JPH05331615A - Rolling bearing parts made of nonmagnetic steel - Google Patents

Rolling bearing parts made of nonmagnetic steel

Info

Publication number
JPH05331615A
JPH05331615A JP16369992A JP16369992A JPH05331615A JP H05331615 A JPH05331615 A JP H05331615A JP 16369992 A JP16369992 A JP 16369992A JP 16369992 A JP16369992 A JP 16369992A JP H05331615 A JPH05331615 A JP H05331615A
Authority
JP
Japan
Prior art keywords
rolling
steel
hardness
bearing parts
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16369992A
Other languages
Japanese (ja)
Inventor
Kikuo Maeda
喜久男 前田
Hirokazu Nakajima
碩一 中島
Akifumi Ueda
昌文 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP16369992A priority Critical patent/JPH05331615A/en
Publication of JPH05331615A publication Critical patent/JPH05331615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a nonmagnetic roller bearing excellent in rolling life by subjecting roller bearing parts made of nonmagnetic steel with specific composition to electric discharge carburizing treatment and providing a surface hardened layer with specific surface hardness and also a specific magnetic permeability. CONSTITUTION:The roller bearing parts are formed by using a nonmagnetic Mn-Cr austenitic steel having a composition consisting of 0.1-0.7% C, <=1% Si, 12-20% Mn, <=5% Ni, 10-18% Cr, <=0.50% N, and the balance Fe with inevitable impurities. The parts are heated and held at about 950-1200 deg.C and subjected to electric discharge carburizing treatment in a hydrocarbon gas atmosphere of about 1-50mmHg for 2-3hr, followed by air cooling. By this method, the rolling bearing parts having a surface hardened layer with a surface hardness of >=HRC55 Rockwell C hardness and also having <=1.1% magnetic permeability can be obtained, and rolling life can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁界中で使用される
転がり軸受につき、非磁性Mn−Cr系オーステナイト
鋼を表面浸炭硬化した転がり軸受の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolling bearing used in a strong magnetic field and relates to an improvement of a rolling bearing obtained by surface-carburizing and hardening a non-magnetic Mn-Cr austenitic steel.

【0002】[0002]

【従来の技術】強磁界中で使用される転がり軸受、例え
ばリニアモーターカーの超電導マグネット近傍で使用さ
れる車軸支承用の転がり軸受は、車軸の回転走行中は、
超電導マグネットからの強い磁界を切って回転するた
め、、マルテンサイト鋼などの強磁性体で製作されてい
る場合には、軸受の転動体・軌道輪に渦電流が生じて発
熱し、温度上昇を伴って、焼付を生じる虞れがある。
2. Description of the Related Art Rolling bearings used in a strong magnetic field, for example, rolling bearings for axle bearings used in the vicinity of superconducting magnets of linear motor cars, are
Since it rotates by cutting off the strong magnetic field from the superconducting magnet, if it is made of a ferromagnetic material such as martensitic steel, eddy currents will be generated in the rolling elements and bearing rings of the bearing, causing heat generation and increasing the temperature. Along with this, there is a risk that seizure will occur.

【0003】このような強磁界で使用される軸受は、非
磁性とする必要がある。非磁性鋼としては、Cr−Ni
系(例えば18Cr−8Ni系)のオーステナイト鋼が
利用できそうであるが、高価であり、かつ表面硬化処理
に有効な方法が実用化されておらず、使用中に加工変形
によるマルテンサイト相が出て、磁性を帯びるので、軸
受用鋼には利用されていない。
The bearing used in such a strong magnetic field needs to be non-magnetic. As non-magnetic steel, Cr-Ni
Although it seems that austenitic steels of 18 series (for example, 18Cr-8Ni series) can be used, it is expensive and a method effective for surface hardening treatment has not been put to practical use, and a martensite phase is generated during processing due to work deformation. Since it is magnetized, it is not used for bearing steel.

【0004】従来の常温で安定なオーステナイト鋼とし
て、高炭素Mn−Cr系非磁性鋼があり、Vを添加して
溶体化処理後に時効処理を行うことにより、硬化させて
使用することができる。
As a conventional austenitic steel that is stable at room temperature, there is a high carbon Mn-Cr non-magnetic steel, which can be hardened and used by subjecting it to solution treatment by adding V and aging treatment.

