WO2006112212A1 - Movement guiding device and process for producing the same - Google Patents

Movement guiding device and process for producing the same Download PDF

Info

Publication number
WO2006112212A1
WO2006112212A1 PCT/JP2006/304867 JP2006304867W WO2006112212A1 WO 2006112212 A1 WO2006112212 A1 WO 2006112212A1 JP 2006304867 W JP2006304867 W JP 2006304867W WO 2006112212 A1 WO2006112212 A1 WO 2006112212A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
alloy
guide device
motion guide
raceway
Prior art date
Application number
PCT/JP2006/304867
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Yamashita
Original Assignee
Thk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co., Ltd. filed Critical Thk Co., Ltd.
Priority to JP2007521136A priority Critical patent/JP5275626B2/en
Publication of WO2006112212A1 publication Critical patent/WO2006112212A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/005Guide rails or tracks for a linear bearing, i.e. adapted for movement of a carriage or bearing body there along
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/361Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with cylindrical rollers
    • F16C19/362Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with cylindrical rollers the rollers being crossed within the single row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0602Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly
    • F16C29/0604Details of the bearing body or carriage or parts thereof, e.g. methods for manufacturing or assembly of the load bearing section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H2025/249Special materials or coatings for screws or nuts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members

Definitions

  • the present invention relates to a motion guide device and a manufacturing method thereof, for example, high hardness, corrosion resistance, and the like that are required when used in special environments such as liquid crystal semiconductor manufacturing equipment, food machinery, and the medical field.
  • the present invention relates to a motion guide device having a non-magnetic property and a method for manufacturing the same.
  • the structural member is generally made of a high-hardness metal material such as high-carbon chromium bearing steel, stainless steel or case-hardened steel.
  • the surface hardness that can be obtained when cold-working stainless steel with a force is limited to about 400 with the Bickers hardness HV.
  • Stainless steel with this degree of hardness is the motion guide device.
  • the present invention has been made in view of the above-described problems, and does not require additional manufacturing steps, so that manufacturing costs can be suppressed, and high surface hardness, corrosion resistance, and non-magnetism can be achieved. It is an object of the present invention to provide an unprecedented motion guide device that also has properties and a manufacturing method thereof.
  • the motion guide device is installed on a raceway member and a plurality of rolling elements on the raceway member, and is capable of reciprocating or rotating freely in an axial direction or a circumferential direction of the raceway member. And at least one of the track member and the moving member is made of a Cr—Mn—N-based alloy.
  • the Cr Mn-N-based alloy includes:% by weight: 0.05 to 0.15%, Cr: 16 to 20%, Mn: 9 to 18%, Ni : 0.8-5%, N: 0.1-0.35%, and the balance is preferably austenitic stainless steel with Fe and impurity power. In this specification, it is allowed to contain a trace amount of alloy elements such as Mo, Cu, V, and S as impurities contained in the balance.
  • the Cr-Mn-N-based alloy may have a hardness of 500 or more with a Pitzers hardness HV.
  • the Cr Mn—N-based alloy may have a relative magnetic permeability of 1.01 or less.
  • the raceway member is a screw shaft in which a spiral rolling member rolling groove is formed on an outer peripheral surface, and the moving member is on the inner peripheral surface. It is a nut member in which a helical load rolling groove corresponding to a moving body rolling groove is formed, and the nut member is a load rolling path constituted by the loaded rolling groove and the rolling element rolling groove.
  • the nut of the screw shaft is provided with a return passage that forms an infinite circulation path by connecting one end and the other end, and the plurality of rolling elements are installed so as to be able to circulate in the infinite circulation path.
  • the nut member can be configured as a rolling element screw device that reciprocally moves relative to the screw shaft in association with a relative rotational movement with respect to the member.
  • a method of manufacturing a motion guide apparatus includes a race member, a race member that is installed via a plurality of rolling elements, and can freely reciprocate or rotate in the axial direction or circumferential direction of the race member.
  • a moving member installed movably, wherein at least one of the track member and the moving member is made of a Cr-Mn-N alloy,
  • a process including the above is performed.
  • a reciprocating motion is provided in a raceway member and the raceway member via a plurality of rolling elements, and in the axial direction or the circumferential direction of the raceway member.
  • the moving member is a nut member in which the rolling groove of the rolling element is formed on the inner peripheral surface, and the mechanical force of the Cr Mn—N alloy material is increased to 95% or more of the final shape of the nut member.
  • a motion guide device having a high hardness, excellent corrosion resistance, and non-magnetic properties, and a method for manufacturing the same, without additional manufacturing steps such as surface treatment. Therefore, for example, it is possible to provide an inexpensive motion guide apparatus that can be suitably used even in a special environment such as a liquid crystal semiconductor manufacturing facility, a food machine, or a medical field.
  • FIG. 1 is a vertical cross-sectional side view illustrating an example of a case where the motion guide device according to the present embodiment is configured as a ball screw device.
  • FIG. 2 is a flowchart showing a manufacturing process of a screw shaft according to the present embodiment.
  • FIG. 3 is a flowchart showing a manufacturing process of a nut member according to the present embodiment.
  • FIG. 4A is an external perspective view illustrating an embodiment in which a motion guide device using a Cr—Mn—N alloy according to the present invention is configured as a linear guide device.
  • FIG. 4B is a cross-sectional view for explaining the infinite circuit provided in the linear guide device shown in FIG. 4A.
  • FIG. 5 is an external perspective view illustrating an embodiment in which a motion guide device using a Cr—Mn—N alloy according to the present invention is configured as a spline device.
  • FIG. 6A is a partially longitudinal perspective view illustrating an embodiment in which a motion guide device using a Cr—Mn—N alloy according to the present invention is configured as a rotary bearing device.
  • FIG. 6B is a view showing a longitudinal section of the rotary bearing device shown in FIG. 6A.
  • FIG. 1 is a vertical cross-sectional side view illustrating one mode when the motion guide device according to this embodiment is configured as a ball screw device.
  • a ball screw device 10 moves through a screw shaft 11 as a race member and a plurality of rolling elements balls 12 to the screw shaft 11. And a nut member 31 as a movable member that can be freely attached. On the outer peripheral surface of the screw shaft 11, two spiral rolling element rolling grooves 11a, 11a are formed.
  • both members of the screw shaft 11 and the nut main body 32 constituting the nut member 31 are made of a Cr—Mn—N-based alloy manufactured by a process described later.
  • the nut member 31 includes a nut main body 32 and resin side covers 33 and 33 attached to both ends thereof. On the outer periphery of the nut body 32, a flange 32a for attaching the nut member 31 to its counterpart part is formed. In addition, on the inner peripheral surface of the nut body 32, two strips of load rolling grooves 32b and 32b extending spirally corresponding to the rolling element rolling grooves 11a and 11a are formed. Helical load rolling paths 20 and 20 are formed by the combination of the rolling element rolling grooves 11a and 11a and the load rolling grooves 32b and 32b.
  • Two return passages 34, 34 penetrating the nut main body 32 in the axial direction are formed in the nut main body 32 of the nut member 31.
  • the side lid 33 has a return piece 35 and a cover 36 that covers the outer side of the return piece 35, and the direction connecting the return path 34, 34 and the load rolling path 20, 20 by the left and right return pieces 35, 35, respectively.
  • Diversion paths 37, 37 are formed.
  • the combination of the return path 34, 34 and the direction change path 37, 37 constitutes the unloaded rolling path 38, 38 of the ball 12, and the combination of the unloaded rolling path 38, 38 and the loaded rolling path 20, 20
  • the infinite circulation paths 39 and 39 are constituted by the above.
  • the ball screw device 10 allows the nut member 31 to move relative to the screw shaft 11 as the screw shaft 11 rotates relative to the nut member 31. Can now reciprocate! /
  • the two side lids 33, 33 of the nut member 31 are manufactured by the steps described later in the same manner as the force nut body 32 and the screw shaft 11 which are exemplified by the case of being made of grease. It is possible to configure with a Cr—Mn—N based alloy. Further, in FIG. 1, the motion guide device according to this embodiment may be configured as a roller screw device by using the force roller described by exemplifying the case where the ball 12 is used as the rolling element. Further, the nut member 31 shown in FIG. 1 employs a so-called end cap method, but a member employing a return nove, a deflector, or the like is also applicable.
  • the metal material to be processed in the manufacturing method according to the present embodiment employs a high Mn high N Cr-Mn-N alloy as exemplified in the following table.
  • the steel types shown in the table below have a hardness of 500 or more in Pitzkaas hardness HV only by undergoing cold working without any special treatment, and the strength also maintains the same corrosion resistance as SUS304, etc.
  • the magnetic permeability achieves a value of 1.01 or less. Therefore, it can be suitably used for a motion guide device used in a special environment.
  • the Cr—Mn—N-based alloy according to the embodiment is the same by weight%: 0.05 to 0.1. 5%, Cr: 16-20%, Mn: 9-18%, Ni: 0.8-5%, N: 0.1-0.35%, the balance is austenitic stainless steel with Fe and impurity power Preferably it is.
  • the Cr-Mn-N alloy having the characteristics of high hardness, high corrosion resistance and non-magnetism can be obtained by the function and effect exhibited by each alloy element having a limited composition range.
  • FIG. 2 is a flowchart showing a manufacturing process of the screw shaft according to the present embodiment.
  • the screw shaft 11 according to this embodiment is manufactured by a reduction process (step S10) in which a reduction process is performed on a Cr-Mn-N austenitic stainless steel material (step S10), and the reduction process is performed by this extraction process (step S10). This is performed by carrying out a molding (step S11 to step S18) molding process for forming the screw shaft 11 by mechanically cleaning the material.
  • a Cr—Mn—N austenitic stainless steel material is obtained, and first, a reduction treatment as a drawing process is performed (step S 10).
  • This drawing process is performed in order to physically stabilize the material that will be subjected to the rolling process later.
  • a reduction process of about 25 to 45% is performed.
