steel used in the present invention is as follows.

ヘースカーボンの割合が0.4重量%より低くなると浸
炭または浸炭窒化熱処理時間が長くなり、熱処理生産性
が低下してしまう。また、本発明に用いる中炭素マンガ
ン鋼は、Cr、 Mo等の焼き入れ性を高める元素を含
まない鋼種であり、ヘースカーボン量が0.4重量%以
下となると、焼き入れ性が不足し十分な硬化深さを得る
ことができない。
If the proportion of heath carbon is lower than 0.4% by weight, the carburizing or carbonitriding heat treatment time becomes longer, and the heat treatment productivity decreases. Furthermore, the medium carbon manganese steel used in the present invention is a steel type that does not contain elements that improve hardenability such as Cr and Mo, and if the amount of heath carbon is less than 0.4% by weight, the hardenability will be insufficient. Unable to obtain hardening depth.

逆に、ヘースカーボン含有量が0.7重量%を越えると
、浸炭により侵入するカーボン量が少なくなリマトリッ
クスに侵入固溶する炭素の割合が低下し、不均一固溶状
態となり、転がり疲れ寿命が低下してしまう。
On the other hand, when the heath carbon content exceeds 0.7% by weight, the proportion of carbon that enters into solid solution in the rematrix, where the amount of carbon that enters through carburization is small, decreases, resulting in a non-uniform solid solution state, which shortens rolling fatigue life. It will drop.

したがって、以上のことからヘースカーボン量を0.4
〜0.7重量%の範囲に選定した。
Therefore, from the above, the amount of heath carbon is 0.4
The range was selected to be 0.7% by weight.

第4図に示す如く、このような範囲にある炭素鋼を浸炭
熱処理または浸炭窒化熱処理して、固溶炭素又は固溶炭
素窒素量をO18〜1.1重量%の範囲に調整すること
により、その結果表層部における残留オーステナイト量
を25〜45vo1%の範囲内にすることができる。ま
た、ヘースカーボン量を上記範囲内の炭素鋼に浸炭熱処
理または浸炭窒化熱処理を行えば、Fe原子中にカーボ
ン及び窒素原子が均一に拡散し、固溶強化するので、最
大ぜん断応力位置でのマイクロクシツクの発生を遅延す
ることができてクリーンな潤滑下においても転がり疲労
寿命が向上する。
As shown in FIG. 4, carbon steel in such a range is subjected to carburizing heat treatment or carbonitriding heat treatment to adjust the amount of solid solute carbon or solid solute carbon nitrogen to a range of O18 to 1.1% by weight. As a result, the amount of retained austenite in the surface layer portion can be within the range of 25 to 45 vol%. Furthermore, if carburizing heat treatment or carbonitriding heat treatment is performed on carbon steel with the amount of heath carbon within the above range, carbon and nitrogen atoms will uniformly diffuse into Fe atoms, solid solution strengthening will occur, and micro- It is possible to delay the occurrence of scratches and improve rolling fatigue life even under clean lubrication.

また、請求項(4)に記載のように、浸炭熱処理または
浸炭窒化熱処理後でも、転がり軸受を構成する中炭素マ
ンガン鋼の結晶粒径を結晶粒度番号で8以上の微細なも
のとするごとにより、より長寿命な転がり軸受を提供す
ることができる。
Further, as described in claim (4), even after carburizing heat treatment or carbonitriding heat treatment, the grain size of the medium carbon manganese steel constituting the rolling bearing is made fine with a grain size number of 8 or more. , it is possible to provide a rolling bearing with a longer life.

〔実施例] 次に本発明の実施例について説明する。〔Example] Next, examples of the present invention will be described.

従来の炭素鋼である5MN443において、八!。In 5MN443, which is a conventional carbon steel, 8! .

S、N含有量を調整したものを溶解して供試材を作成し
た。各供試材の組成を次の第1表に示す。
A sample material was prepared by melting the material with adjusted S and N contents. The composition of each sample material is shown in Table 1 below.

(以下、余白) 第 ■ 表 〈S 八j2.Ti。(Hereafter, margin) No. ■ table <S 8j2. Ti.

0は ppm。0 is ppm.