【0005】本発明者らは、既に、高Mn−高Crオー
ステナイト系非磁性鋼によって製作された転がり軸受部
材などの機械部品に、予め窒化処理をし、その後に浸炭
窒化処理をして、窒素富化層による表面硬化層を形成し
た軸受を提案した(特願平2−262268号)。
The present inventors have already performed a nitriding treatment on mechanical parts such as rolling bearing members made of high Mn-high Cr austenitic non-magnetic steel in advance, and then carbonitriding them to obtain nitrogen. A bearing having a surface-hardened layer formed of an enriched layer has been proposed (Japanese Patent Application No. 2-262268).

【0006】[0006]

【発明が解決しようとする課題】非磁性鋼による軸受の
形成には、まず透磁率が安定して1近傍にあり、表層部
には好ましくは硬度がHRC55以上である表面硬化層が
0.2mm以上あることが要求される。Mn−Cr系オ
ーステナイト鋼を時効硬化させた上記従来の軸受では、
表面硬度はロックウエルC硬度HRC40〜45程度しか
得られず、転がり軸受材としては、なお軟質であり、転
走面の耐摩耗性が不足した。
In the formation of a bearing made of non-magnetic steel, first, the magnetic permeability is stable in the vicinity of 1 and the surface layer is preferably a surface hardened layer having a hardness of H RC 55 or more. It is required to be 0.2 mm or more. In the above-mentioned conventional bearing obtained by age hardening Mn-Cr austenitic steel,
The surface hardness was only Rockwell C hardness H RC of about 40 to 45, and it was still soft as a rolling bearing material, and the wear resistance of the rolling surface was insufficient.

【0007】Mn−Cr系オーステナイト鋼は、ガス浸
炭炉等の大気炉中で単に窒化処理や浸炭窒化処理をした
だけでは、表面硬化層は得られず、HRC55以上の硬化
層が得られたとしても、極めて薄いので、転走面の精密
仕上げ研摩によって硬化層は削除されてしまう。精密加
工後の窒素イオン照射によってTiN層を形成すること
も可能で、この場合表面硬度は得られるが、軸受として
必要な表層下部の硬度が低く、転動体との接触による転
走面下部の最大剪断応力の作用する深さから数倍の深さ
位置までの硬度が低いので、転がり寿命の向上は期待で
きない。
With Mn-Cr austenitic steel, a surface hardened layer cannot be obtained by simply nitriding or carbonitriding in an atmospheric furnace such as a gas carburizing furnace, and a hardened layer of H RC 55 or higher is obtained. Even if it is extremely thin, the hardened layer is removed by precision finish polishing of the rolling surface. It is also possible to form a TiN layer by irradiating nitrogen ions after precision processing. In this case, the surface hardness can be obtained, but the hardness of the lower surface layer required as a bearing is low, and the maximum of the lower surface of the rolling surface due to contact with rolling elements is low. Since the hardness from the depth at which shear stress acts to the depth position several times lower is low, the improvement of rolling life cannot be expected.

【0008】そこで、Mn−Cr系非磁性鋼の表面の硬
化層を厚層とすることにより、転がり寿命の改善が図ら
れるが、一般にCr含有量が高いと、表面に不動態層が
形成されて、浸炭・浸窒反応を抑制・阻害するので、上
記のような浸炭窒化処理前に低温で窒化処理をするな
ど、特別な前処理を行って始めて0.2mm以上の浸炭
層厚を確保することができる。しかしながら、窒化処理
と浸炭窒化処理の2工程を要し、且つ浸炭窒化処理に長
時間を要し、量産性に欠ける難点があった。
Therefore, the rolling life can be improved by making the hardened layer on the surface of the Mn-Cr non-magnetic steel a thick layer. Generally, when the Cr content is high, a passivation layer is formed on the surface. As a result, the carburizing / nitriding reaction is suppressed / inhibited, so a carburized layer thickness of 0.2 mm or more can be secured only after special pretreatment such as nitriding at low temperature before carbonitriding as described above. be able to. However, there is a problem in that two steps of nitriding treatment and carbonitriding treatment are required, and that the carbonitriding treatment requires a long time, resulting in lack of mass productivity.

【0009】本発明は、Mn−Cr系オーステナイト鋼
により十分な硬化層厚みを有して、転がり寿命に優れた
非磁性の転がり軸受を提供しようとするものである。
The present invention is intended to provide a non-magnetic rolling bearing having a sufficient hardened layer thickness of Mn-Cr austenitic steel and having an excellent rolling life.