  • Step S11 the material is subjected to rough machining as a previous stage to undergo machining, and a rough outline shape is cut out by centerless grinding (step S11), and the outline shape is adjusted by chamfering. (Step S12).
  • the material is subsequently finished.
  • this finishing process first, a rolling process is performed on the surface of the material after the roughing process to form the rolling element rolling groove 1 la (step S13). And by cutting to a predetermined length, the screw shaft After defining the axial length of 11 (Step S14), intermediate correction (Step SI 5), terminal processing before finishing correction (Step S16), and finishing correction (Step S17), the terminal force as finishing A check is performed (step S18).
  • the forming of the screw shaft 11 is completed by performing the forming and covering process (Step SI 1 to Step S18) described above.
  • step S19 a product inspection is performed (step S19). After confirming that the completed screw shaft 11 satisfies a predetermined standard, the product is assembled in the motion guide device. Will be included.
  • the screw shaft 11 thus completed exhibits a value of 500 or more in terms of Vickers hardness HV. This is due to the work hardening caused by the cold working such as the rolling cage carried out in step S13, and is due to the effect of the suitably contained N. Therefore, the screw shaft 11 manufactured by the manufacturing method according to the present embodiment can obtain a desired hardness only by performing a forming process without adding an extra processing step such as a surface treatment.
  • the screw shaft 11 manufactured by the manufacturing method according to the present embodiment can maintain the same corrosion resistance as that of SUS304 or the like due to the effect of Mn and Ni contained suitably.
  • the screw shaft 11 manufactured by the manufacturing method according to the present embodiment has a high hardness, an excellent corrosion resistance, and also maintains non-magnetic properties. It can be suitably applied as a component of the ball screw device 10 used below.
  • FIG. 3 is a flowchart showing the manufacturing process of the nut member according to the present embodiment.
  • the production of the nut member 31 according to this embodiment is performed by a rough caulking process (step S20 to step S23) in which a mechanical calorie is applied to a Cr-Mn-N alloy material to 95% or more of the final shape of the nut member.
  • a finishing process step S24 to step S27 for obtaining a nut member by applying a finishing force to the member subjected to the rough cleaning process (step S20 to step S23). Line by carrying out Is called.
  • a characteristic point in the manufacturing process of the nut member 31 according to the present embodiment is that a roughing process (step S20 to step S23) and a finishing process (step S24 to step S27) are performed in two stages.
  • the nut member 31 is in production.
  • the load rolling groove 32b as the rolling groove of the rolling element formed on the inner peripheral surface of the nut member 31 is a rough material that is subjected to mechanical force up to 95% or more of the final shape of the nut member 31. It is formed by a rolling tap cover (step S22) as a mold and a rolling tap cover (step S26) as a finish cover.
  • the nut member 31 is manufactured by first obtaining a Cr-Mn-N austenitic stainless steel material and cutting the material into a suitable size. (Step S 20). Then, inner diameter drilling, rolling tapping, and outer shape processing are performed as roughing (steps S21 to S23).
  • the material that has been rough-cured in this way is then divided into a top hole (step S24), a flange-chamber for forming the flange 32a (step S25), and a rough-rolled load rolling groove.
  • a rolling tap cover (Step S26) for completing 32b is applied, and then cylindrical processing (Step S27), which is a molding finishing process, is performed.
  • the nut member 31 is completely formed through such a forming / caching process.
  • the significant properties of the completed nut member 31 are the same as in the case of the screw shaft 11 described above. In addition to its high hardness, it has excellent corrosion resistance and is non-magnetic (relative permeability is 1. In particular, it can be suitably applied as a component of the ball screw device 10 used in a special environment.
  • the two members of the screw shaft 11 and the nut body 32 are made of Cr-Mn-N austenitic stainless steel. Only the vicinity of the spiral load rolling paths 20 and 20 can be formed of austenitic stainless steel subjected to the processing according to the present embodiment. That is, the screw shaft 11 that is the raceway member or the nut body 32 that constitutes the moving member has at least the rolling element rolling surface such as the load rolling path 20 in contact with the plurality of balls 12. Aus of the system It can be assumed that it is made of tenite stainless steel. Furthermore, all the members constituting the movement guide device can be made of Cr Mn—N austenitic stainless steel manufactured by the manufacturing method according to the present embodiment.
  • the motion guide device using the Cr—Mn—N alloy according to the present invention is installed on the raceway member and the raceway member via a plurality of rolling elements, and reciprocates in the axial direction or the circumferential direction of the raceway member.
  • the motion guide device using a Cr—Mn— ⁇ alloy according to the present invention can be configured as a linear guide device as shown in FIGS. 4A and 4B.
  • FIG. 4A is an external perspective view illustrating an embodiment in which a motion guide device using a Cr—Mn—N alloy according to the present invention is configured as a linear guide device.
  • FIG. 4B is a cross-sectional view for explaining the infinite circuit provided in the linear guide device shown in FIG. 4A.
  • the linear guide device 40 illustrated in FIG. 4A and FIG. 4B is slidable via a track rail 41 as a track member and balls 42 that are installed on the track rail 41 as a large number of rolling elements. And a moving block 43 as a moving member attached to the.
  • the track rail 41 is a long member whose cross section perpendicular to the longitudinal direction is formed in a substantially rectangular shape.
  • the rolling element rolling groove 41a which becomes a track when the ball rolls on its surface (upper surface and both side surfaces). ... is formed over the entire length of the track rail 41.
  • the track rail 41 may be formed to extend linearly or may be formed to extend in a curved line.
  • the number of rolling element rolling grooves 41a Is four in total, two on each side, but the number can be changed according to the application of the linear guide device 40 and the like.
  • the moving block 43 is loaded at positions corresponding to the rolling element rolling grooves 41a.
  • the rolling element rolling groove 43a '" is provided.
  • a plurality of balls 42 are formed.
  • the moving block 43 includes four unloaded rolling paths 53 extending in parallel with the rolling element rolling grooves 41 a, each unloaded rolling path 53, and each loaded rolling path 52.
  • a combination of one loaded rolling path 52 and unloaded rolling path 53 and a pair of direction changing paths 55 connecting them forms one infinite circuit (see FIG. 4B).
  • a plurality of balls 42 are installed in an infinite circulation path composed of a load rolling path 52, a no-load rolling path 53, and a pair of directional switching paths 55, 55 so as to allow infinite circulation.
  • the moving block 43 can reciprocate relative to the track rail 41.
  • At least one of the track rail 41 and the moving block 43 is made of a Cr-Mn-N alloy formed by the manufacturing method according to the present invention. Is possible. By using such a Cr—Mn—N alloy as a constituent member, it is possible to realize a linear guide device 40 having excellent properties such as high hardness, high corrosion resistance, and non-magnetism that are not available in the past.
  • the present invention can be used as a spline arrangement.
  • FIG. 5 is an external perspective view illustrating an embodiment in which the motion guide device using the Cr Mn—N alloy according to the present invention is configured as a spline device.
  • the spline device 60 shown in Fig. 5 includes a spline shaft 61 as a race member and a movable member attached to the spline shaft 61 via a plurality of balls 62 as rolling elements. And a cylindrical outer cylinder 63 as the above.
  • a rolling element rolling groove 6 la ' is formed as a track of the ball 62 and extending in the axial direction of the spline shaft 21 !.
  • the outer cylinder 63 attached to the spline shaft 61 is formed with a loaded rolling element rolling groove corresponding to the rolling element rolling groove 6 la.
  • These load rolling element rolling grooves are formed with a plurality of protrusions extending in the direction in which the rolling element rolling grooves 61a.
  • a load rolling path is formed between the loaded rolling element rolling groove formed on the outer cylinder 63 and the rolling element rolling groove 6 la formed on the spline shaft 61.
  • Next to the load rolling path there is formed a no-load return path through which balls 62 ... released from the load move.
  • the outer cylinder 63 incorporates a cage 64 that holds and holds a plurality of balls 62... In a circuit shape.
  • a plurality of balls 62 are installed between the loaded rolling element rolling groove of the outer cylinder 63 and the rolling element rolling groove 61a of the spline shaft 61 so as to be freely rollable.
  • the outer cylinder 63 can be reciprocated relative to the spline shaft 61 by being installed so as to be infinitely circulated therethrough.
  • At least one of the spline shaft 61 and the outer cylinder 63 can be composed of a Cr Mn-N alloy formed by the manufacturing method according to the present invention. It is. By using such a Cr—Mn—N alloy as a constituent member, it is possible to realize a spline device 60 that has excellent properties such as high hardness, high corrosion resistance and non-magnetism that have not been conventionally available.
  • FIGS. 6A and 6B are partially longitudinal perspective views illustrating an embodiment in which the motion guide device is configured as a rotary bearing device using the Cr Mn—N alloy according to the present invention.
  • FIG. 6B is a view showing a longitudinal section of the rotary bearing device shown in FIG. 6A.
  • the motion guide device configured as the rotary bearing device 70 includes an inner ring 71 having an inner raceway groove 72 having a V-shaped cross section on the outer peripheral surface, and a cross section on the inner peripheral surface.
  • the outer ring 73 having the V-shaped outer raceway groove 74 and the raceway 75 having a substantially rectangular cross section formed by the inner raceway groove 72 and the outer raceway groove 74 are cross-arranged so as to be able to roll.
  • rollers 77 as a plurality of rolling elements, the inner ring 71 and the outer ring 73 perform relative rotational movement in the circumferential direction.
  • At least one of the inner ring 71 and the outer ring 73 is formed of a Cr-Mn-N alloy formed by the manufacturing method according to the present invention. Is possible. Such a Cr-Mn-N alloy is used as a component. In particular, it is possible to realize the rotary bearing device 70 that has excellent properties such as high hardness, high corrosion resistance, and non-magnetism that have not been obtained in the past.
  • the present invention can be applied to all types of motion guide devices such as linear guide devices and rolling bearings that can be used only with the above-described linear guide device, spline device, ball screw device, and rotary bearing device. It is apparent from the description of the scope of claims that the embodiments added with such changes or improvements can also be included in the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Transmission Devices (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