他はwt%〉 次に、 上記第1表の各供試材の複数個に930’CX8hrの
加熱処理を行い、 結晶粒の大きさを調 べた。
Others are wt%> Next, a plurality of each sample material in Table 1 above was subjected to heat treatment at 930'CX for 8 hours, and the size of crystal grains was examined.

その結果を次の第2表に示す。The results are shown in Table 2 below.

(転がり寿命試験) 上記第1表の各々の供試材に浸炭熱処理または浸炭窒化
熱処理を施し、表層部の残留オーステナイト量を25〜
45vo1%に調整した試験片を作成した。
(Rolling life test) Each of the test materials in Table 1 above was subjected to carburizing heat treatment or carbonitriding heat treatment, and the amount of retained austenite in the surface layer was reduced to 25 to 25%.
A test piece adjusted to 45vo1% was created.

この実施例における熱処理条件を次に説明する。The heat treatment conditions in this example will be explained next.

浸炭熱処理のうちダイレクト焼入れは、第5図に示すグ
ラフのように、P×ガス士エンリッチガスの雰囲気で約
8時間、930±5°Cで熱処理を行ない、その後油焼
入れ、更に、160°C2時間焼戻しをした。更に、浸
炭窒化熱処理については、第6図のグラフに示すように
、Rxガス」−エンリッチガス士アンモニアガス5%の
雰囲気で、約3〜4時間、830〜870°Cで浸炭窒
化熱処理を行ない、その後油焼入れした。
As shown in the graph shown in Figure 5, direct quenching in carburizing heat treatment involves heat treatment at 930±5°C for approximately 8 hours in an atmosphere of P x gas enriched gas, followed by oil quenching and further heat treatment at 160°C2. Time tempered. Furthermore, as for carbonitriding heat treatment, as shown in the graph of Fig. 6, carbonitriding heat treatment was performed at 830 to 870°C for about 3 to 4 hours in an atmosphere of 5% Rx gas - enriched ammonia gas. , then oil quenched.

上記浸炭熱処理または浸炭窒化熱処理を行った各試験片
を用いて転がり軸受の内輪及び外輪のどちらにでも適用
できる円盤状試験片を作成し、この各々の円盤状試験片
について、「特殊鋼便覧(第1版)電気製鋼研究所績、
理工学社、1965年5月25日、第10頁〜21頁j
記載の試験機を用いて転がり疲れ寿命試験を行った。試
験条件は次の通りである。
Disk-shaped test pieces that can be applied to both the inner and outer rings of rolling bearings were created using each of the test pieces that had been subjected to the carburizing heat treatment or carbonitriding heat treatment. 1st edition) Electrical Steel Research Institute,
Rikogakusha, May 25, 1965, pp. 10-21j
A rolling fatigue life test was conducted using the testing machine described above. The test conditions are as follows.

P 、a、 −=560 kB−f/mm2N =30
00 c、p、m潤滑油  #68  タービン油 この転がり疲れ寿命の試験結果を第2表及び第7図に示
す。第7図は、前記各供試材の平均結晶粒度番号と転勤
による応力繰り返し数(cycle)で示される軸受寿
命LIGとの関係を示したものである。第7図から分か
るように、平均結晶粒度番号が大きくなる程、すなわち
結晶粒が小さくなる程1−10の値が大きくなって軸受
の転がり疲れ寿命が向]二する。
P, a, -=560 kB-f/mm2N =30
00 c, p, m lubricating oil #68 Turbine oil The rolling fatigue life test results are shown in Table 2 and Figure 7. FIG. 7 shows the relationship between the average grain size number of each sample material and the bearing life LIG indicated by the number of cycles of stress due to transfer. As can be seen from FIG. 7, the larger the average grain size number, that is, the smaller the grains, the larger the value of 1-10, and the longer the rolling fatigue life of the bearing.

供試材2はi、Nの含有量が少なく、供試材4は八!の
含有量が少なく、さらに供試材5はNの含有量が少ない
ため、L+oの値が小さ(なる。
Sample material 2 has a low i and N content, and sample material 4 has a low content of 8! Since the content of N is small, and the content of N is small in sample material 5, the value of L+o is small.

