JPS59128763A - Counter electrode for device used in formation of plate for alkaline storage battery - Google Patents

Counter electrode for device used in formation of plate for alkaline storage battery

Info

Publication number
JPS59128763A
JPS59128763A JP58004354A JP435483A JPS59128763A JP S59128763 A JPS59128763 A JP S59128763A JP 58004354 A JP58004354 A JP 58004354A JP 435483 A JP435483 A JP 435483A JP S59128763 A JPS59128763 A JP S59128763A
Authority
JP
Japan
Prior art keywords
nickel
counter electrode
foamy
plate
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58004354A
Other languages
Japanese (ja)
Other versions
JPH0373990B2 (en
Inventor
Kensuke Nakatani
中谷 謙助
Susumu Tanimoto
谷本 進
Takahisa Awajiya
淡路谷 隆久
Mitsuo Hasegawa
光男 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58004354A priority Critical patent/JPS59128763A/en
Publication of JPS59128763A publication Critical patent/JPS59128763A/en
Publication of JPH0373990B2 publication Critical patent/JPH0373990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress increase in IR loss caused when the current density of formation is increased, reduce the voltage of a container and obtain a formation counter electrode having a sufficient mechanical strength by packing the sintered body of nickel carbonyl powder in the holes of foamy nickel affixed to the surface of a nickel plate to be electrolysed. CONSTITUTION:After a part of foamy nickel 1 is pressed to increase its density, this is unified with a nickel plate 2 by spot welding. Next the unified body is washed with dilute nitric acid before being sufficiently washed with water in order to achieve higher close contact during sintering. Then slurry prepared by adding 4 parts CMC and 100 parts water to 100 parts nickel carbonyl powder is sufficiently rubbed into the unified body consisting of the foamy nickel 1 and the nickel plate 2. The thus obtained body is dried before being sintered in a reducing atmosphere at 1,000 deg.C for 15min thereby making a formation counter electrode consisting of the foamy nickel 1 and sintered nickel 3 packed in the foamy nickel 1. When current density is high, the thickness of the nickel plate 2 should be increased without any necessity of varying the thickness of the of the foamy nickel 1.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアルカリ蓄電池用電極板の化成装置用対極−関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a counter electrode for a chemical conversion device for an electrode plate for an alkaline storage battery.

(ロ)従来牧財 従来よりアルカリ蓄電池用電極板の製造工程において、
活物句充填工稈のあとに極板の活性化及び不純物の除去
を目的として、極板の充放電を主体とした化成処理が行
なわれており、化成処理の方法として、バッチ式化成法
と連続化成法とが知られている。パッチ式化成は持分1
1i1(55−89110に示される様に、セパレータ
ーを介して極板と対極を巻回して化成容器内にセットし
て行なうものであり、処理単位が大きいため化成電流密
度を0.5〜O,lA/drrPと小さくして長時間の
化成が行なわれる。連続化成は極板を充放電槽に連続通
過させる間に各槽内で極板が対極と対向する際に化成を
行なうものであり、短時間で化成を終了させるために、
化成電流密度を10〜40A/d−と極めて大きくする
ことが検討されている。両化成法も共に化成対極には、
アルカリ中での電解に耐え、コスト、電気型導度等の面
からニッケル平滑板が一般に使用されておシ、両化成法
のうち連続化成法が作業性の面から良く用いられる。
(b) Conventional Mokuzai Traditionally, in the manufacturing process of electrode plates for alkaline storage batteries,
After the live material filler culm, a chemical conversion treatment that mainly involves charging and discharging the electrode plate is performed for the purpose of activating the electrode plate and removing impurities. A continuous chemical conversion method is known. Patch type chemical treatment has 1 equity
1i1 (as shown in No. 55-89110, the electrode plate and counter electrode are wound through a separator and set in a chemical conversion container. Because the processing unit is large, the chemical conversion current density is set at 0.5 to 0. Formation is carried out for a long time with a small value of lA/drrP.In continuous formation, formation is carried out when the electrode plate faces the counter electrode in each tank while the electrode plate is continuously passed through the charging and discharging tanks. In order to complete the chemical formation in a short time,
Consideration has been given to increasing the chemical formation current density to an extremely high level of 10 to 40 A/d-. Both chemical conversion methods are opposite to chemical conversion,
A nickel smooth plate is generally used because it can withstand electrolysis in alkali, cost, electrical conductivity, etc. Of the two chemical conversion methods, the continuous chemical conversion method is often used from the viewpoint of workability.

また前記化成対極としてニッケル平滑板を用いる場合に
は、電流密度が高くなると、IR損失が目立つようKな
シ、対極上に発生する気泡により有効面積が減少し、過
電圧が著しく大きくなり、摺電圧の上昇を招くという欠
点がある。この摺電圧の上昇により電解電圧の増加並び
に化成液の温度上昇が起き、化成液の温度が高く力ると
、カドミウム極等では結晶の粗大化、すなわち容量劣化
が生じ、これを防止するための冷却装置が必要となる。
Furthermore, when a smooth nickel plate is used as the chemically formed counter electrode, when the current density increases, the IR loss becomes noticeable, the effective area decreases due to bubbles generated on the counter electrode, the overvoltage increases significantly, and the sliding voltage It has the disadvantage of causing an increase in This increase in sliding voltage causes an increase in the electrolytic voltage and a rise in the temperature of the chemical solution.If the temperature of the chemical solution is high, crystals in cadmium electrodes etc. will become coarser, that is, capacity deterioration will occur. A cooling device is required.

そして摺電圧を下げるために、対極表面積を増加させた
り、ガスの抜は口を対極に設けることが有効であること
から、対極にパンチング板やラス板を用いたが、十分な
効果は得られなかった、また、焼結式電池に用いられる
カーボニルニッケル焼結体は、ガス電極としても使用出
来る程表面積が大きく、摺電圧の低1下に有効であるが
、大きな電流密度のもとでは発生するガスにより焼結体
が破損しやすく、寿命の面で問題点があうそ。
In order to reduce the sliding voltage, it is effective to increase the surface area of the counter electrode and provide a gas vent on the opposite electrode, so punched plates or lath plates were used for the counter electrode, but sufficient effects were not obtained. In addition, the carbonyl nickel sintered body used in sintered batteries has a large surface area that can be used as a gas electrode, and is effective at reducing sliding voltages, but it does not occur under high current densities. The sintered body is easily damaged by the gas generated, which poses problems in terms of service life.

(ハ)  目  的 本発明は係る点に鑑み、化成電流密度を大きくした際の
IR損失の増大を抑制し、摺電圧を低下させ、充分な強
度を有する化成対極を提供することを目的とする。
(c) Purpose In view of the above points, an object of the present invention is to provide a formed counter electrode that suppresses the increase in IR loss when the formed current density is increased, reduces the sliding voltage, and has sufficient strength. .

に)構成 本発明の化成対極は、カーボニルニッケル焼結体の機械
的強度を向上させたものであり、ニッケル板の被電解面
に貼り合わされた発泡ニックμの空孔中に、カーボニル
ニッケル粉の焼結体が充填された構造を有するものであ
る。
2) Structure The chemically formed counter electrode of the present invention is a carbonyl nickel sintered body with improved mechanical strength, and carbonyl nickel powder is injected into the pores of the foamed nick μ bonded to the electrolyzed surface of the nickel plate. It has a structure filled with sintered bodies.

匝)実施例 本発明の化成対極の部分断面図を第1図に示し、以下に
説明する。住友電工■製の厚さ2mmの発泡ニッケμ(
1)を部分的に加圧し、高密度化したのち、この発泡ニ
ッケ/L/(1)の高密度化した部分をニッケル板(2
)にスポット溶接して一体化した。これを焼結時の密着
を良くするために希硝酸で洗浄した後に、充分に水洗を
ザなった。次にカーボニpニッ’flV粉100sに、
CMC4部、水100部を加えスラリーを作成し、前記
発泡ニッケμ(1)とニッケル板(2)との貼シ合わせ
物に充分すり込んだ後、乾燥させ、焼結は還元雰囲気中
で1000’C15分間行ない発泡ニッケ1v(11内
に焼結ニックμ(3)を有する化成対極を作成した。こ
の対極を用いて化成装置を組立て、焼結式ニッケル陽極
板を電流密度を変化させて充電した七きの摺電圧を測定
した。比較として前記対極と同様の条件で平滑ニッケル
板に直接スラリーを塗布し焼結した対極をB1前記発泡
ニッケルのみの対極をC及び平滑ニッケル板のみの対極
をDとして摺電圧を測定した。
Example) A partial sectional view of a chemically formed counter electrode of the present invention is shown in FIG. 1, and will be described below. Foamed nickel μ (2mm thick) manufactured by Sumitomo Electric ■
1) is partially pressurized to make it densified, and then the densified part of this foamed nickel/L/(1) is placed on a nickel plate (2
) and integrated by spot welding. This was washed with dilute nitric acid to improve adhesion during sintering, and then thoroughly washed with water. Next, add 100s of carboni pni'flV powder,
A slurry was prepared by adding 4 parts of CMC and 100 parts of water, and the slurry was thoroughly rubbed into the bonded material of the foamed nickel μ (1) and the nickel plate (2), dried, and sintered for 1000 minutes in a reducing atmosphere. C for 15 minutes to create a chemically formed counter electrode having a sintered nick μ (3) in the foamed nickel 1V (11).A chemically formed counter electrode was assembled using this counter electrode, and a sintered nickel anode plate was charged by changing the current density. Seven sliding voltages were measured.For comparison, a counter electrode made by applying slurry directly to a smooth nickel plate and sintering it under the same conditions as the above counter electrode was used. The sliding voltage was measured as follows.

尚、本発明の前述の対極をAとし、電解液は比1゜1.
28の力性カリ水溶液を用いた。この結果を第2図に示
す。第2図より対極A及びBを用いた場合は、明らかに
対極B及びCを用いたときに比べ摺電圧が低く、また電
流@皮が大きくなる程摺電圧の差が大きくなり効果が大
となることがわかる。
The above-mentioned counter electrode of the present invention is A, and the electrolyte has a ratio of 1.1.
An aqueous potash solution of No. 28 was used. The results are shown in FIG. From Figure 2, it is clear that when counter electrodes A and B are used, the sliding voltage is lower than when counter electrodes B and C are used, and the larger the current @ skin, the larger the difference in sliding voltage, and the greater the effect. I know what will happen.

更に対極A及びBを用いて、BOA/drn”の電流密
度で1000時間の連続電解テストを行なった。
Further, using counter electrodes A and B, a continuous electrolytic test was conducted for 1000 hours at a current density of BOA/drn''.

この結果、対極Bでは焼結体に破損がみられたけれど、
本発明の対極Aはなんら異常はみられなかった。これK
より発泡ニッケ!及びニッケル板を用いることにより強
度が向上したことがわかる。
As a result, damage to the sintered body was observed in counter electrode B, but
No abnormality was observed in the counter electrode A of the present invention. This is K
More foaming nickel! It can be seen that the strength was improved by using the nickel plate.

またIR損失については発泡ニックμだけでも導電性は
あるものの、電流密度が大になればIR拙失は目立つよ
うに力る。本発明でFiIR損失を小さくするために、
ニッケル板でサポートしており、電流密度が大きいとき
はニッケル板を厚くすればよく、発泡ニッケμの厚みは
変化させる必要はない。
Regarding IR loss, although the foamed nick μ alone has conductivity, as the current density increases, the IR loss becomes noticeable. In order to reduce FiIR loss in the present invention,
It is supported by a nickel plate, and when the current density is high, the nickel plate can be made thicker, and there is no need to change the thickness of the foamed nickel μ.

(へ)効果 本発明によシ、化成電流密度を大きくした際のIR損失
の増大が抑制され、摺電圧が低下することから電解電力
の省力化が行なえ、充分な強度が得られ寿命の面での問
題もなくなる効果がある。
(f) Effects According to the present invention, the increase in IR loss when the anodization current density is increased is suppressed, and the sliding voltage is reduced, so that electrolytic power can be saved, sufficient strength can be obtained, and the service life can be improved. This has the effect of eliminating the problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対極の部分断面図、第2図は本発明と
従来の対極との比較を表わす化成電流密度と摺電圧の関
係を示す図面である。 (2)・・・ニッケ/l/  fi+・・・発泡ニッケ
/v(a)・・・焼結体。
FIG. 1 is a partial cross-sectional view of a counter electrode of the present invention, and FIG. 2 is a drawing showing the relationship between chemical conversion current density and sliding voltage, showing a comparison between the present invention and a conventional counter electrode. (2)...nickel/l/fi+...foamed nickel/v(a)...sintered body.

Claims (1)

【特許請求の範囲】[Claims] +11  ニッケル板の被電解図に貼り合わされた発泡
ニッケルの空孔中に、カーボニμニッケ!粉の焼結体が
充填された構造を有するアルカリ蓄電池用電極板の化成
装置用対極。
+11 Carbonium nickel is inserted into the pores of the foamed nickel bonded to the electrolyzed figure of the nickel plate! A counter electrode for a chemical conversion device for an electrode plate for an alkaline storage battery having a structure filled with sintered powder.
JP58004354A 1983-01-14 1983-01-14 Counter electrode for device used in formation of plate for alkaline storage battery Granted JPS59128763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004354A JPS59128763A (en) 1983-01-14 1983-01-14 Counter electrode for device used in formation of plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004354A JPS59128763A (en) 1983-01-14 1983-01-14 Counter electrode for device used in formation of plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS59128763A true JPS59128763A (en) 1984-07-24
JPH0373990B2 JPH0373990B2 (en) 1991-11-25

Family

ID=11582063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004354A Granted JPS59128763A (en) 1983-01-14 1983-01-14 Counter electrode for device used in formation of plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS59128763A (en)

Also Published As

Publication number Publication date
JPH0373990B2 (en) 1991-11-25

Similar Documents

Publication Publication Date Title
JPS60175376A (en) Conductive plate for lead storage battery and method of producing same
RU2309488C2 (en) Storage battery incorporating foam carbon current collectors
CN109004209A (en) cadmium graphene battery and graphene battery
JP5494012B2 (en) Battery case formation method for lead acid battery
JP2004047445A (en) Positive electrode active material for battery, manufacturing method for electrolytic manganese dioxide, and battery
EP3279999A1 (en) Regeneration method of nickel-hydrogen battery
RU2611722C1 (en) Method of production of non-polarizable electrode for electrochemical capacitor
JP2001028263A (en) Lead-acid battery formation method
JPS59128763A (en) Counter electrode for device used in formation of plate for alkaline storage battery
JPH1126013A (en) Sealed metal oxide-zinc storage battery and its manufacture
CN109841837B (en) Lead-carbon battery grid with three-dimensional structure prepared by electroplating method, and preparation and application thereof
JP2589150B2 (en) Alkaline zinc storage battery
JP2001023682A (en) Sealed lead-acid battery
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP2001085046A (en) Sealed lead-acid battery
US949506A (en) Art of rejuvenating storage batteries.
JP2000208143A (en) Lead-acid battery and manufacture thereof
JPS63168966A (en) Manufacture of lead storage battery
JP4356298B2 (en) Control valve type lead acid battery
US3355325A (en) Battery plate manufacture
JPH0729594A (en) Retainer type sealed lead-acid battery
JPS58186164A (en) Manufacture of negative electrode for alkaline battery
JPH0410181B2 (en)
JP2004327157A (en) Storage battery
JPS6321748A (en) In-container formation method for lead-acid battery