A movement guiding device having a track member and a moving member, at least one of which consists of a Cr-Mn-N alloy. Preferably, the Cr-Mn-N alloy is an austenitic stainless steel composed of, in terms of weight percent, 0.05 to 0.15% C, 16 to 20% Cr, 9 to 18% Mn, 0.8 to 5% Ni, 0.1 to 0.35% N and the balance of Fe and impurities. The production of screw shaft (11) as the track member is carried out through the drawing step (step S10) of performing reduction of a Cr-Mn-N austenitic stainless steel material and the forming/processing steps (step S11 to step S18) of machining the material having undergone the reduction of the drawing step (step S10) so as to attain forming thereof as screw shaft (11). Thus, a nonmagnetic movement guiding device of high hardness and high corrosion resistance can be produced at low cost.

Description

明 細 書  Specification
運動案内装置及びその製造方法  Motion guide device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、運動案内装置及びその製造方法に係り、例えば、液晶'半導体製造設 備ゃ食品機械、医療分野等の特殊環境下で用いる際に必要となる、高硬度、耐食 性及び非磁性という性質を兼備する運動案内装置及びその製造方法に関するもの である。  TECHNICAL FIELD [0001] The present invention relates to a motion guide device and a manufacturing method thereof, for example, high hardness, corrosion resistance, and the like that are required when used in special environments such as liquid crystal semiconductor manufacturing equipment, food machinery, and the medical field. The present invention relates to a motion guide device having a non-magnetic property and a method for manufacturing the same.
背景技術  Background art
[0002] 従来から、リニアガイドや直線案内装置、ボールスプライン装置、ボーノレねじ装置な どのような運動案内装置においては、力かる装置を構成する部材が繰り返し転動 '摺 動動作を伴うことから、その構成部材には、一般的に、高炭素クロム軸受鋼ゃステン レス鋼、肌焼鋼のような硬度の高 、金属材料が採用されて 、る。  [0002] Conventionally, in motion guide devices such as linear guides, linear guide devices, ball spline devices, and Bonole screw devices, the members that make up a forceful device are repeatedly rolled and accompanied by a sliding motion. The structural member is generally made of a high-hardness metal material such as high-carbon chromium bearing steel, stainless steel or case-hardened steel.
[0003] 一方、近年の運動案内装置の適用範囲拡大の要請から、例えば、液晶 ·半導体製 造設備や食品機械、医療分野で用いられる機械装置類などのように、腐食環境下に おいて運動案内装置を利用する機会が増力 tlしている。しかしながら、このような腐食 環境下で使用される運動案内装置にあっては、その構成材料に軸受鋼等を用いた のでは早期に発鲭して短寿命に終わることがある。そこで、耐食性ゃ耐薬品性が要 求される場合の構成材料には、ステンレス鋼などの耐食性の良 、材料が用いられて いる。  [0003] On the other hand, in response to the recent demand for expanding the application range of motion guidance devices, for example, exercise in corrosive environments such as liquid crystal / semiconductor manufacturing equipment, food machinery, and machinery used in the medical field. Opportunities to use guidance devices are increasing. However, in a motion guide device used in such a corrosive environment, if bearing steel or the like is used as its constituent material, it may start early and end in a short life. Therefore, materials having good corrosion resistance such as stainless steel are used as constituent materials when corrosion resistance or chemical resistance is required.
[0004] し力しながら、ステンレス鋼を冷間加工した場合に得ることができる表面硬さは、ビッ カース硬さ HVで 400程度が限界であり、この程度の硬度のステンレス鋼を運動案内 装置に用いるには、寿命ゃ耐摩耗性等の観点力も問題があった。  [0004] The surface hardness that can be obtained when cold-working stainless steel with a force is limited to about 400 with the Bickers hardness HV. Stainless steel with this degree of hardness is the motion guide device. When used in the above, there is a problem with the viewpoint power such as wear resistance.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 運動案内装置では、例えば、 SUS303、 SUS304、 SUS316、 SUS316L等のォ ーステナイト系ステンレス鋼が従来力 採用されている力 これらの鋼種は冷間加工 によって金属の結晶構造が一部変化してマルテンサイト組織になってしまうので、製 造過程で耐食性の低下や磁性の発生を誘起してしまう ヽぅ問題を有して!/ヽた。そこ で、余分な製造工程を追加することなぐしかも高い表面硬さと耐食性、非磁性という 性質を兼ね備えた運動案内装置を安価に提供することのできる技術が求められてい た。 [0005] In the motion guide device, for example, austenitic stainless steels such as SUS303, SUS304, SUS316, and SUS316L have been used in the past. Since it becomes a martensite organization, In the manufacturing process, it has a problem of erosion that induces deterioration of corrosion resistance and generation of magnetism! / Therefore, there has been a demand for a technology that can provide an inexpensive motion guide device that has high surface hardness, corrosion resistance, and non-magnetic properties without adding an extra manufacturing process.
[0006] 本発明は、上述した課題に鑑みて成されたものであって、余分な製造工程を追カロ することがないので製造コストを抑制でき、しかも高い表面硬さと耐食性、非磁性とい う性質をも兼ね備えた、従来にない運動案内装置とその製造方法を提供することを 目的とするものである。  [0006] The present invention has been made in view of the above-described problems, and does not require additional manufacturing steps, so that manufacturing costs can be suppressed, and high surface hardness, corrosion resistance, and non-magnetism can be achieved. It is an object of the present invention to provide an unprecedented motion guide device that also has properties and a manufacturing method thereof.
課題を解決するための手段  Means for solving the problem
[0007] 本発明に係る運動案内装置は、軌道部材と、前記軌道部材に複数の転動体を介し て設置され、且つ、前記軌道部材の軸線方向又は周方向に往復運動自在又は回転 運動自在に設置される移動部材と、を備え、前記軌道部材及び前記移動部材の少 なくとも一方が、 Cr—Mn—N系合金で構成されることを特徴とする。  [0007] The motion guide device according to the present invention is installed on a raceway member and a plurality of rolling elements on the raceway member, and is capable of reciprocating or rotating freely in an axial direction or a circumferential direction of the raceway member. And at least one of the track member and the moving member is made of a Cr—Mn—N-based alloy.
[0008] 本発明に係る運動案内装置において、前記 Cr Mn— N系合金は、重量%でじ: 0 . 05〜0. 15%、 Cr: 16〜20%、 Mn: 9〜18%、 Ni: 0. 8〜5%、N: 0. 1〜0. 35 %、残部が Fe及び不純物力もなるオーステナイト系ステンレス鋼であることが好適で ある。なお、本明細書では、残部に含まれる不純物として、 Mo、 Cu、 V、 S等の合金 元素の微量含有を許容するものとする。  [0008] In the motion guide apparatus according to the present invention, the Cr Mn-N-based alloy includes:% by weight: 0.05 to 0.15%, Cr: 16 to 20%, Mn: 9 to 18%, Ni : 0.8-5%, N: 0.1-0.35%, and the balance is preferably austenitic stainless steel with Fe and impurity power. In this specification, it is allowed to contain a trace amount of alloy elements such as Mo, Cu, V, and S as impurities contained in the balance.
[0009] また、本発明に係る運動案内装置において、前記 Cr—Mn—N系合金は、ピツカ ース硬さ HVで 500以上の硬度を有することとすることができる。  [0009] Further, in the motion guide apparatus according to the present invention, the Cr-Mn-N-based alloy may have a hardness of 500 or more with a Pitzers hardness HV.
[0010] さらに、本発明に係る運動案内装置において、前記 Cr Mn— N系合金は、比透 磁率 が 1. 01以下であることとすることができる。  [0010] Further, in the motion guide device according to the present invention, the Cr Mn—N-based alloy may have a relative magnetic permeability of 1.01 or less.
[0011] また、本発明に係る運動案内装置において、前記軌道部材は、外周面に螺旋状の 転動体転走溝が形成されるねじ軸であり、前記移動部材は、内周面に前記転動体 転走溝に対応する螺旋状の負荷転走溝が形成されるナット部材であり、前記ナット部 材は、前記負荷転走溝と前記転動体転走溝とで構成される負荷転走路の一端と他 端とを連結することによって無限循環路を形成する戻し通路を備え、前記複数の転 動体が前記無限循環路に循環可能に設置されることにより、前記ねじ軸の前記ナット 部材に対する相対的な回転運動に伴って、前記ナット部材が前記ねじ軸に対して相 対的に往復運動する転動体ねじ装置として構成することができる。 [0011] Further, in the motion guide device according to the present invention, the raceway member is a screw shaft in which a spiral rolling member rolling groove is formed on an outer peripheral surface, and the moving member is on the inner peripheral surface. It is a nut member in which a helical load rolling groove corresponding to a moving body rolling groove is formed, and the nut member is a load rolling path constituted by the loaded rolling groove and the rolling element rolling groove. The nut of the screw shaft is provided with a return passage that forms an infinite circulation path by connecting one end and the other end, and the plurality of rolling elements are installed so as to be able to circulate in the infinite circulation path. The nut member can be configured as a rolling element screw device that reciprocally moves relative to the screw shaft in association with a relative rotational movement with respect to the member.
[0012] 本発明に係る運動案内装置の製造方法は、軌道部材と、前記軌道部材に複数の 転動体を介して設置され、且つ、前記軌道部材の軸線方向又は周方向に往復運動 自在又は回転運動自在に設置される移動部材と、を備え、前記軌道部材及び前記 移動部材の少なくとも一方が、 Cr—Mn—N系合金で構成される運動案内装置の製 造方法であって、 Cr—Mn—N系合金の素材にリダクション処理を行う引抜工程と、 前記引抜工程によってリダクション処理が行われた素材を機械カ卩ェすることによって 、前記軌道部材又は前記移動部材として成形する成形'加工工程と、を含む工程を 実施することを特徴とする。  [0012] A method of manufacturing a motion guide apparatus according to the present invention includes a race member, a race member that is installed via a plurality of rolling elements, and can freely reciprocate or rotate in the axial direction or circumferential direction of the race member. A moving member installed movably, wherein at least one of the track member and the moving member is made of a Cr-Mn-N alloy, A drawing process for performing reduction treatment on the N-based alloy material, and a forming process step for forming the material subjected to the reduction treatment in the drawing process as the race member or the moving member by mechanically cleaning the material. A process including the above is performed.
[0013] 本発明に係る別の運動案内装置の製造方法において、軌道部材と、前記軌道部 材に複数の転動体を介して設置され、且つ、前記軌道部材の軸線方向又は周方向 に往復運動自在又は回転運動自在に設置される移動部材と、を備え、前記軌道部 材及び前記移動部材の少なくとも一方力 Cr Mn— N系合金で構成される運動案 内装置の製造方法であって、前記移動部材は、内周面に前記転動体の転走溝を形 成されるナット部材であり、 Cr Mn— N系合金の素材に前記ナット部材の最終形状 の 95%以上まで機械力卩ェを行う荒カ卩ェ工程と、前記荒カ卩ェ工程によって荒力卩ェさ れた部材に仕上げ加工を行うことによって前記ナット部材を得る仕上げ工程と、を含 む工程を実施することを特徴とする。  [0013] In another method for manufacturing a motion guide device according to the present invention, a reciprocating motion is provided in a raceway member and the raceway member via a plurality of rolling elements, and in the axial direction or the circumferential direction of the raceway member. A moving member that is freely or rotationally movable, and a method for manufacturing an in-exercise device comprising at least one force Cr Mn-N-based alloy of the track member and the moving member, The moving member is a nut member in which the rolling groove of the rolling element is formed on the inner peripheral surface, and the mechanical force of the Cr Mn—N alloy material is increased to 95% or more of the final shape of the nut member. And a roughing process to be performed, and a finishing process to obtain the nut member by performing a finishing process on a member roughened by the roughing cache process. To do.