これに対し、供試材1.3は、i、Nの含有量とも本発
明範囲内であるため、LIOの値が良好である。
On the other hand, sample material 1.3 has a good LIO value because both the i and N contents are within the range of the present invention.

一力、供試材6.7では、IF!Nの結晶粒粗大化防1
F作用を向−]二するNbまたはVが含有されているた
め、結晶粒がさらに微細化されてLIOの値がさらに大
きな値となる。
For sample material 6.7, IF! Prevention of N crystal grain coarsening 1
Since Nb or V, which enhances the F action, is contained, the crystal grains are further refined and the LIO value becomes even larger.

供試材8はAI2. Hの含有量は上記供試材1に比較
して不足しているが、それ自体で結晶粒の粗大化を防止
するNbが含有されているために、結晶粒が小さくなっ
てL+oの値も良好である。
Sample material 8 is AI2. Although the content of H is insufficient compared to the above sample material 1, since it contains Nb which itself prevents the coarsening of crystal grains, the crystal grains become smaller and the value of L+o also decreases. In good condition.

供試材9は、結晶粒は小さいがAffiの含有量が本発
明範囲を越えているため、へI!、20J量が増加して
L+oの値が小さくなって寿命が短くなる。
Sample material 9 has small crystal grains, but the Affi content exceeds the range of the present invention, so it is classified as I! , 20J increases, the value of L+o becomes smaller, and the life becomes shorter.

供試材10.11はi、Nの他ニNb、 V(7)含有
量が多くり、。の値が大きくなり、Nb、 V添加の割
に結晶粒微細化効果の向上の程度が小さくコスト高とな
る。
In addition to i and N, sample material 10.11 has a high content of niNb and V(7). The value of becomes large, and the degree of improvement in grain refinement effect is small compared to the addition of Nb and V, resulting in high cost.

本発明において転がり疲れ寿命り、。向上のためには、
浸炭熱処理または浸炭窒化熱処理後でも結晶粒径が結晶
粒度番号で8以上の微細なものとなるように温度9時間
等を制御して浸炭熱処理、浸炭窒化熱処理を行うことが
望ましい。
Rolling fatigue life in the present invention. In order to improve,
It is desirable to perform carburizing heat treatment and carbonitriding heat treatment by controlling the temperature for 9 hours, etc. so that the crystal grain size becomes fine with a grain size number of 8 or more even after carburizing heat treatment or carbonitriding heat treatment.

(割れ発生試験) 次に上記第2表の供試材を用いてφ20X30manの
円柱試料を作成し、据込率80%で冷間加工(鍛造)を
行い、割れ発生率を調べた。円柱試料を各供試材につい
て10ケ作成した。この結果を前記第2表及び第8図に
示す。第8図は、各供試材のS含有量と割れ発生率との
関係を示すグラフである。
(Crack occurrence test) Next, cylindrical samples of φ20×30 man were prepared using the test materials shown in Table 2 above, cold worked (forged) at an upsetting rate of 80%, and the crack occurrence rate was investigated. Ten cylindrical samples were prepared for each sample material. The results are shown in Table 2 and FIG. 8 above. FIG. 8 is a graph showing the relationship between the S content and cracking incidence of each sample material.

第2表に示すように、供試材2,3,4.6は、Sの含
有量が多いため割れが発生する。特に、供試材3.6は
結晶粒が小さくL+oの値が大きいが、Sの含有量が多
いため割れの発生を避けることができない。
As shown in Table 2, sample materials 2, 3, and 4.6 cracked due to their high S content. In particular, although sample material 3.6 has small crystal grains and a large value of L+o, the occurrence of cracks cannot be avoided due to the large S content.

第8図から供試材中のS含有量が少なくなる程割れ発生
率が低下していることが分り、S含有量80ppm以下
で割れ発生率が0%であることが分かる。したがって、
S含有量を80ppm以下とすれば、より強加工が可能
となる。
It can be seen from FIG. 8 that the cracking incidence decreases as the S content in the sample material decreases, and it can be seen that the cracking incidence is 0% when the S content is 80 ppm or less. therefore,
If the S content is 80 ppm or less, stronger processing becomes possible.