【0010】[0010]

【課題を解決するための手段】本発明の転がり軸受は、
C0.1〜0.7%、Si1%以下、Mn12〜20
%、Ni5%以下、Cr10〜18%、N0.50%以
下を含有し、残部Fe及び不可避的不純物よりなる鋼に
より形成され、放電浸炭又は放電浸炭窒化によるロック
ウェルC硬度HRC55以上の表面硬度を有する表面硬化
層を備えて、透磁率を1.1%以下に保持した非磁性転
がり軸受部品である。
The rolling bearing of the present invention comprises:
C 0.1 to 0.7%, Si 1% or less, Mn 12 to 20
%, Ni 5% or less, Cr 10-18%, N 0.50% or less, and formed by steel consisting of the balance Fe and unavoidable impurities, the surface of Rockwell C hardness H RC 55 or more by discharge carburizing or discharge carbonitriding A non-magnetic rolling bearing part having a hardened surface layer and having a magnetic permeability of 1.1% or less.

【0011】[0011]

【作用】本発明の非磁性軸受部品は、MnとCrとを多
量に含有したオーステナイト鋼であって、鋼中にC0.
1〜0.7%を含有しても、安定した非磁性となり、透
磁率を1.0〜1.1の範囲内に保持する。
The non-magnetic bearing component of the present invention is an austenitic steel containing a large amount of Mn and Cr, and C0.
Even if it contains 1 to 0.7%, it becomes stable non-magnetic and maintains the magnetic permeability within the range of 1.0 to 1.1.

【0012】C量は、オーステナイト組織を強化するの
で好ましいが、0.7%を越えると内質部が硬化して、
加工性を害するので、0.7%を上限とするのがよい。
The C content is preferable because it strengthens the austenite structure, but if it exceeds 0.7%, the internal portion is hardened,
The workability is impaired, so 0.7% is preferable as the upper limit.

【0013】Mnは、オーステナイト形成元素として必
要であるが、多量添加は、加工硬化が大きく、加工性を
害するので20%を上限とするのがよい。
[0013] Mn is necessary as an austenite forming element, but if a large amount is added, work hardening is large and workability is impaired, so 20% is preferable as the upper limit.

【0014】CrはMnと共存して非磁性化を促進安定
させ、多量添加によって加工誘起マルテンサイトの発生
を防止するので必要であり、表層部の浸炭層で、炭化物
や窒化物を形成・分散して、硬化させる元素として重要
である。Crの多量添加は、耐蝕性と高温強度を高める
ので好ましいが、他方20%Crを超えると靱性を害す
る。
Cr is necessary because it coexists with Mn to promote and stabilize demagnetization and to prevent the generation of work-induced martensite by adding a large amount, and forms and disperses carbides and nitrides in the carburized layer in the surface layer portion. Then, it is important as an element for hardening. Addition of a large amount of Cr is preferable because it enhances corrosion resistance and high temperature strength, but if it exceeds 20% Cr, toughness is impaired.

【0015】Niは、オーステナイト形成元素である
が、多量添加により、使用中の加工誘起マルテンサイト
を生じさせる磁性を帯び、また高価であるので5%を上
限とする。
Ni is an austenite-forming element, but when added in a large amount, it has magnetism that causes work-induced martensite in use, and is expensive, so the upper limit is 5%.

【0016】Nは、オーステナイト安定化元素であるの
で、Mnと共に好ましく添加され、Ni及びMnの一部
を安価に代替することができる。
Since N is an austenite stabilizing element, it is preferably added together with Mn, and Ni and Mn can be partially replaced at low cost.