[0014] なお上記発明の概要は、本発明の必要な特徴の全てを列挙したものではなぐこれ らの特徴群のサブコンビネーションもまた発明となり得る。  [0014] It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention, and a sub-combination of these feature groups can also be an invention.
発明の効果  The invention's effect
[0015] 本発明によれば、表面処理等の製造工程の追加を伴うことなぐ高硬度で耐食性 に優れ、しかも非磁性という性質を兼ね備える運動案内装置とその製造方法を提供 することができる。したがって、例えば、液晶'半導体製造設備や食品機械、医療分 野等の特殊環境下であっても、好適に用いることが可能な運動案内装置を安価に提 供することができる。  [0015] According to the present invention, it is possible to provide a motion guide device having a high hardness, excellent corrosion resistance, and non-magnetic properties, and a method for manufacturing the same, without additional manufacturing steps such as surface treatment. Therefore, for example, it is possible to provide an inexpensive motion guide apparatus that can be suitably used even in a special environment such as a liquid crystal semiconductor manufacturing facility, a food machine, or a medical field.
図面の簡単な説明 [0016] [図 1]図 1は、本実施形態に係る運動案内装置をボールねじ装置として構成した場合 の一形態を例示する縦断面側面図である。 Brief Description of Drawings FIG. 1 is a vertical cross-sectional side view illustrating an example of a case where the motion guide device according to the present embodiment is configured as a ball screw device.
[図 2]図 2は、本実施形態に係るねじ軸の製造工程を示すフローチャートである。  FIG. 2 is a flowchart showing a manufacturing process of a screw shaft according to the present embodiment.
[図 3]図 3は、本実施形態に係るナット部材の製造工程を示すフローチャートである。  FIG. 3 is a flowchart showing a manufacturing process of a nut member according to the present embodiment.
[図 4A]図 4Aは、本発明に係る Cr— Mn— N系合金を用いた運動案内装置をリニア ガイド装置として構成した場合の一形態を例示する外観斜視図である。  [FIG. 4A] FIG. 4A is an external perspective view illustrating an embodiment in which a motion guide device using a Cr—Mn—N alloy according to the present invention is configured as a linear guide device.
[図 4B]図 4Bは、図 4Aで示したリニアガイド装置が備える無限循環路を説明するため の断面図である。  FIG. 4B is a cross-sectional view for explaining the infinite circuit provided in the linear guide device shown in FIG. 4A.
[図 5]図 5は、本発明に係る Cr—Mn—N系合金を用いた運動案内装置をスプライン 装置として構成した場合の一形態を例示する外観斜視図である。  FIG. 5 is an external perspective view illustrating an embodiment in which a motion guide device using a Cr—Mn—N alloy according to the present invention is configured as a spline device.
[図 6A]図 6Aは、本発明に係る Cr—Mn—N系合金を用いた運動案内装置を回転べ ァリング装置として構成した場合の一形態を例示する部分縦断斜視図である。  [FIG. 6A] FIG. 6A is a partially longitudinal perspective view illustrating an embodiment in which a motion guide device using a Cr—Mn—N alloy according to the present invention is configured as a rotary bearing device.
[図 6B]図 6Bは、図 6Aに示す回転ベアリング装置の縦断面を示す図である。  FIG. 6B is a view showing a longitudinal section of the rotary bearing device shown in FIG. 6A.
符号の説明  Explanation of symbols
[0017] 10 ボールねじ装置、 11 ねじ軸、 11a 転動体転走溝、 12, 42, 62 ボール、 20 負荷転走路、 31 ナット部材、 32 ナット本体、 32a フランジ、 32b 負荷転走溝、 33 側蓋、 34 戻し通路、 35 リターンピース、 36 カバー、 37 方向転換路、 38 無負荷転走路、 39 無限循環路、 40 リニアガイド装置、 41 軌道レール、 41a 転 動体転走溝、 43 移動ブロック、 43a 負荷転動体転走溝、 52 負荷転走路、 53 無負荷転走路、 55 方向転換路、 60 スプライン装置、 61 スプライン軸、 61a 転 動体転走溝、 63 外筒、 64 保持器、 70 回転ベアリング装置、 71 内輪、 72 内 側軌道溝、 73 外輪、 74 外側軌道溝、 75 軌道路、 77 ローラ。  [0017] 10 ball screw device, 11 screw shaft, 11a rolling element rolling groove, 12, 42, 62 ball, 20 load rolling path, 31 nut member, 32 nut body, 32a flange, 32b load rolling groove, 33 side Lid, 34 Return path, 35 Return piece, 36 Cover, 37 Direction change path, 38 No-load rolling path, 39 Endless circulation path, 40 Linear guide device, 41 Track rail, 41a Rolling element rolling groove, 43 Moving block, 43a Loaded rolling element rolling groove, 52 loaded rolling path, 53 unloaded rolling path, 55 direction changing path, 60 spline device, 61 spline shaft, 61a rolling element rolling groove, 63 outer cylinder, 64 cage, 70 rotating bearing device 71 inner ring, 72 inner raceway groove, 73 outer race, 74 outer raceway, 75 raceway, 77 rollers.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明を実施するための好適な実施形態について、図面を用いて説明するHereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings.
。なお、以下の実施形態は、各請求項に係る発明を限定するものではなぐまた、実 施形態の中で説明されて!、る特徴の組み合わせの全てが発明の解決手段に必須で あるとは限らない。 . The following embodiments are not intended to limit the invention according to each claim, and are also described in the embodiments! All combinations of features are essential to the solution of the invention. Not exclusively.
[0019] ボールねじ装置への谪用例 本実施形態に係る運動案内装置については、図 1に示すような転動体 (ボール)ね じ装置として構成することが可能である。なお、図 1は、本実施形態に係る運動案内 装置をボールねじ装置として構成した場合の一形態を例示する縦断面側面図である [0019] Application to ball screw device The motion guide device according to the present embodiment can be configured as a rolling element (ball) screw device as shown in FIG. FIG. 1 is a vertical cross-sectional side view illustrating one mode when the motion guide device according to this embodiment is configured as a ball screw device.
[0020] 図 1に示すように、本実施形態に係るボールねじ装置 10は、軌道部材としてのねじ 軸 11と、そのねじ軸 11に複数の転動体であるボール 12· ··を介して移動自在に取り 付けられる移動部材としてのナット部材 31とを有している。ねじ軸 11の外周面には、 螺旋状の転動体転走溝 11a, 11aが 2条形成されている。本実施形態に係るボール ねじ装置 10では、ねじ軸 11とナット部材 31を構成するナット本体 32との両部材が、 後述する工程によって製造された Cr—Mn—N系合金によって構成されている。 As shown in FIG. 1, a ball screw device 10 according to the present embodiment moves through a screw shaft 11 as a race member and a plurality of rolling elements balls 12 to the screw shaft 11. And a nut member 31 as a movable member that can be freely attached. On the outer peripheral surface of the screw shaft 11, two spiral rolling element rolling grooves 11a, 11a are formed. In the ball screw device 10 according to the present embodiment, both members of the screw shaft 11 and the nut main body 32 constituting the nut member 31 are made of a Cr—Mn—N-based alloy manufactured by a process described later.
[0021] ナット部材 31は、ナット本体 32と、その両端に装着される榭脂製の側蓋 33, 33とを 備えている。ナット本体 32の外周には、ナット部材 31をその相手部品に対して取り付 けるためのフランジ 32aが形成されている。また、ナット本体 32の内周面には、転動 体転走溝 11a, 11aに対応して螺旋状に延びる負荷転走溝 32b, 32bが 2条形成さ れている。これら転動体転走溝 11a, 11aと負荷転走溝 32b, 32bとの組み合わせに よって、螺旋状の負荷転走路 20, 20が形成されている。  The nut member 31 includes a nut main body 32 and resin side covers 33 and 33 attached to both ends thereof. On the outer periphery of the nut body 32, a flange 32a for attaching the nut member 31 to its counterpart part is formed. In addition, on the inner peripheral surface of the nut body 32, two strips of load rolling grooves 32b and 32b extending spirally corresponding to the rolling element rolling grooves 11a and 11a are formed. Helical load rolling paths 20 and 20 are formed by the combination of the rolling element rolling grooves 11a and 11a and the load rolling grooves 32b and 32b.
[0022] ナット部材 31が有するナット本体 32の内部には、ナット本体 32を軸方向に貫く 2本 の戻し通路 34, 34が形成されている。側蓋 33は、リターンピース 35とその外側に被 せられるカバー 36とを有しており、左右のリターンピース 35, 35によって、それぞれ 戻し通路 34, 34と負荷転走路 20, 20とを結ぶ方向転換路 37, 37が形成されている 。戻し通路 34, 34と方向転換路 37, 37との組み合わせによって、ボール 12の無負 荷転走路 38, 38が構成され、それら無負荷転走路 38, 38と負荷転走路 20, 20との 組み合わせによって無限循環路 39, 39が構成される。  [0022] Two return passages 34, 34 penetrating the nut main body 32 in the axial direction are formed in the nut main body 32 of the nut member 31. The side lid 33 has a return piece 35 and a cover 36 that covers the outer side of the return piece 35, and the direction connecting the return path 34, 34 and the load rolling path 20, 20 by the left and right return pieces 35, 35, respectively. Diversion paths 37, 37 are formed. The combination of the return path 34, 34 and the direction change path 37, 37 constitutes the unloaded rolling path 38, 38 of the ball 12, and the combination of the unloaded rolling path 38, 38 and the loaded rolling path 20, 20 The infinite circulation paths 39 and 39 are constituted by the above.
[0023] 以上の構成を有することによって、本実施形態に係るボールねじ装置 10は、ねじ軸 11のナット部材 31に対する相対的な回転運動に伴って、ナット部材 31がねじ軸 11 に対して相対的に往復運動できるようになって!/、る。  With the above configuration, the ball screw device 10 according to the present embodiment allows the nut member 31 to move relative to the screw shaft 11 as the screw shaft 11 rotates relative to the nut member 31. Can now reciprocate! /
[0024] なお、ナット部材 31が有する 2つの側蓋 33, 33については、榭脂によって構成する 場合を例示した力 ナット本体 32やねじ軸 11と同様に、後述する工程によって製造 された Cr—Mn—N系合金によって構成することが可能である。また、図 1では、転動 体にボール 12を用いた場合を例示して説明した力 ローラを用いることによって、本 実施形態に係る運動案内装置をローラねじ装置として構成しても良い。さらに、図 1 において示したナット部材 31は、いわゆるエンドキャップ方式を採用したものであるが 、リターンノイブやデフレクタ等を採用したものも適用可能である。 [0024] The two side lids 33, 33 of the nut member 31 are manufactured by the steps described later in the same manner as the force nut body 32 and the screw shaft 11 which are exemplified by the case of being made of grease. It is possible to configure with a Cr—Mn—N based alloy. Further, in FIG. 1, the motion guide device according to this embodiment may be configured as a roller screw device by using the force roller described by exemplifying the case where the ball 12 is used as the rolling element. Further, the nut member 31 shown in FIG. 1 employs a so-called end cap method, but a member employing a return nove, a deflector, or the like is also applicable.
[0025] 次に、図 1において示したねじ軸 11とナット本体 32の製造方法を例示することによ つて、本実施形態に係る運動案内装置の製造方法を説明する。  Next, a method for manufacturing the motion guide device according to the present embodiment will be described by illustrating a method for manufacturing the screw shaft 11 and the nut body 32 shown in FIG.