尚、上記実施例の転がり寿命試験では、内輪及び外輪の
どちらにも適用できる円盤状試験片についての寿命を示
したが、同様の材料で転動体を形成し、これについて上
記軸がり寿命試験を行っても同様の結果を得ることがで
きる。
In addition, in the rolling life test in the above example, the life was shown for a disk-shaped test piece that can be applied to both the inner ring and the outer ring. You can get similar results by doing so.

21′I 〔発明の効果] 以上説明したように請求項(+1. (3)記載の発明
よれば、Mo、Ni、Cr等の高価な元素を含有せず、
また、長時間且つ複雑な熱処理も必要としないので、材
料コストが増加することなく熱処理生産性も良好な転が
り軸受を提供することができる。
21'I [Effect of the invention] As explained above, according to the invention described in claim (+1.
Further, since a long and complicated heat treatment is not required, a rolling bearing with good heat treatment productivity can be provided without increasing material cost.

そして、残留オーステナイトが表層部に所定量存在し、
また浸炭熱処理または浸炭窒化熱処理の際の結晶粒の粗
大化が防止され、さらに非金属介在物量も制限されてい
るために、異物混入潤滑下ばかりでな(クリーンな潤滑
下でも従来の転がり軸受と比較してより長寿命な転がり
軸受となる。
A predetermined amount of retained austenite exists in the surface layer,
In addition, coarsening of crystal grains during carburizing heat treatment or carbonitriding heat treatment is prevented, and the amount of nonmetallic inclusions is also limited, so it is not only possible to use it under lubrication contaminated with foreign matter (even under clean lubrication, it is different from conventional rolling bearings). This results in a rolling bearing with a longer life in comparison.

さらに、S量も制限されているために、加]二率の高い
鍛造等の前加工の際割れが発生しない転がり軸受を提供
できる。
Furthermore, since the amount of S is also limited, it is possible to provide a rolling bearing that does not generate cracks during pre-processing such as forging with a high rate of addition.

また、請求項(2)記載の発明によれば、上記効果に加
えて結晶粒をさらに微細にできるため、その分より長寿
命な転がり軸受を提供できる。
Further, according to the invention described in claim (2), in addition to the above-mentioned effects, the crystal grains can be further made finer, so that a rolling bearing with a longer life can be provided.

さらに、請求項(4)記載の発明によれば、上記効果に
加えて、転がり軸受を構成する中炭素マンガン鋼は、浸
炭熱処理または浸炭窒化熱処理後でも結晶粒度番号が8
以上である微細な結晶粒であるため、より長寿命な転が
り軸受を提供できる。
Furthermore, according to the invention described in claim (4), in addition to the above-mentioned effects, the medium carbon manganese steel constituting the rolling bearing has a grain size number of 8 even after carburizing heat treatment or carbonitriding heat treatment.
Because of the above fine crystal grains, it is possible to provide a rolling bearing with a longer life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、異物混入潤滑下における軸受の転がり疲れ寿
命と残留オーステナイト量との関係を表わすグラフであ
り、 第2図は、応力と共に示す圧痕の断面図であり、第3図
は、r / cの値とTR量との関係を示すグラフであ
り、r / cがγ、に対して飽和することを示してお
り、 第4図は、固溶炭素(C)又は固溶炭素窒素(C+N)
@と、残留オーステナイトTR量との関係を示すグラフ
であり、 第5図及び第6図は、それぞれダイレクト浸炭熱処理及
び浸炭窒化熱処理の温度と時間との関係を示すグラフで
あり、 第7図は平均粒度番号と軸受寿命り、。との関係を示す
グラフであり、 第8圓はS含有量と割れ発生率との関係を示すグラフで
ある。
Fig. 1 is a graph showing the relationship between the rolling fatigue life of a bearing and the amount of retained austenite under lubrication containing foreign matter, Fig. 2 is a cross-sectional view of an indentation shown along with stress, and Fig. 3 is a graph showing the relationship between the rolling fatigue life of a bearing and the amount of retained austenite under lubrication containing foreign matter. This is a graph showing the relationship between the value of c and the amount of TR, showing that r/c is saturated with respect to γ. )
Fig. 5 and Fig. 6 are graphs showing the relationship between temperature and time of direct carburizing heat treatment and carbonitriding heat treatment, respectively. Average particle size number and bearing life. The eighth circle is a graph showing the relationship between the S content and the crack occurrence rate.