【0017】上記組成のオーステナイト鋼で、転がり軸
受の軌道輪や転動体を形成し、その外表面には放電浸炭
処理または放電浸炭窒化処理により、高炭素の浸炭硬化
層が形成される。浸炭層中のC量は、1〜2%の範囲を
確保する。放電浸炭処理では、転がり軸受とその近傍に
配置された陽極との間に電圧を付加し、炭化水素ガス雰
囲気の減圧下で、グロー放電させると、励起した炭化水
素やその解離したイオンが、軸受部品の表面に衝突して
吸着されて、表層部に拡散移動し、炭素濃化層を形成す
る。
An austenitic steel having the above composition is used to form a bearing ring or rolling element of a rolling bearing, and a carburized hard layer of high carbon is formed on the outer surface of the bearing ring by discharge carburizing or discharge carbonitriding. The amount of C in the carburized layer should be in the range of 1 to 2%. In the electric discharge carburizing process, a voltage is applied between the rolling bearing and the anode arranged in the vicinity of the rolling bearing, and when glow discharge is performed under a reduced pressure in a hydrocarbon gas atmosphere, excited hydrocarbons and their dissociated ions are generated. It collides with the surface of the component, is adsorbed, diffuses and moves to the surface layer, and forms a carbon concentrated layer.

【0018】放電浸炭過程で、イオンの表面への衝突に
よって、表面の不動態被膜や酸化物層を除去して清浄化
するので、Mn−Cr鋼表面は活性となり、浸炭を促進
する。特に、放電浸炭に先立ち、減圧下の不活性雰囲気
(例えばArガス中)で、放電させてスパッタリング作
用により表面の清浄化を行えば、その後の浸炭過程の浸
炭が速やかに進行する。
During the discharge carburization process, the surface of the Mn-Cr steel is activated and the carburization is promoted because the passivation film and oxide layer on the surface are removed and cleaned by the collision of the ions with the surface. In particular, prior to discharge carburization, if the surface is cleaned by a discharge action by discharging in an inert atmosphere under reduced pressure (for example, in Ar gas), carburization in the subsequent carburization process proceeds rapidly.

【0019】放電浸炭は、上記組成鋼を950〜120
0℃に加熱保持し、浸炭過程で1〜50mmHgの炭化
水素ガス雰囲気中で実施すると、処理時間2〜3時間に
て浸炭層0.2mm以上、望ましくは0.4mm以上は
容易に得られる。
The discharge carburization is performed by using the above composition steel in the range of 950 to 120.
When heated and held at 0 ° C. and carried out in a hydrocarbon gas atmosphere of 1 to 50 mmHg in the carburizing process, a carburized layer of 0.2 mm or more, preferably 0.4 mm or more can be easily obtained in a processing time of 2 to 3 hours.

【0020】浸炭後は、減圧のまま炉内放冷する。浸炭
層内の高濃度のCは、浸炭中及び冷却中に鋼中のCr及
びMnと炭化物を分散形成して硬化し、表面硬度がHRC
55以上の硬化層となり、軌道面の耐摩耗性が向上す
る。放電浸炭の際、炭化水素ガスとともにアンモニアガ
スを添加することによって、浸炭と窒化を同時に行うこ
とができ、この浸炭窒化により、浸炭単独よりも表面硬
さは上昇し、窒化により高温強度が高くなるので、軌道
面の耐熱性が向上する。
After carburizing, the furnace is allowed to cool while the pressure is reduced. The high concentration of C in the carburized layer forms and hardens due to the formation of carbides and Cr and Mn in the steel during carburization and cooling, and the surface hardness is H RC.
The hardened layer has a hardness of 55 or more, and the wear resistance of the raceway surface is improved. During discharge carburizing, by adding ammonia gas together with hydrocarbon gas, carburizing and nitriding can be performed at the same time.By this carbonitriding, the surface hardness is higher than that of carburizing alone and the high temperature strength is increased by nitriding. Therefore, the heat resistance of the raceway surface is improved.

【0021】[0021]

【実施例】供試材は、表1に示すように0.2%C、
0.5%Si、18.0%Mn、0.03%P、0.0
20%S、15.0%Cr、3%Ni、0.25%Nの
組成を有する鋼(素材A)から熱間加工により外径12
mm、長さ12mmの円柱状試験片を形成し、以下の浸
炭処理を行った。
Example As shown in Table 1, the test materials are 0.2% C,
0.5% Si, 18.0% Mn, 0.03% P, 0.0
Outer diameter 12 by hot working from steel with 20% S, 15.0% Cr, 3% Ni, 0.25% N composition (material A)
A cylindrical test piece having a length of 12 mm and a length of 12 mm was formed and subjected to the following carburizing treatment.

【0022】[0022]

【表1】 [Table 1]

【0023】抵抗加熱式の真空炉内に装入し固定し、抵
抗加熱により1050℃近傍に0.1mmHg以下の減
圧状態で30minの加熱をし、次いでArガスを導入
して、まず、黒鉛対極との間で放電させてスパッタリン
グによる30minの清浄化作業を行った。次いで、1
〜2mmHgの圧力に調整しながら、プロパンガスを炉
内に導入して放電を3h継続して浸炭を行い、次いで減
圧のまま炉内で冷却した。
[0023] It is charged and fixed in a resistance heating type vacuum furnace, and is heated by resistance heating at a reduced pressure of 0.1 mmHg or less for about 30 min at around 1050 ° C, then Ar gas is introduced, and first, a graphite counter electrode. A cleaning operation was performed for 30 minutes by discharging by discharging between and. Then 1
While adjusting the pressure to ˜2 mmHg, propane gas was introduced into the furnace to carry out carburization by continuing discharge for 3 hours, and then cooled in the furnace while keeping the pressure reduced.

【0024】放電浸炭後の表層部のC量は1.5%であ
った。また表層部の断面硬度分布は図1に示すように、
表面から0.2mm深さの範囲までヴィッカース硬度H
v600以上であった。図2に放電浸炭後の表層部の顕
微鏡写真を示す。内質部はオーステナイト単相であるの
に対して、表層部の浸炭層はパーライト状の層状炭化物
が緻密に析出した状態にあることが判る。
The C content in the surface layer portion after discharge carburization was 1.5%. Further, the cross-sectional hardness distribution of the surface layer portion is as shown in FIG.
Vickers hardness H from the surface to a depth of 0.2 mm
It was v600 or more. FIG. 2 shows a micrograph of the surface layer portion after discharge carburization. It can be seen that the interior portion is an austenite single phase, whereas the carburized layer in the surface portion is in a state where pearlite-like layered carbide is densely precipitated.

【0025】放電浸炭後の試験片について、磁気測定を
行い、透磁率を求めたところ、透磁率は1.08であっ
た。
The magnetic permeability of the test piece after discharge carburizing was measured and the magnetic permeability was found to be 1.08.

【0026】比較例として、表2の素材Bの組成を有す
る鋼から、同様の試験片を作成し、溶体化処理後に時効
硬化させたものと、ガス炉により窒化後浸炭窒化処理し
たものを取り上げた。
As comparative examples, steels having the composition of the material B in Table 2 were used to prepare similar test pieces, which were age-hardened after solution treatment and those which were carbonitrided after nitriding in a gas furnace. It was

【0027】時効硬化処理品は、上記素材Bの試験片を
1150℃×60min加熱後油冷し、700℃×4h
加熱後空冷したものである。浸炭窒化処理品は、溶融塩
中580℃×1hの窒化後、ガス炉により浸炭窒化性雰
囲気中で840℃×6hの加熱をし放冷したものであ
る。
For the age-hardened product, the test piece of the above material B was heated at 1150 ° C. for 60 minutes and then cooled with oil, and 700 ° C. for 4 hours.
It was heated and air-cooled. The carbonitrided product is obtained by nitriding in molten salt at 580 ° C. for 1 hour, followed by heating at 840 ° C. for 6 hours in a carbonitriding atmosphere in a gas furnace and allowing it to cool.

【0028】実施例及び比較例の試験ころを用いて、線
接触型寿命試験機により、転がり寿命試験を行った。試
験条件は、試片形状は、直径12mm、長さ12mm
(副曲率半径480mm)に対して、相手型試片に直径
20mm、長さ20mmのころを使用し、接触荷重を
4.9kN(接触応力2.94GPa)及び6.86k
N(同3.29GPa)の二水準として、潤滑はタービ
ン68油の強制循環給油とし、負荷速度は20400c
pmである。試験結果を表2にまとめた。
Using the test rollers of the examples and comparative examples, a rolling life test was conducted with a line contact type life tester. The test conditions are 12 mm in diameter and 12 mm in length for the sample shape.
For the (sub-curvature radius 480 mm), a roller with a diameter of 20 mm and a length of 20 mm is used as the mating sample, and the contact load is 4.9 kN (contact stress 2.94 GPa) and 6.86 k.
With two levels of N (3.29 GPa), lubrication is forced circulation oil of turbine 68 oil, and load speed is 20400c.
pm. The test results are summarized in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】表1において、実施例の素材Aが、比較例
の素材Bに比較して、低炭素とされCr量とMn量とは
共に多量添加されている。表2から、実施例の放電浸炭
処理をした試験片が比較例の窒化−浸炭窒化処理をした
ものより、低荷重条件では転がり寿命が長いことが判
る。この結果は、車両用の中程度の荷重で使用される軸
受として十分に実用になる寿命を示している。また転が
り試験後の透磁率は変化せず、実用上非磁性であるの
で、強磁界中で使用される軸受に使用できる。
In Table 1, the raw material A of the example has a lower carbon content than the raw material B of the comparative example, and a large amount of both Cr and Mn is added. It can be seen from Table 2 that the test piece subjected to the discharge carburizing treatment of the example has a longer rolling life under the low load condition than the test piece subjected to the nitriding-carbonitriding treatment of the comparative example. This result indicates that the bearing has a sufficiently practical life as a bearing used under a medium load for vehicles. Further, since the magnetic permeability after the rolling test does not change and is practically non-magnetic, it can be used for bearings used in a strong magnetic field.

【0031】[0031]

【発明の効果】本発明の非磁性鋼による転がり軸受部品
は、Mn−Cr系オーステナイト鋼によって形成され
て、非磁性であり、高Crとされて加工誘起変態が生じ
難く、かつ表層部の浸炭層も非磁性となる。
INDUSTRIAL APPLICABILITY The rolling bearing component of the non-magnetic steel of the present invention is made of Mn-Cr austenitic steel, is non-magnetic, has a high Cr content and is unlikely to undergo work-induced transformation, and has a carburized surface layer portion. The layer also becomes non-magnetic.

【0032】転がり軸受部品の少なくとも軌道面の表層
部には、放電浸炭により表面硬さHRC55以上の相当厚
みの硬化層が得られて、転がり軸受に要求される軌道面
の転がり寿命が得られる。
At least on the surface layer portion of the raceway surface of the rolling bearing component, a hardened layer having an equivalent thickness of surface hardness H RC 55 or more is obtained by electric discharge carburization to obtain the rolling life of the raceway surface required for the rolling bearing. Be done.

【0033】放電浸炭であるから、浸炭処理を短時間で
行うことができ、軸受熱処理の量産性に優れている。
Since it is discharge carburizing, carburizing can be performed in a short time, and mass productivity of bearing heat treatment is excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電浸炭処理をした試片断面の表面近傍におけ
る硬度分布を示す図。
FIG. 1 is a diagram showing a hardness distribution in the vicinity of the surface of a cross section of a specimen subjected to discharge carburization.

【図2】放電浸炭処理をした試片断面の表面近傍の光学
顕微鏡による金属組織写真(倍率:100)。
FIG. 2 is a metallographic photograph (magnification: 100) of the vicinity of the surface of the cross section of the specimen subjected to the discharge carburizing treatment by an optical microscope.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F16C 33/34 7403−3J 33/62 7403−3J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location F16C 33/34 7403-3J 33/62 7403-3J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C0.1〜0.7%、Si1%以下、M
n12〜20%、Ni5%以下、Cr10〜18%、N
0.50%以下を含有し、残部Fe及び不可避的不純物
よりなる鋼により形成され、放電浸炭又は放電浸炭窒化
によるロックウェルC硬度HRC55以上の表面硬度を有
する表面硬化層を備えて、透磁率を1.1%以下に保持
した非磁性鋼製転がり軸受部品。
1. C 0.1 to 0.7%, Si 1% or less, M
n12-20%, Ni5% or less, Cr10-18%, N
It is formed of steel containing 0.50% or less of balance Fe and unavoidable impurities, and is provided with a surface hardening layer having a surface hardness of Rockwell C hardness H RC 55 or more by discharge carburizing or discharge carbonitriding. Rolling bearing parts made of non-magnetic steel with a magnetic susceptibility of 1.1% or less.
JP16369992A 1992-05-29 1992-05-29 Rolling bearing parts made of nonmagnetic steel Pending JPH05331615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16369992A JPH05331615A (en) 1992-05-29 1992-05-29 Rolling bearing parts made of nonmagnetic steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16369992A JPH05331615A (en) 1992-05-29 1992-05-29 Rolling bearing parts made of nonmagnetic steel

Publications (1)

Publication Number Publication Date
JPH05331615A true JPH05331615A (en) 1993-12-14

Family

ID=15778937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16369992A Pending JPH05331615A (en) 1992-05-29 1992-05-29 Rolling bearing parts made of nonmagnetic steel

Country Status (1)

Country Link
JP (1) JPH05331615A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041663A1 (en) * 1997-03-15 1998-09-24 Fag Aircraft/Super Precision Bearings Gmbh High-performance rolling bearings or rolling components
CN1070538C (en) * 1994-04-18 2001-09-05 空气及水株式会社 Method of carburizing austenitic metal and austentitic metal products obtained thereby
WO2004067979A1 (en) * 2003-01-31 2004-08-12 Nsk Ltd. Needle bearing, shaft, compressor for car air-conditioner, and planetrary gear mechanism for automatic speed changer
WO2006112212A1 (en) * 2005-03-31 2006-10-26 Thk Co., Ltd. Movement guiding device and process for producing the same
CN102002642A (en) * 2010-12-31 2011-04-06 上海加宁新技术研究所 Superhigh strength non-magnetic stainless steel
JP2011190513A (en) * 2010-03-16 2011-09-29 Tnk Sanwa Precision Co Ltd Method for manufacturing sliding component
JP4921560B2 (en) * 2006-10-25 2012-04-25 シャエフラー カーゲー Needle Bearing
JP5432451B2 (en) * 2005-09-26 2014-03-05 アイシン・エィ・ダブリュ株式会社 Steel member, heat treatment method thereof, and production method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070538C (en) * 1994-04-18 2001-09-05 空气及水株式会社 Method of carburizing austenitic metal and austentitic metal products obtained thereby
WO1998041663A1 (en) * 1997-03-15 1998-09-24 Fag Aircraft/Super Precision Bearings Gmbh High-performance rolling bearings or rolling components
WO2004067979A1 (en) * 2003-01-31 2004-08-12 Nsk Ltd. Needle bearing, shaft, compressor for car air-conditioner, and planetrary gear mechanism for automatic speed changer
WO2006112212A1 (en) * 2005-03-31 2006-10-26 Thk Co., Ltd. Movement guiding device and process for producing the same
JP5275626B2 (en) * 2005-03-31 2013-08-28 Thk株式会社 Exercise guidance device
JP5432451B2 (en) * 2005-09-26 2014-03-05 アイシン・エィ・ダブリュ株式会社 Steel member, heat treatment method thereof, and production method thereof
JP4921560B2 (en) * 2006-10-25 2012-04-25 シャエフラー カーゲー Needle Bearing
JP2011190513A (en) * 2010-03-16 2011-09-29 Tnk Sanwa Precision Co Ltd Method for manufacturing sliding component
CN102002642A (en) * 2010-12-31 2011-04-06 上海加宁新技术研究所 Superhigh strength non-magnetic stainless steel

Similar Documents

Publication Publication Date Title
EP0626468B1 (en) Process for carbonitriding steel
US7122086B2 (en) Rolling support device and method for manufacturing the same
JP4423754B2 (en) Manufacturing method of rolling shaft
EP3088550A1 (en) Carburized-steel-component production method, and carburized steel component
JP3792341B2 (en) Soft nitriding steel with excellent cold forgeability and pitting resistance
JPH05331615A (en) Rolling bearing parts made of nonmagnetic steel
JP5786815B2 (en) Steel for carburized or carbonitrided parts
JP2002180203A (en) Needle bearing components, and method for producing the components
JP2961768B2 (en) Rolling bearing
JPH0827542A (en) Antifriction bearing
WO2013060878A1 (en) A bearing component
JP3941520B2 (en) Rolling device
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JP2019039044A (en) Rolling slide member and rolling bearing
JP2000204445A (en) Rolling bearing parts for high temperature use
JPH07110988B2 (en) Rolling bearing
JPH10219402A (en) Rolling supporting device
JP2006299313A (en) Rolling supporter
JP2969225B2 (en) Mechanical structural parts of Mn-Cr non-magnetic steel
JPH01283430A (en) Bearing excellent in rolling fatigue life characteristic
JP3084421B2 (en) Rolling bearing made of carburized steel
JP2011080096A (en) Method for manufacturing rolling-slide member
JP5119717B2 (en) Method for manufacturing rolling bearing component and rolling bearing
WO2000028102A1 (en) High-temperature rolling bearing part
JP2019183211A (en) Carburization component