[0026] 本実施形態に係る製造方法で処理対象とされる金属材料には、以下に示す表に おいて例示するような、高 Mn高 Nの Cr—Mn—N系合金が採用されている。下表に 示す鋼種は、特殊な処理を経ずとも冷間加工を受けることのみによって硬度がピツカ ース硬さ HVで 500以上となり、し力も SUS304等と同等の耐食性を維持し、さらには 比透磁率 が 1. 01以下の値を達成するものである。したがって、特殊環境下で使 用される運動案内装置に好適に用いることが可能である。  [0026] The metal material to be processed in the manufacturing method according to the present embodiment employs a high Mn high N Cr-Mn-N alloy as exemplified in the following table. . The steel types shown in the table below have a hardness of 500 or more in Pitzkaas hardness HV only by undergoing cold working without any special treatment, and the strength also maintains the same corrosion resistance as SUS304, etc. The magnetic permeability achieves a value of 1.01 or less. Therefore, it can be suitably used for a motion guide device used in a special environment.
[0027] [表 1] [0027] [Table 1]
_i _i
li  li
度ビツ Degree bit
名称i号)(le繊)  Name i) (le fiber)
他その  Other
>  >
 郜
上铜以系系イト ΰ05015 DNMォn- --物純-不 F..+c  铜 铜 system Ito ΰ05015 DNM-n- --pure--F .. + c
郎残土^ οο.Q0Desasτ -''  Remaining soil ^ οο.Q0Desasτ-''
下以 80105000-..  Below 80105000- ..
純物不 F+e:  Pure thing F + e:
ΐ  ΐ
;jαοΈiroO 9I£SAS  ; JαοΈiroO 9I £ SAS
以下  Less than
鈍物不 F+e:  Blunt F + e:
ιο  ιο
n  n
o  o
1 1  1 1
σ  σ
1 1 ο o 1 1 o
ϋ  ϋ
\ 寸  \ Inch
ό ?  ό?
7 7
o o
実施形態に係る Cr—Mn—N系合金は、具体的には、重量%でじ:0. 05〜0. 1 5%、 Cr: 16〜20%、 Mn: 9〜18%、 Ni: 0. 8〜5%、N : 0. 1〜0. 35%、残部が F e及び不純物力もなるオーステナイト系ステンレス鋼であることが好適である。これら 組成範囲の限定された各合金元素が発揮する作用効果によって、高硬度、高耐食 性、非磁性という特性を兼ね備えた Cr—Mn—N系合金を得ることが可能となる。 Specifically, the Cr—Mn—N-based alloy according to the embodiment is the same by weight%: 0.05 to 0.1. 5%, Cr: 16-20%, Mn: 9-18%, Ni: 0.8-5%, N: 0.1-0.35%, the balance is austenitic stainless steel with Fe and impurity power Preferably it is. The Cr-Mn-N alloy having the characteristics of high hardness, high corrosion resistance and non-magnetism can be obtained by the function and effect exhibited by each alloy element having a limited composition range.
[0029] 以上、 Cr Mn— N系のオーステナイト系ステンレス鋼の合金成分の選定理由を説 明した。力かる成分範囲のオーステナイト系ステンレス鋼を用いることによって、従来 では実現できなかった高硬度、高耐食性及び非磁性と 、う性質を得ることができる。 ただし、本発明の適用は上に示した表の成分範囲に含まれるものであればどのような 成分系のオーステナイト系ステンレス鋼も含まれるものであり、例えば、 Cr—高 Ni系、 Cr 高 Mn系、 Cr Ni— N系のオーステナイト系ステンレス鋼をも含む趣旨である。 以下、その製造方法を具体的に説明する。  [0029] The reason for selecting the alloy components of Cr Mn-N austenitic stainless steel has been described above. By using austenitic stainless steel with a strong component range, it is possible to obtain high hardness, high corrosion resistance, and non-magnetic properties that could not be realized in the past. However, the application of the present invention includes any component austenitic stainless steel as long as it is included in the component ranges shown in the table above. For example, Cr—high Ni, Cr high Mn This also includes the Cr Ni—N austenitic stainless steels. Hereinafter, the manufacturing method will be specifically described.
[0030] ねじ軸の製诰工程  [0030] Iron shaft making process of screw shaft
図 2は、本実施形態に係るねじ軸の製造工程を示すフローチャートである。本実施 形態に係るねじ軸 11の製造は、 Cr— Mn— N系のオーステナイト系ステンレス鋼素 材にリダクション処理を行う引抜工程 (ステップ S 10)と、この引抜工程 (ステップ S 10) によってリダクション処理が行われた素材を機械カ卩ェすることによって、ねじ軸 11とし て成形する成形'カ卩ェ工程 (ステップ S11〜ステップ S18)と、を実施することによって 行われる。  FIG. 2 is a flowchart showing a manufacturing process of the screw shaft according to the present embodiment. The screw shaft 11 according to this embodiment is manufactured by a reduction process (step S10) in which a reduction process is performed on a Cr-Mn-N austenitic stainless steel material (step S10), and the reduction process is performed by this extraction process (step S10). This is performed by carrying out a molding (step S11 to step S18) molding process for forming the screw shaft 11 by mechanically cleaning the material.
[0031] 具体的には、 Cr—Mn—N系のオーステナイト系ステンレス鋼の素材を入手し、ま ず、引抜工程としてのリダクション処理を行う(ステップ S 10)。この引抜工程 (ステップ S10)は、後に転造加工を受ける素材を物理的に安定させるために行われるもので あり、本実施形態の場合は、 25〜45%程度のリダクション処理が実施される。  Specifically, a Cr—Mn—N austenitic stainless steel material is obtained, and first, a reduction treatment as a drawing process is performed (step S 10). This drawing process (step S10) is performed in order to physically stabilize the material that will be subjected to the rolling process later. In this embodiment, a reduction process of about 25 to 45% is performed.
[0032] 続いて、素材は加工を受ける前段階としての荒加工を受けることになり、センタレス 研削によって大まかな外郭形状が削り出され (ステップ S 11)、面取り加工によってそ の外郭形状を整えられる (ステップ S 12)。  [0032] Subsequently, the material is subjected to rough machining as a previous stage to undergo machining, and a rough outline shape is cut out by centerless grinding (step S11), and the outline shape is adjusted by chamfering. (Step S12).
[0033] 素材の荒加工が完了すると、続いて素材に対する仕上げ加工が施される。この仕 上げ加工では、まず、荒加工後の素材表面に転造加工が行われて転動体転走溝 1 laが形成される (ステップ S13)。そして、所定の長さに切断を行うことによってねじ軸 11の軸長を規定し (ステップ S 14)、中間矯正 (ステップ SI 5)、仕上げ矯正前の端末 加工 (ステップ S16)、仕上げ矯正 (ステップ S17)という加工工程を経て、仕上げとし ての端末力卩ェが行われる (ステップ S18)。以上説明した成形'カ卩ェ工程 (ステップ SI 1〜ステップ S18)を行うことによって、ねじ軸 11の成形が完了する。 [0033] When the roughing of the material is completed, the material is subsequently finished. In this finishing process, first, a rolling process is performed on the surface of the material after the roughing process to form the rolling element rolling groove 1 la (step S13). And by cutting to a predetermined length, the screw shaft After defining the axial length of 11 (Step S14), intermediate correction (Step SI 5), terminal processing before finishing correction (Step S16), and finishing correction (Step S17), the terminal force as finishing A check is performed (step S18). The forming of the screw shaft 11 is completed by performing the forming and covering process (Step SI 1 to Step S18) described above.
[0034] なお、ねじ軸 11の成形が完了すると、成品検査が実施され (ステップ S19)、完成し たねじ軸 11が所定の規格を満足していることを確認した後、運動案内装置に組み込 まれることになる。 [0034] When the formation of the screw shaft 11 is completed, a product inspection is performed (step S19). After confirming that the completed screw shaft 11 satisfies a predetermined standard, the product is assembled in the motion guide device. Will be included.
[0035] このようにして完成したねじ軸 11は、ビッカース硬さ HVで 500以上の値を示す。こ れは、ステップ S13で実施される転造カ卩ェ等の冷間加工の実施によって引き起こさ れる加工硬化によるものであり、好適に含有される Nの効果による。したがって、本実 施形態に係る製造方法によって製造されたねじ軸 11は、表面処理等の余分な加工 工程を追加することなぐ成形加工を行うことのみによって、所望の硬度を得ることが できる。  [0035] The screw shaft 11 thus completed exhibits a value of 500 or more in terms of Vickers hardness HV. This is due to the work hardening caused by the cold working such as the rolling cage carried out in step S13, and is due to the effect of the suitably contained N. Therefore, the screw shaft 11 manufactured by the manufacturing method according to the present embodiment can obtain a desired hardness only by performing a forming process without adding an extra processing step such as a surface treatment.
[0036] また、本実施形態に係る製造方法によって製造されたねじ軸 11は、好適に含有さ れる Mnや Niの効果によって、 SUS304等と同等の耐食性を維持することができる。  [0036] Further, the screw shaft 11 manufactured by the manufacturing method according to the present embodiment can maintain the same corrosion resistance as that of SUS304 or the like due to the effect of Mn and Ni contained suitably.
[0037] さらに、ねじ軸 11の比透磁率 を測定したところ、 1. 01以下を達成した。このこと から、本実施形態に係る製造方法によって製造されたねじ軸 11は、高い硬度を有す るという性質のほか、耐食性に優れ、さらに非磁性をも維持しているので、特に、特殊 環境下で用いられるボールねじ装置 10の構成部材として、好適に適用することが可 能である。  [0037] Further, when the relative permeability of the screw shaft 11 was measured, 1.01 or less was achieved. Therefore, the screw shaft 11 manufactured by the manufacturing method according to the present embodiment has a high hardness, an excellent corrosion resistance, and also maintains non-magnetic properties. It can be suitably applied as a component of the ball screw device 10 used below.
[0038] ナット部材の製造工程  [0038] Manufacturing process of nut member
次に、図 3を用いることによって、 Cr— Mn— N系のオーステナイト系ステンレス鋼を 用いたナット部材 31の製造工程について説明する。図 3は、本実施形態に係るナット 部材の製造工程を示すフローチャートである。本実施形態に係るナット部材 31の製 造は、 Cr—Mn—N系合金の素材にナット部材の最終形状の 95%以上まで機械カロ ェを行う荒カ卩ェ工程 (ステップ S 20〜ステップ S23)と、この荒カ卩ェ工程 (ステップ S2 0〜ステップ S23)によって荒カ卩ェされた部材に仕上げ力卩ェを行うことによってナット 部材を得る仕上げ工程 (ステップ S24〜ステップ S27)と、を実施することによって行 われる。 Next, the manufacturing process of the nut member 31 using Cr—Mn—N austenitic stainless steel will be described with reference to FIG. FIG. 3 is a flowchart showing the manufacturing process of the nut member according to the present embodiment. The production of the nut member 31 according to this embodiment is performed by a rough caulking process (step S20 to step S23) in which a mechanical calorie is applied to a Cr-Mn-N alloy material to 95% or more of the final shape of the nut member. And a finishing process (step S24 to step S27) for obtaining a nut member by applying a finishing force to the member subjected to the rough cleaning process (step S20 to step S23). Line by carrying out Is called.
[0039] 本実施形態に係るナット部材 31の製造工程で特徴的な点は、荒加工工程 (ステツ プ S20〜ステップ S23)と仕上げ工程 (ステップ S24〜ステップ S27)という 2段階のェ 程によって、ナット部材 31を製造するところにある。特に、ナット部材 31の内周面に 形成される転動体の転走溝としての負荷転走溝 32bは、ナット部材 31の最終形状の 95%以上まで機械力卩ェが行われる素材荒カ卩ェとしての転造タップカ卩ェ (ステップ S2 2)と、仕上げカ卩ェとしての転造タップカ卩ェ (ステップ S26)とによって成形加工されて いる。このような 2段階の成形加工を受けることによって、高い硬度を得ることが可能と なる。  [0039] A characteristic point in the manufacturing process of the nut member 31 according to the present embodiment is that a roughing process (step S20 to step S23) and a finishing process (step S24 to step S27) are performed in two stages. The nut member 31 is in production. In particular, the load rolling groove 32b as the rolling groove of the rolling element formed on the inner peripheral surface of the nut member 31 is a rough material that is subjected to mechanical force up to 95% or more of the final shape of the nut member 31. It is formed by a rolling tap cover (step S22) as a mold and a rolling tap cover (step S26) as a finish cover. By undergoing such a two-stage molding process, high hardness can be obtained.
[0040] 具体的な製造工程を説明すると、ナット部材 31の製造は、まず、 Cr— Mn— N系の オーステナイト系ステンレス鋼の素材を入手した上で、この素材を好適な大きさに切 断することから始まる (ステップ S 20)。そして、荒加工としての内径ドリル加工と転造タ ップ加工、及び外形形状加工が行われる(ステップ S21〜ステップ S23)。  [0040] Explaining the specific manufacturing process, the nut member 31 is manufactured by first obtaining a Cr-Mn-N austenitic stainless steel material and cutting the material into a suitable size. (Step S 20). Then, inner diameter drilling, rolling tapping, and outer shape processing are performed as roughing (steps S21 to S23).