Claims (4)

【特許請求の範囲】[Claims] (1)内輪、外輪及び転動体からなる転がり軸受におい
て、当該内輪、外輪及び転動体の少なくとも一つが、C
:0.4〜0.7重量%、Si:0.15〜1.2重量
%、Mn:1.2〜1.7重量%、Al:200〜30
0ppm、Ti:40ppm以下、N:100〜200
ppm、S:80ppm以下、O:9ppm以下、残部
鉄の中炭素マンガン鋼からなり、浸炭熱処理または浸炭
窒化熱処理が施され、表層部における残留オーステナイ
ト量が25〜45vol%である、ことを特徴とする転
がり軸受。
(1) In a rolling bearing consisting of an inner ring, an outer ring, and a rolling element, at least one of the inner ring, outer ring, and rolling element is C
:0.4-0.7% by weight, Si: 0.15-1.2% by weight, Mn: 1.2-1.7% by weight, Al: 200-30
0ppm, Ti: 40ppm or less, N: 100-200
ppm, S: 80 ppm or less, O: 9 ppm or less, the balance is iron, the steel is made of medium carbon manganese steel, has been subjected to carburizing heat treatment or carbonitriding heat treatment, and has a residual austenite amount of 25 to 45 vol% in the surface layer. rolling bearings.
(2)前記中炭素マンガン鋼に、Nb:0.03〜0.
08重量%およびV:0.1〜0.15重量%の少なく
とも一種が含有されてなる、ことを特徴とする請求項(
1)記載の転がり軸受。
(2) Nb: 0.03 to 0.03 to the medium carbon manganese steel.
08% by weight and at least one of V: 0.1 to 0.15% by weight (
1) The rolling bearing described.
(3)内輪、外輪及び転動体からなる転がり軸受におい
て、当該内輪、外輪及び転動体の少なくとも一つが、C
:0.4〜0.7重量%、Si:0.15〜1.2重量
%、Mn:1.2〜1.7重量%、Ti:40ppm以
下、S:80ppm以下、O:9ppm以下、Nb:0
.03〜0.08重量%およびV:0.1〜0.15重
量%の少なくとも一種、残部鉄の中炭素マンガン鋼から
なり、浸炭熱処理または浸炭窒化熱処理が施され、表層
部における残留オーステナイト量が25〜45vol%
である、ことを特徴とする転がり軸受。
(3) In a rolling bearing consisting of an inner ring, an outer ring, and a rolling element, at least one of the inner ring, outer ring, and rolling element is C
: 0.4 to 0.7% by weight, Si: 0.15 to 1.2% by weight, Mn: 1.2 to 1.7% by weight, Ti: 40ppm or less, S: 80ppm or less, O: 9ppm or less, Nb: 0
.. 03 to 0.08% by weight and V: 0.1 to 0.15% by weight, the balance is made of medium carbon manganese steel, and is subjected to carburizing heat treatment or carbonitriding heat treatment to reduce the amount of retained austenite in the surface layer. 25-45vol%
A rolling bearing characterized by:
(4)前記中炭素マンガン鋼は、浸炭熱処理または浸炭
窒化熱処理後でも平均結晶粒度番号が8以上の微結晶状
である、ことを特徴とする請求項(1)なしい(3)の
何れか一項記載の転がり軸受。
(4) The medium carbon manganese steel is microcrystalline with an average grain size number of 8 or more even after carburizing heat treatment or carbonitriding heat treatment, any one of claims (1) and (3) above. The rolling bearing described in paragraph 1.
JP1157288A 1988-07-11 1989-06-20 Rolling bearing Expired - Fee Related JP2885829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1157288A JP2885829B2 (en) 1988-07-11 1989-06-20 Rolling bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17203088 1988-07-11
JP63-172030 1988-07-11
JP1157288A JP2885829B2 (en) 1988-07-11 1989-06-20 Rolling bearing

Publications (2)

Publication Number Publication Date
JPH02125841A true JPH02125841A (en) 1990-05-14
JP2885829B2 JP2885829B2 (en) 1999-04-26