[0041] こうして荒カ卩ェされた素材には、次に、コマ孔加ェ (ステップ S 24)、フランジ 32a形 成のためのフランジカ卩ェ (ステップ S25)、荒加工された負荷転走溝 32bを完成させ るための転造タップカ卩ェ (ステップ S26)が施された上で、成形の仕上げ工程である 円筒加工 (ステップ S27)が実施される。このような成形'カ卩ェ工程を経ることによって 、ナット部材 31の成形が完了する。なお、完成したナット部材 31の備える有意な性質 については、上述したねじ軸 11の場合と同様であり、高い硬度を有するという性質の ほか、耐食性に優れ、さらに非磁性 (比透磁率 が 1. 01以下)をも維持しているの で、特に、特殊環境下で用いられるボールねじ装置 10の構成部材として、好適に適 用することが可能である。  [0041] The material that has been rough-cured in this way is then divided into a top hole (step S24), a flange-chamber for forming the flange 32a (step S25), and a rough-rolled load rolling groove. A rolling tap cover (Step S26) for completing 32b is applied, and then cylindrical processing (Step S27), which is a molding finishing process, is performed. The nut member 31 is completely formed through such a forming / caching process. The significant properties of the completed nut member 31 are the same as in the case of the screw shaft 11 described above. In addition to its high hardness, it has excellent corrosion resistance and is non-magnetic (relative permeability is 1. In particular, it can be suitably applied as a component of the ball screw device 10 used in a special environment.
[0042] 本実施形態では、ねじ軸 11とナット本体 32という 2つの部材を Cr—Mn—N系のォ ーステナイト系ステンレス鋼によって構成した力 転動体力 の転動 '摺動動作を繰り 返し受ける螺旋状の負荷転走路 20, 20近傍のみを本実施形態に係る処理を行った オーステナイト系ステンレス鋼によって構成することも可能である。すなわち、軌道部 材であるねじ軸 11又は移動部材を構成するナット本体 32は、少なくとも複数のボー ル 12· ··と接する負荷転走路 20などの転動体転走面近傍が Cr—Mn—N系のオース テナイト系ステンレス鋼によって構成されていることとすることができる。さらには、運 動案内装置を構成する全ての部材を、本実施形態に係る製造方法で製造した Cr Mn— N系のオーステナイト系ステンレス鋼製の部材とすることも可能である。 [0042] In the present embodiment, the two members of the screw shaft 11 and the nut body 32 are made of Cr-Mn-N austenitic stainless steel. Only the vicinity of the spiral load rolling paths 20 and 20 can be formed of austenitic stainless steel subjected to the processing according to the present embodiment. That is, the screw shaft 11 that is the raceway member or the nut body 32 that constitutes the moving member has at least the rolling element rolling surface such as the load rolling path 20 in contact with the plurality of balls 12. Aus of the system It can be assumed that it is made of tenite stainless steel. Furthermore, all the members constituting the movement guide device can be made of Cr Mn—N austenitic stainless steel manufactured by the manufacturing method according to the present embodiment.
[0043] 以上、本発明の好適な実施形態につ!、て説明したが、本発明の技術的範囲は上 記実施形態に記載の範囲には限定されない。上記実施形態には、多様な変更又は 改良をカ卩えることが可能である。すなわち、本発明に係る Cr— Mn— N系合金を用い た運動案内装置は、軌道部材と、軌道部材に複数の転動体を介して設置され、且つ 、軌道部材の軸線方向又は周方向に往復運動自在又は回転運動自在に設置され る移動部材と、を備え、軌道部材及び移動部材の少なくとも一方力 Cr Mn— N系 合金で構成されているという構成を有するものであれば、どのような装置にも適用す ることがでさる。  [0043] Although the preferred embodiments of the present invention have been described above, the technical scope of the present invention is not limited to the scope described in the above embodiments. Various modifications or improvements can be covered in the above embodiment. That is, the motion guide device using the Cr—Mn—N alloy according to the present invention is installed on the raceway member and the raceway member via a plurality of rolling elements, and reciprocates in the axial direction or the circumferential direction of the raceway member. A moving member that is freely movable or rotationally movable, and has at least one of the force of the race member and the moving member Cr Mn-N-based alloy. It can also be applied to.
[0044] 本発明 谪用可能なリニアガイド 置の構成  [0044] Configuration of the linear guide device applicable to the present invention
例えば、本発明に係る Cr— Mn— Ν系合金を用いた運動案内装置は、図 4A及び 図 4Bに示すようなリニアガイド装置として構成することが可能である。ここで、図 4Aは 、本発明に係る Cr—Mn—N系合金を用いた運動案内装置をリニアガイド装置として 構成した場合の一形態を例示する外観斜視図である。また、図 4Bは、図 4Aで示し たリニアガイド装置が備える無限循環路を説明するための断面図である。  For example, the motion guide device using a Cr—Mn—Ν alloy according to the present invention can be configured as a linear guide device as shown in FIGS. 4A and 4B. Here, FIG. 4A is an external perspective view illustrating an embodiment in which a motion guide device using a Cr—Mn—N alloy according to the present invention is configured as a linear guide device. FIG. 4B is a cross-sectional view for explaining the infinite circuit provided in the linear guide device shown in FIG. 4A.
[0045] 図 4A及び図 4Bに例示するリニアガイド装置 40は、軌道部材としての軌道レール 4 1と、軌道レール 41に多数の転動体として設置されるボール 42· ··を介してスライド可 能に取り付けられた移動部材としての移動ブロック 43とを備えている。軌道レール 41 はその長手方向と直交する断面が概略矩形状に形成された長尺の部材であり、その 表面(上面及び両側面)にはボールが転がる際の軌道になる転動体転走溝 41a…が 軌道レール 41の全長に渡って形成されている。  [0045] The linear guide device 40 illustrated in FIG. 4A and FIG. 4B is slidable via a track rail 41 as a track member and balls 42 that are installed on the track rail 41 as a large number of rolling elements. And a moving block 43 as a moving member attached to the. The track rail 41 is a long member whose cross section perpendicular to the longitudinal direction is formed in a substantially rectangular shape. The rolling element rolling groove 41a which becomes a track when the ball rolls on its surface (upper surface and both side surfaces). ... is formed over the entire length of the track rail 41.
[0046] ここで軌道レール 41は、直線的に伸びるように形成されることもあるし、曲線的に伸 びるように形成されることもある。また、転動体転走溝 41a…の本数は左右で 2条ずつ 合計 4条設けられているが、その条数はリニアガイド装置 40の用途等に応じて変更 することができる。  [0046] Here, the track rail 41 may be formed to extend linearly or may be formed to extend in a curved line. In addition, the number of rolling element rolling grooves 41a... Is four in total, two on each side, but the number can be changed according to the application of the linear guide device 40 and the like.
[0047] 一方、移動ブロック 43には、転動体転走溝 41a…とそれぞれ対応する位置に負荷 転動体転走溝 43a' "が設けられて ヽる。軌道レール 41の転動体転走溝 4 la' "と移 動ブロック 43の負荷転動体転走溝 43a…とによって負荷転走路 52…が形成され、複 数のボール 42· ··が挟まれている。さらに、移動ブロック 43には、各転動体転走溝 41 a…と平行に伸びる 4条の無負荷転走路 53…と、各無負荷転走路 53· ··と各負荷転 走路 52· ··とを結ぶ方向転換路 55…が設けられて 、る。 1つの負荷転走路 52及び無 負荷転走路 53と、それらを結ぶ一対の方向転換路 55との組み合わせによって、 1つ の無限循環路が構成される(図 4B参照)。 [0047] On the other hand, the moving block 43 is loaded at positions corresponding to the rolling element rolling grooves 41a. The rolling element rolling groove 43a '"is provided. The rolling element rolling groove 52a of the rolling rail 43 and the loaded rolling element rolling groove 43a ... A plurality of balls 42 are formed. Furthermore, the moving block 43 includes four unloaded rolling paths 53 extending in parallel with the rolling element rolling grooves 41 a, each unloaded rolling path 53, and each loaded rolling path 52. There is a direction change path 55 ... A combination of one loaded rolling path 52 and unloaded rolling path 53 and a pair of direction changing paths 55 connecting them forms one infinite circuit (see FIG. 4B).
[0048] そして、複数のボール 42· ··が、負荷転走路 52と無負荷転走路 53と一対の方向転 換路 55, 55とから構成される無限循環路に無限循環可能に設置されることにより、 移動ブロック 43が軌道レール 41に対して相対的に往復運動可能となっている。  [0048] Then, a plurality of balls 42 are installed in an infinite circulation path composed of a load rolling path 52, a no-load rolling path 53, and a pair of directional switching paths 55, 55 so as to allow infinite circulation. As a result, the moving block 43 can reciprocate relative to the track rail 41.
[0049] このようなリニアガイド装置 40を構成する部材のうち、軌道レール 41及び移動ブロ ック 43の少なくとも一方を、本発明に係る製造方法によって成形された Cr—Mn—N 系合金によって構成することが可能である。このような Cr—Mn—N系合金を構成部 材に用いることによって、従来にない高硬度、高耐食性及び非磁性という優れた特性 を兼備するリニアガイド装置 40を実現することができる。  [0049] Of the members constituting such a linear guide device 40, at least one of the track rail 41 and the moving block 43 is made of a Cr-Mn-N alloy formed by the manufacturing method according to the present invention. Is possible. By using such a Cr—Mn—N alloy as a constituent member, it is possible to realize a linear guide device 40 having excellent properties such as high hardness, high corrosion resistance, and non-magnetism that are not available in the past.
[0050] 本発明 谪用可能なスプライン 置の構成  [0050] The present invention can be used as a spline arrangement.
また、本発明に係る Cr—Mn—N系合金を用いた運動案内装置は、図 5に示すよう なスプライン装置として構成することが可能である。ここで、図 5は、本発明に係る Cr Mn— N系合金を用いた運動案内装置をスプライン装置として構成した場合の一 形態を例示する外観斜視図である。  Further, the motion guide device using the Cr—Mn—N alloy according to the present invention can be configured as a spline device as shown in FIG. Here, FIG. 5 is an external perspective view illustrating an embodiment in which the motion guide device using the Cr Mn—N alloy according to the present invention is configured as a spline device.
[0051] 図 5に示されるスプライン装置 60は、軌道部材としてのスプライン軸 61と、そのスプ ライン軸 61に多数の転動体としてのボール 62· ··を介して移動自在に取り付けられた 移動部材としての円筒状の外筒 63とを有して 、る。  [0051] The spline device 60 shown in Fig. 5 includes a spline shaft 61 as a race member and a movable member attached to the spline shaft 61 via a plurality of balls 62 as rolling elements. And a cylindrical outer cylinder 63 as the above.
[0052] スプライン軸 61の表面には、ボール 62の軌道となり、スプライン軸 21の軸線方向に 延びる転動体転走溝 6 la' · ·が形成されて!、る。スプライン軸 61に取り付けられる外 筒 63には、転動体転走溝 6 laに対応する負荷転動体転走溝が形成される。これらの 負荷転動体転走溝には、転動体転走溝 61a…が伸びる方向に伸びる複数条の突起 が形成されている。 [0053] 外筒 63に形成した負荷転動体転走溝とスプライン軸 61に形成した転動体転走溝 6 laとの間で負荷転走路が形成される。負荷転走路の隣には、荷重から解放されたボ ール 62…が移動する無負荷戻し通路が形成されている。外筒 63には、複数のボー ル 62· ··をサーキット状に整列'保持する保持器 64が組み込まれて ヽる。 [0052] On the surface of the spline shaft 61, a rolling element rolling groove 6 la 'is formed as a track of the ball 62 and extending in the axial direction of the spline shaft 21 !. The outer cylinder 63 attached to the spline shaft 61 is formed with a loaded rolling element rolling groove corresponding to the rolling element rolling groove 6 la. These load rolling element rolling grooves are formed with a plurality of protrusions extending in the direction in which the rolling element rolling grooves 61a. A load rolling path is formed between the loaded rolling element rolling groove formed on the outer cylinder 63 and the rolling element rolling groove 6 la formed on the spline shaft 61. Next to the load rolling path, there is formed a no-load return path through which balls 62 ... released from the load move. The outer cylinder 63 incorporates a cage 64 that holds and holds a plurality of balls 62... In a circuit shape.