Family

ID=26484794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157288A Expired - Fee Related JP2885829B2 (en) 1988-07-11 1989-06-20 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2885829B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426752A (en) * 1990-05-17 1992-01-29 Nippon Seiko Kk Rolling bearing
US5259886A (en) * 1990-03-22 1993-11-09 Nippon Seiko Kabushiki Kaisha Rolling member
WO1995007417A1 (en) * 1993-09-08 1995-03-16 Ntn Corporation Mechanical part having rolling elements
US5447579A (en) * 1991-03-08 1995-09-05 Nsk Ltd. Rolling part steel
JPH09165643A (en) * 1995-12-12 1997-06-24 Kobe Steel Ltd Bearing steel excellent in rolling fatigue characteristic
US6660105B1 (en) 1997-07-22 2003-12-09 Nippon Steel Corporation Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts
JP2004285474A (en) * 2003-03-04 2004-10-14 Komatsu Ltd Rolling member and its manufacturing method
JP2004292945A (en) * 2003-03-11 2004-10-21 Komatsu Ltd Rolling member, and its production method
WO2005088147A1 (en) * 2004-03-10 2005-09-22 Ntn Corporation Machine element and method for manufacture thereof
US7334943B2 (en) 2003-02-28 2008-02-26 Ntn Corporation Differential support structure, differential's component, method of manufacturing differential support structure, and method of manufacturing differential's component
US7438477B2 (en) 2001-11-29 2008-10-21 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing
US7490583B2 (en) 2002-10-17 2009-02-17 Ntn Corporation Full-type rolling bearing and roller cam follower for engine
JP2009102733A (en) * 2003-03-04 2009-05-14 Komatsu Ltd Method for producing rolling member
US7594762B2 (en) 2004-01-09 2009-09-29 Ntn Corporation Thrust needle roller bearing, support structure receiving thrust load of compressor for car air-conditioner, support structure receiving thrust load of automatic transmission, support structure for continuously variable transmission, and support structure receivin
US7641742B2 (en) 2004-01-15 2010-01-05 Ntn Corporation Rolling bearing and heat treatment method for steel
US7682087B2 (en) 2003-02-28 2010-03-23 Ntn Corporation Transmission component, method of manufacturing the same, and tapered roller bearing
US7744283B2 (en) 2003-03-14 2010-06-29 Ntn Corporation Bearing for alternator and bearing for pulley
US8002907B2 (en) 2003-08-29 2011-08-23 Ntn Corporation Bearing's component, heat treatment method thereof, heat treatment apparatus, and rolling bearing
US8066826B2 (en) 2005-08-10 2011-11-29 Ntn Corporation Rolling-contact shaft with joint claw

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129752A (en) * 1983-01-13 1984-07-26 Ntn Toyo Bearing Co Ltd Induction hardenable material
JPS60194047A (en) * 1984-03-14 1985-10-02 Aichi Steel Works Ltd High quality bearing steel and its production
JPS6263651A (en) * 1985-09-13 1987-03-20 Aichi Steel Works Ltd Bearing steel and its production
JPS62274052A (en) * 1986-05-21 1987-11-28 Daido Steel Co Ltd Case-hardening steel for bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129752A (en) * 1983-01-13 1984-07-26 Ntn Toyo Bearing Co Ltd Induction hardenable material
JPS60194047A (en) * 1984-03-14 1985-10-02 Aichi Steel Works Ltd High quality bearing steel and its production
JPS6263651A (en) * 1985-09-13 1987-03-20 Aichi Steel Works Ltd Bearing steel and its production
JPS62274052A (en) * 1986-05-21 1987-11-28 Daido Steel Co Ltd Case-hardening steel for bearing