[0054] そして、複数のボール 62· ··が、外筒 63の負荷転動体転走溝とスプライン軸 61の転 動体転走溝 61aとの間に転動自在に設置され、無負荷戻し通路を通って無限循環 するように設置されることによって、外筒 63がスプライン軸 61に対して相対的に往復 運動可能となっている。  [0054] A plurality of balls 62 are installed between the loaded rolling element rolling groove of the outer cylinder 63 and the rolling element rolling groove 61a of the spline shaft 61 so as to be freely rollable. The outer cylinder 63 can be reciprocated relative to the spline shaft 61 by being installed so as to be infinitely circulated therethrough.
[0055] このようなスプライン装置 60を構成する部材のうち、スプライン軸 61及び外筒 63の 少なくとも一方を、本発明に係る製造方法によって成形された Cr Mn— N系合金 によって構成することが可能である。このような Cr— Mn— N系合金を構成部材に用 いること〖こよって、従来にない高硬度、高耐食性及び非磁性という優れた特性を兼備 するスプライン装置 60を実現することができる。  [0055] Of the members constituting the spline device 60, at least one of the spline shaft 61 and the outer cylinder 63 can be composed of a Cr Mn-N alloy formed by the manufacturing method according to the present invention. It is. By using such a Cr—Mn—N alloy as a constituent member, it is possible to realize a spline device 60 that has excellent properties such as high hardness, high corrosion resistance and non-magnetism that have not been conventionally available.
[0056] 本 明 商用可能な冋転ベアリング 置の構成  [0056] Configuration of commercially available rolling bearing device
さらに、本発明に係る Cr—Mn—N系合金を用いた運動案内装置は、図 6A及び図 6Bに示すような回転ベアリング装置として構成することが可能である。ここで、図 6A は、本発明に係る Cr Mn— N系合金を用 、た運動案内装置を回転べァリング装置 として構成した場合の一形態を例示する部分縦断斜視図である。また、図 6Bは、図 6 Aに示す回転ベアリング装置の縦断面を示す図である。  Furthermore, the motion guide device using the Cr—Mn—N alloy according to the present invention can be configured as a rotary bearing device as shown in FIGS. 6A and 6B. Here, FIG. 6A is a partially longitudinal perspective view illustrating an embodiment in which the motion guide device is configured as a rotary bearing device using the Cr Mn—N alloy according to the present invention. FIG. 6B is a view showing a longitudinal section of the rotary bearing device shown in FIG. 6A.
[0057] 図 6A及び図 6Bに示すように、回転ベアリング装置 70として構成される運動案内装 置は、外周面に断面 V字形状の内側軌道溝 72を有する内輪 71と、内周面に断面 V 字形状の外側軌道溝 74を有する外輪 73と、内側軌道溝 72と外側軌道溝 74とによつ て形成される断面略矩形状の軌道路 75の間に転動可能にクロス配列される複数の 転動体としてのローラ 77…と、を有することにより、内輪 71及び外輪 73が周方向に 相対的な回転運動を行うものである。  As shown in FIGS. 6A and 6B, the motion guide device configured as the rotary bearing device 70 includes an inner ring 71 having an inner raceway groove 72 having a V-shaped cross section on the outer peripheral surface, and a cross section on the inner peripheral surface. The outer ring 73 having the V-shaped outer raceway groove 74 and the raceway 75 having a substantially rectangular cross section formed by the inner raceway groove 72 and the outer raceway groove 74 are cross-arranged so as to be able to roll. By having rollers 77 as a plurality of rolling elements, the inner ring 71 and the outer ring 73 perform relative rotational movement in the circumferential direction.
[0058] このような回転ベアリング装置 70を構成する部材のうち、内輪 71及び外輪 73の少 なくとも一方を、本発明に係る製造方法によって成形された Cr—Mn—N系合金によ つて構成することが可能である。このような Cr—Mn—N系合金を構成部材に用いる こと〖こよって、従来にない高硬度、高耐食性及び非磁性という優れた特性を兼備する 回転ベアリング装置 70を実現することができる。 [0058] Among the members constituting the rotary bearing device 70, at least one of the inner ring 71 and the outer ring 73 is formed of a Cr-Mn-N alloy formed by the manufacturing method according to the present invention. Is possible. Such a Cr-Mn-N alloy is used as a component. In particular, it is possible to realize the rotary bearing device 70 that has excellent properties such as high hardness, high corrosion resistance, and non-magnetism that have not been obtained in the past.
なお、本発明は、上述したリニアガイド装置、スプライン装置、ボールねじ装置、回 転ベアリング装置だけでなぐ直線案内装置や転がり軸受などのあらゆる運動案内装 置に適用することが可能である。その様な変更又は改良を加えた形態も本発明の技 術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。  The present invention can be applied to all types of motion guide devices such as linear guide devices and rolling bearings that can be used only with the above-described linear guide device, spline device, ball screw device, and rotary bearing device. It is apparent from the description of the scope of claims that the embodiments added with such changes or improvements can also be included in the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 軌道部材と、  [1] raceway members;
前記軌道部材に複数の転動体を介して設置され、且つ、前記軌道部材の軸線方 向又は周方向に往復運動自在又は回転運動自在に設置される移動部材と、 を備え、  A moving member installed on the raceway member via a plurality of rolling elements and installed so as to be reciprocally movable or rotatable in the axial direction or circumferential direction of the raceway member,
前記軌道部材及び前記移動部材の少なくとも一方が、 Cr— Mn— N系合金で構成 されることを特徴とする運動案内装置。  At least one of the track member and the moving member is made of a Cr—Mn—N-based alloy.
[2] 請求項 1に記載の運動案内装置において、 [2] In the exercise guidance device according to claim 1,
前記 Cr—Mn—N系合金は、重量%でじ:0. 05〜0. 15%、 Cr: 16〜20%、 Mn: 9〜18%、Ni: 0. 8〜5%、N : 0. 1〜0. 35%、残部が Fe及び不純物からなるォー ステナイト系ステンレス鋼であることを特徴とする運動案内装置。  The Cr—Mn—N-based alloy is as follows:% by weight: 0.05 to 0.15%, Cr: 16 to 20%, Mn: 9 to 18%, Ni: 0.8 to 5%, N: 0 A motion guide device characterized by being austenitic stainless steel of 1 to 0.35%, the balance being Fe and impurities.
[3] 請求項 1又は 2に記載の運動案内装置において、 [3] In the exercise guidance device according to claim 1 or 2,
前記 Cr—Mn—N系合金は、ビッカース硬さ HVで 500以上の硬度を有することを 特徴とする運動案内装置。  The Cr-Mn-N alloy has a Vickers hardness HV and a hardness of 500 or more.
[4] 請求項 1〜3のいずれか 1項に記載の運動案内装置において、 [4] In the exercise guidance device according to any one of claims 1 to 3,
前記 Cr—Mn—N系合金は、比透磁率 が 1. 01以下であることを特徴とする運動 案内装置。  The Cr—Mn—N alloy has a relative magnetic permeability of 1.01 or less.
[5] 請求項 1〜4のいずれか 1項に記載の運動案内装置において、  [5] In the exercise guidance device according to any one of claims 1 to 4,
前記軌道部材は、外周面に螺旋状の転動体転走溝が形成されるねじ軸であり、 前記移動部材は、内周面に前記転動体転走溝に対応する螺旋状の負荷転走溝が 形成されるナット部材であり、  The track member is a screw shaft in which a spiral rolling element rolling groove is formed on an outer peripheral surface, and the moving member is a spiral load rolling groove corresponding to the rolling element rolling groove on an inner peripheral surface. Is a formed nut member,
前記ナット部材は、前記負荷転走溝と前記転動体転走溝とで構成される負荷転走 路の一端と他端とを連結することによって無限循環路を形成する戻し通路を備え、 前記複数の転動体が前記無限循環路に循環可能に設置されることにより、前記ね じ軸の前記ナット部材に対する相対的な回転運動に伴って、前記ナット部材が前記 ねじ軸に対して相対的に往復運動する転動体ねじ装置として構成されることを特徴と する運動案内装置。  The nut member includes a return passage that forms an infinite circulation path by connecting one end and the other end of a load rolling path constituted by the load rolling groove and the rolling element rolling groove, When the rolling element is installed so as to be able to circulate in the infinite circulation path, the nut member reciprocates relative to the screw shaft as the screw shaft rotates relative to the nut member. A motion guide device characterized by being configured as a moving rolling element screw device.
[6] 軌道部材と、 前記軌道部材に複数の転動体を介して設置され、且つ、前記軌道部材の軸線方 向又は周方向に往復運動自在又は回転運動自在に設置される移動部材と、 を備え、 [6] raceway members; A moving member installed on the raceway member via a plurality of rolling elements and installed so as to be reciprocally movable or rotatable in the axial direction or circumferential direction of the raceway member,
前記軌道部材及び前記移動部材の少なくとも一方が、 Cr— Mn— N系合金で構成 される運動案内装置の製造方法であって、  A method of manufacturing a motion guide device in which at least one of the track member and the moving member is made of a Cr-Mn-N alloy,
Cr—Mn—N系合金の素材にリダクション処理を行う引抜工程と、  A drawing process for performing reduction treatment on the Cr-Mn-N alloy material;
前記引抜工程によってリダクション処理が行われた素材を機械カ卩ェすることによつ て、前記軌道部材又は前記移動部材として成形する成形'加工工程と、  A forming process step of forming the track member or the moving member by mechanically cleaning the material subjected to the reduction process in the drawing step;
を含む工程を実施することを特徴とする運動案内装置の製造方法。  A method of manufacturing a motion guide device, comprising performing a process including:
軌道部材と、  A track member;
前記軌道部材に複数の転動体を介して設置され、且つ、前記軌道部材の軸線方 向又は周方向に往復運動自在又は回転運動自在に設置される移動部材と、 を備え、  A moving member installed on the raceway member via a plurality of rolling elements and installed so as to be reciprocally movable or rotatable in the axial direction or circumferential direction of the raceway member,
前記軌道部材及び前記移動部材の少なくとも一方が、 Cr— Mn— N系合金で構成 される運動案内装置の製造方法であって、  A method of manufacturing a motion guide device in which at least one of the track member and the moving member is made of a Cr-Mn-N alloy,
前記移動部材は、内周面に前記転動体の転走溝を形成されるナット部材であり、 The moving member is a nut member in which a rolling groove of the rolling element is formed on an inner peripheral surface,
Cr—Mn—N系合金の素材に前記ナット部材の最終形状の 95%以上まで機械カロ ェを行う荒加工工程と、 A roughing process in which mechanical calorie is applied to Cr-Mn-N alloy material to 95% or more of the final shape of the nut member;
前記荒カ卩ェ工程によって荒カ卩ェされた部材に仕上げ力卩ェを行うことによって前記 ナット部材を得る仕上げ工程と、  A finishing step of obtaining the nut member by performing a finishing force check on the member roughly roughed by the roughing cache step;
を含む工程を実施することを特徴とする運動案内装置の製造方法。  A method of manufacturing a motion guide device, comprising performing a process including:
PCT/JP2006/304867 2005-03-31 2006-03-13 Movement guiding device and process for producing the same WO2006112212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007521136A JP5275626B2 (en) 2005-03-31 2006-03-13 Exercise guidance device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005103933 2005-03-31
JP2005-103933 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006112212A1 true WO2006112212A1 (en) 2006-10-26

Family

ID=37114944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304867 WO2006112212A1 (en) 2005-03-31 2006-03-13 Movement guiding device and process for producing the same

Country Status (2)

Country Link
JP (1) JP5275626B2 (en)
WO (1) WO2006112212A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143829A2 (en) * 2008-05-30 2009-12-03 Schaeffler Kg Method for producing a corrosion-resistant roller bearing
JP2013210059A (en) * 2012-03-30 2013-10-10 National Institute Of Advanced Industrial Science & Technology Rotary shaft supporting mechanism and rotation introducing mechanism
JP2016145642A (en) * 2015-01-28 2016-08-12 Thk株式会社 Screw device
CN109487643A (en) * 2018-09-14 2019-03-19 宁波博睿思特种材料科技有限公司 Railway low-cost corrosion-resistant screw spike and its preparation process
JP2021085522A (en) * 2019-11-29 2021-06-03 李思穎 Ball circulation guide device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331615A (en) * 1992-05-29 1993-12-14 Ntn Corp Rolling bearing parts made of nonmagnetic steel
JP2000088072A (en) * 1998-09-11 2000-03-28 Thk Co Ltd Ball screw nut, linear guide device using it, ball screw for steering, and manufacture of ball screw nut
JP2001294993A (en) * 2000-02-10 2001-10-26 Seiko Epson Corp Printer
JP2002047541A (en) * 2000-07-31 2002-02-15 Sanyo Special Steel Co Ltd High corrosion resistant stainless steel having excellent cold workability, and straight-line guide using it
JP2002227956A (en) * 2001-02-02 2002-08-14 Thk Co Ltd Ball screw device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331615A (en) * 1992-05-29 1993-12-14 Ntn Corp Rolling bearing parts made of nonmagnetic steel
JP2000088072A (en) * 1998-09-11 2000-03-28 Thk Co Ltd Ball screw nut, linear guide device using it, ball screw for steering, and manufacture of ball screw nut
JP2001294993A (en) * 2000-02-10 2001-10-26 Seiko Epson Corp Printer
JP2002047541A (en) * 2000-07-31 2002-02-15 Sanyo Special Steel Co Ltd High corrosion resistant stainless steel having excellent cold workability, and straight-line guide using it
JP2002227956A (en) * 2001-02-02 2002-08-14 Thk Co Ltd Ball screw device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143829A2 (en) * 2008-05-30 2009-12-03 Schaeffler Kg Method for producing a corrosion-resistant roller bearing
WO2009143829A3 (en) * 2008-05-30 2010-03-18 Schaeffler Kg Method for producing a corrosion-resistant roller bearing
JP2013210059A (en) * 2012-03-30 2013-10-10 National Institute Of Advanced Industrial Science & Technology Rotary shaft supporting mechanism and rotation introducing mechanism
JP2016145642A (en) * 2015-01-28 2016-08-12 Thk株式会社 Screw device
TWI627361B (en) * 2015-01-28 2018-06-21 Thk股份有限公司 Screw device
US10066716B2 (en) 2015-01-28 2018-09-04 Thk Co., Ltd. Screw device
CN109487643A (en) * 2018-09-14 2019-03-19 宁波博睿思特种材料科技有限公司 Railway low-cost corrosion-resistant screw spike and its preparation process
JP2021085522A (en) * 2019-11-29 2021-06-03 李思穎 Ball circulation guide device

Also Published As

Publication number Publication date
JP5275626B2 (en) 2013-08-28
JPWO2006112212A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
US6334370B1 (en) Ball screwed nut, linearly guiding apparatus using the same, ball screw for steering and method of manufacturing the ball screwed nut
US7122086B2 (en) Rolling support device and method for manufacturing the same
WO2006112212A1 (en) Movement guiding device and process for producing the same
JP2013164093A (en) Manufacturing method of race for thrust needle bearing
JPWO2007026702A1 (en) Motion guide device and rolling element used therefor
EP1353092B1 (en) Linear motion device
JP2002147467A (en) Rolling support device
JP5598016B2 (en) Manufacturing method of thrust trace of needle thrust bearing
JP6365796B1 (en) Track groove processing method, ball screw device, machine and vehicle manufacturing method
WO2006112214A1 (en) Motion guide device using stabilized austenitic stainless steel and method for manufacture thereof
JP6600262B2 (en) Rolling sliding member, rolling bearing using the same, and method for manufacturing rolling sliding member
JP5073488B2 (en) Motion guide device using austenitic metal and method for manufacturing the same
JP2009242893A (en) Holder for rolling bearing and its surface treatment method
KR20240012362A (en) raceway and shaft
JP2004076823A (en) Rolling device
KR20210148150A (en) hollow shaft member, transmission
EP3779221A1 (en) Intermediary race member of rolling bearing, race, rolling bearing and production method therefor
JP5857433B2 (en) Method for manufacturing rolling guide device
JP2006105262A (en) Rolling device
JP2006169565A (en) Unit for supporting roller
JP2005226714A (en) Rolling part, rolling device using the same, and method of manufacturing the rolling part and the rolling device
WO2015182761A1 (en) Ball screw device
JP2022157814A (en) ball screw device
JP2005155714A (en) Ball screw
KR20140071887A (en) Ball bearing with aligning ring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521136

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715590

Country of ref document: EP

Kind code of ref document: A1