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259886A (en) * 1990-03-22 1993-11-09 Nippon Seiko Kabushiki Kaisha Rolling member
JPH0426752A (en) * 1990-05-17 1992-01-29 Nippon Seiko Kk Rolling bearing
US5447579A (en) * 1991-03-08 1995-09-05 Nsk Ltd. Rolling part steel
WO1995007417A1 (en) * 1993-09-08 1995-03-16 Ntn Corporation Mechanical part having rolling elements
JPH09165643A (en) * 1995-12-12 1997-06-24 Kobe Steel Ltd Bearing steel excellent in rolling fatigue characteristic
US6660105B1 (en) 1997-07-22 2003-12-09 Nippon Steel Corporation Case hardened steel excellent in the prevention of coarsening of particles during carburizing thereof, method of manufacturing the same, and raw shaped material for carburized parts
US7438477B2 (en) 2001-11-29 2008-10-21 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing
US8425690B2 (en) 2001-11-29 2013-04-23 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing
KR100951216B1 (en) * 2001-11-29 2010-04-05 에누티에누 가부시기가이샤 Bearing Part, Heat Treatment Method Thereof, and Rolling Bearing
US7490583B2 (en) 2002-10-17 2009-02-17 Ntn Corporation Full-type rolling bearing and roller cam follower for engine
US7682087B2 (en) 2003-02-28 2010-03-23 Ntn Corporation Transmission component, method of manufacturing the same, and tapered roller bearing
US7334943B2 (en) 2003-02-28 2008-02-26 Ntn Corporation Differential support structure, differential's component, method of manufacturing differential support structure, and method of manufacturing differential's component
JP2004285474A (en) * 2003-03-04 2004-10-14 Komatsu Ltd Rolling member and its manufacturing method
JP2009102733A (en) * 2003-03-04 2009-05-14 Komatsu Ltd Method for producing rolling member
JP2004292945A (en) * 2003-03-11 2004-10-21 Komatsu Ltd Rolling member, and its production method
US7744283B2 (en) 2003-03-14 2010-06-29 Ntn Corporation Bearing for alternator and bearing for pulley
US8333516B2 (en) 2003-03-14 2012-12-18 Ntn Corporation Bearing for alternator and bearing for pulley
US8002907B2 (en) 2003-08-29 2011-08-23 Ntn Corporation Bearing's component, heat treatment method thereof, heat treatment apparatus, and rolling bearing
US7594762B2 (en) 2004-01-09 2009-09-29 Ntn Corporation Thrust needle roller bearing, support structure receiving thrust load of compressor for car air-conditioner, support structure receiving thrust load of automatic transmission, support structure for continuously variable transmission, and support structure receivin
US7641742B2 (en) 2004-01-15 2010-01-05 Ntn Corporation Rolling bearing and heat treatment method for steel
US7776453B2 (en) 2004-03-10 2010-08-17 Ntn Corporation Machine element and method for manufacturing thereof
WO2005088147A1 (en) * 2004-03-10 2005-09-22 Ntn Corporation Machine element and method for manufacture thereof
US8066826B2 (en) 2005-08-10 2011-11-29 Ntn Corporation Rolling-contact shaft with joint claw

Also Published As

Publication number Publication date
JP2885829B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
KR930010411B1 (en) Rolling bearing
JP2885829B2 (en) Rolling bearing
JP3538995B2 (en) Rolling bearing
US5338377A (en) Ball-and-roller bearing
US5427457A (en) Rolling bearing
US5427600A (en) Low alloy sintered steel and method of preparing the same
EP1837413B1 (en) Rolling-sliding elements and process for production of the same
JPH0426752A (en) Rolling bearing
JPH0364431A (en) Steel for rolling member and rolling bearing using same
JP2015096657A (en) Case hardened steel and carburized material
JPH049449A (en) Rolling bearing
JPH0525609A (en) Rolling bearing
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP3232664B2 (en) Rolling bearing
JP2005048270A (en) Method of producing surface hardened component, and surface hardened component
JPH02277764A (en) Roller bearing
JPH03153842A (en) Rolling bearing
JPH0979338A (en) Material of rolling body for toroidal type continuously variable transmission having excellent rolling factigue strength and rolling body
JP3845843B2 (en) Rolling and sliding parts and manufacturing method thereof
JP2005042188A (en) Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment
JPS5929646B2 (en) Manufacturing method of steel for rolling bearings
JP2006176863A (en) Steel for rolling bearing
JP2004059994A (en) Rolling-sliding contact part and method for producing the same
JPH09296250A (en) Steel for gear excellent in face fatigue strength
JP2022170056A (en) steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees