JPS5912803Y2 - Detection device with temperature compensation - Google Patents

Detection device with temperature compensation

Info

Publication number
JPS5912803Y2
JPS5912803Y2 JP16589475U JP16589475U JPS5912803Y2 JP S5912803 Y2 JPS5912803 Y2 JP S5912803Y2 JP 16589475 U JP16589475 U JP 16589475U JP 16589475 U JP16589475 U JP 16589475U JP S5912803 Y2 JPS5912803 Y2 JP S5912803Y2
Authority
JP
Japan
Prior art keywords
resistor
diode
bias
detection
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16589475U
Other languages
Japanese (ja)
Other versions
JPS5277647U (en
Inventor
正己 大西
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP16589475U priority Critical patent/JPS5912803Y2/en
Publication of JPS5277647U publication Critical patent/JPS5277647U/ja
Application granted granted Critical
Publication of JPS5912803Y2 publication Critical patent/JPS5912803Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

【考案の詳細な説明】 本考案はダイオードを用いた、ある極性の信号出力で゛
、かつ抵抗を介してダイオード出力の端に正または負バ
イアス電圧が印加されている直線検波回路における温度
補償に関する。
[Detailed description of the invention] The present invention relates to temperature compensation in a linear detection circuit that uses a diode to output a signal of a certain polarity, and in which a positive or negative bias voltage is applied to the end of the diode output via a resistor. .

通常、直線的な検波には第1図に示す様な回路が用いら
れる。
Usually, a circuit as shown in FIG. 1 is used for linear detection.

図において、1はコイル、2はダイオード、3は低域済
波器、4は出力抵抗、5はバイアス抵抗である。
In the figure, 1 is a coil, 2 is a diode, 3 is a low frequency amplifier, 4 is an output resistor, and 5 is a bias resistor.

抵抗5は負電圧源に接続され、これによりダイオード2
の直線部分で検波が行われる様にバイアス電流が流され
る事は周知である。
Resistor 5 is connected to a negative voltage source, which causes diode 2
It is well known that a bias current is passed so that detection is performed in the straight line portion of .

ところで映像信号の様に、その周波数成分として直流成
分を含む信号は交流成分のみならず直流成分をも伝送を
要求される事が多い。
Incidentally, signals such as video signals that include a DC component as a frequency component are often required to transmit not only the AC component but also the DC component.

例えば超音波遅延線を用v′)た信号遅延回路には変復
調回路が含まれるがミ遅延された復調信号は交流的な変
化と共に直流的な変化を含んでいなければならない。
For example, a signal delay circuit using an ultrasonic delay line (v') includes a modulation/demodulation circuit, but the delayed demodulated signal must include both alternating current and direct current changes.

ここで復調段1′と注目すれば、後段において直流再生
等の後処理を施さない限り、□復調段以後は直流”□的
に結合しなければならない。
Here, if we focus on the demodulation stage 1', unless post-processing such as DC regeneration is performed in the subsequent stage, the demodulation stage and subsequent stages must be coupled in a DC manner.

そこで問題となるのがダイオードの゛温度による変動で
ある。
The problem here is the variation due to the temperature of the diode.

−例として第1図において、ダイオード2としてゲルマ
ニウムダイオード、出力抵抗器として5.6CKΩ〕、
バイアス抵抗器として133CKΩ〕、負バイアス電圧
Vccが−15〔v〕で、被検波信号レベルが400
[mVp−p]一定とした時の復調出力の温度変動を第
2図に示す。
- For example, in Figure 1, diode 2 is a germanium diode, output resistor is 5.6CKΩ],
The bias resistor is 133CKΩ], the negative bias voltage Vcc is -15[V], and the detected wave signal level is 400[V].
FIG. 2 shows the temperature fluctuation of the demodulated output when [mVp-p] is constant.

第2図から明らかな様に、この回路では0〜50°Cの
温度内で7Qmv以上の変動があり、こ袢はそのまま′
、直流レヴルの変動となる。
As is clear from Figure 2, this circuit has a fluctuation of more than 7Qmv within the temperature range of 0 to 50°C, and the
, the DC level will fluctuate.

復調信号のレベルカ吠キい場合、例えばI Vpp以上
のときは相対的な誤差は小さく無視し得るが、復調信号
レベルが小さくなればなる捏和対的な誤差は大きくなり
、直流レベルの変動は無視し得ないものとなる。
When the level of the demodulated signal is high, for example, when it is higher than I Vpp, the relative error is small and can be ignored, but as the demodulated signal level becomes smaller, the harmonic error becomes larger, and the fluctuation of the DC level becomes It becomes something that cannot be ignored.

本考案はダイオード直線検波回路において温度変化によ
る検波出力の直流分変動を補償し、低レベル出力での誤
差を軽減することを目的としたものである。
The purpose of the present invention is to compensate for DC fluctuations in the detected output due to temperature changes in a diode linear detection circuit, and to reduce errors in low-level output.

第3図にその実施例を示す。図において6はマツチング
コイル、7,8は特性の揃ったダイオード、9は低域沖
波器、10はろ波器終端抵抗器、11は10と同抵抗値
の抵抗器、12.13はバイアス用抵抗器で13の抵抗
値は12の約%、14゜15は7,8と同特性のダイオ
ードで、7,8と熱的に結合されている。
An example is shown in FIG. In the figure, 6 is a matching coil, 7 and 8 are diodes with the same characteristics, 9 is a low frequency transducer, 10 is a filter termination resistor, 11 is a resistor with the same resistance value as 10, and 12 and 13 are for bias. The resistance value of the resistor 13 is about % of that of 12, and the diodes 14 and 15 have the same characteristics as 7 and 8, and are thermally coupled to 7 and 8.

16は高入力インピーダンス直流増幅器、17.18は
各々正電圧源負電圧源につながる端子でその値は+V、
−Vでとする。
16 is a high input impedance DC amplifier, 17 and 18 are terminals each connected to a positive voltage source and a negative voltage source, and their values are +V,
-V.

次に第3図の動作説明を第4図および第5図と共に説明
を加える。
Next, the operation of FIG. 3 will be explained together with FIGS. 4 and 5.

第4図は第3図の回路の直流的な等価回路であって、第
3図との対応は7,8が19に、14,15が21に、
10が20に、11が22に、12が23に、13が2
4に、17が25に、18が26に対応する。
FIG. 4 is a DC equivalent circuit of the circuit in FIG. 3, and the correspondence with FIG.
10 becomes 20, 11 becomes 22, 12 becomes 23, 13 becomes 2
4, 17 corresponds to 25, and 18 corresponds to 26.

いま端子25.26の電圧の絶対値v1が端子27の温
度変動幅△■8□に比して十分大きいなら、IB□。
Now, if the absolute value v1 of the voltage at the terminals 25 and 26 is sufficiently larger than the temperature fluctuation range △■8□ at the terminal 27, then IB□.

IB□は常に一定とみなすことが出来、かつIB□=2
1B□となる様に抵抗器23 RB□と抵抗器24RB
□の値を選んでやれば、 ID1+IRL=ID1’+IRL =IB□=IBV
2=一定・・・(1)となる。
IB□ can always be considered constant, and IB□=2
Resistor 23 RB□ and resistor 24RB so that it becomes 1B□
If you choose the value of □, ID1+IRL=ID1'+IRL =IB□=IBV
2=constant...(1).

この条件のもとではダイオード19と21の順方向電圧
は等しいからこれを■1とすれば、端子27の電位はV
B、 =O−VF・・・(2)端子28 ノN位ハVB
I + VF = 0−(3)いま、この回路で温度が
TloCからT2°Cに上昇したとすれば第5図に示す
ようにグラフの横軸で示される順方向電圧は、点30か
ら点29にΔ■Fだけ減少するから 端子27の電位は■8□=O−(V、−△VF)・・・
(4)端子28ノ電位ハvB□−VB□+(VF−△■
F)−〇・・・(5) となり、直流的な電位■B2は温度に対して不変である
事が判る。
Under this condition, the forward voltages of diodes 19 and 21 are equal, so if this is set to 1, the potential of terminal 27 is V
B, =O-VF...(2) Terminal 28 No N position C VB
I + VF = 0-(3) Now, if the temperature rises from TloC to T2°C in this circuit, the forward voltage shown on the horizontal axis of the graph will change from point 30 to point 30 as shown in Figure 5. 29 decreases by Δ■F, so the potential of terminal 27 is ■8□=O-(V, -△VF)...
(4) Potential of terminal 28 vB□-VB□+(VF-△■
F)-〇...(5) It can be seen that the DC potential ■B2 does not change with respect to temperature.

また復調信号は第3図から伴る通り抵抗11を介して増
巾器に送られ、一般に11の値は1〜5にΩなのに対し
て12の値は数100 KΩ以上の抵抗であるので減衰
は僅かである。
Also, as shown in Figure 3, the demodulated signal is sent to the amplifier via the resistor 11, and the value of 11 is generally 1 to 5 Ω, whereas the value of 12 is a resistance of several hundred KΩ or more, so it is attenuated. is small.

実際例として、第3図の回路において、7. 8.14
.15に検波用ゲルマニウムダイオード、10.11に
1.8にΩ、12に133にΩ、13に68にΩの抵抗
を用い、±■を±15Vとして被検波信号を25 MH
2400mvp−pとした時の復調信号レベルの温度変
動は0〜50°Cの範囲で10mV以下となり、第1図
の従来例の場合に比べてh以上に改善している。
As an actual example, in the circuit of FIG. 3, 7. 8.14
.. 15 is a germanium diode for detection, 10.11 is 1.8 Ω, 12 is 133 Ω, 13 is 68 Ω resistor, ±■ is ±15 V, and the detected wave signal is 25 MH.
The temperature fluctuation of the demodulated signal level at 2400 mvp-p is less than 10 mV in the range of 0 to 50°C, which is an improvement of more than h compared to the conventional example shown in FIG.

なお、前記実施例においては正極性の信号出力の場合に
ついて述べたが、負極性の場合はダイオード極性、バイ
アス電源のを負を単に入れ換えればよいことは云うまで
もない。
In the above embodiment, the case of positive polarity signal output has been described, but it goes without saying that in the case of negative polarity, the diode polarity and the bias power supply can be simply replaced with the negative one.

以上の様に本考案によれば直流的に結合されたダイオー
ド検波回路において温度による直流レベル変動の少ない
復調出力を得る事が出来る。
As described above, according to the present invention, it is possible to obtain a demodulated output with less DC level fluctuation due to temperature in a DC-coupled diode detection circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の検波回路の基本回路図、第2図は従来
例での出力の温度変動を示すグラフ、第3図は本考案の
一実施例の温度補償付検波回路図、第4図は第3図の直
流的等価回路図、第5図は第3図の実施例に用いたダイ
オードの特性図である。 7、8.14.15・・・ダイオード、9・・・低域ろ
波器、10、11.12.13・・・抵抗器、16・・
・直流増幅器。
Fig. 1 is a basic circuit diagram of a conventional detection circuit, Fig. 2 is a graph showing the temperature fluctuation of the output in the conventional example, Fig. 3 is a temperature compensated detection circuit diagram of an embodiment of the present invention, and Fig. 4 This figure is a DC equivalent circuit diagram of FIG. 3, and FIG. 5 is a characteristic diagram of the diode used in the embodiment of FIG. 3. 7, 8.14.15...Diode, 9...Low pass filter, 10, 11.12.13...Resistor, 16...
・DC amplifier.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 入力端がトランスコイルを介してアースされた検波用ダ
イオードと、前記検波用ダイオニ下の出力端に接続され
た低域ろ波器ど、この低域ろ波器の終端抵抗器と、前記
検波用ダイオードの出力端と第・1電源への端子間に接
続された第1バイア゛ス抵抗どを少なくとも有する検波
装置において、前記終端抵抗器とほぼ同!の抵抗値′を
有する抵抗器と、前記検波用ダイオードと同一特性の他
のダイオードとを並列に接続してなる並列接続回路の一
端を、前記終端抵抗器に接続し、この接続に゛おい・て
前記化のダイオードにおける前記終端抵抗側の電極の極
性が前記検波用ダイオードの出力端側の電極の極性と同
一になるようになし、前記並列接続回路の他の一端を、
前記第1電源とは極性が逆で電圧の絶対値がほぼ等しい
第2電源の端子に接続された第2バイアス抵抗の一端に
接続しく前記第1電源と第2電源の電圧値は前記第1バ
イアス抵抗と第2バイアス抵抗を流れる電流が一定とな
る様に検波出力電圧値に比べて十分大きく設定し、前記
第1バイアス抵抗と第2バイアス抵抗を流れる直流電流
の比が2対1にな、るように前記第1および第2バイア
ス抵抗の抵抗値を選定し、前記第2バイアス抵抗と前記
接続回路との接続点がら検波出力を取出すことを特徴と
する温度補償付検波装置。
A detection diode whose input terminal is grounded via a transformer coil, a low-pass filter connected to the output terminal below the detection diode, a terminating resistor of this low-pass filter, and a detection diode connected to the output terminal below the detection diode. In a detection device having at least a first bias resistor connected between the output terminal of the diode and the terminal to the first power supply, the terminal resistor is substantially the same as the terminating resistor. One end of a parallel connection circuit formed by connecting in parallel a resistor having a resistance value of ' and another diode having the same characteristics as the detection diode is connected to the termination resistor, and a The polarity of the electrode on the terminal resistor side of the diode is made to be the same as the polarity of the electrode on the output end side of the detection diode, and the other end of the parallel connection circuit is
The voltage values of the first power source and the second power source are connected to one end of a second bias resistor connected to a terminal of a second power source having a polarity opposite to that of the first power source and having substantially the same absolute value of voltage. The current flowing through the bias resistor and the second bias resistor is set to be sufficiently large compared to the detection output voltage value so that the current flowing through the bias resistor and the second bias resistor becomes constant, and the ratio of the DC current flowing through the first bias resistor and the second bias resistor is 2:1. A temperature-compensated detection device characterized in that the resistance values of the first and second bias resistors are selected such that the detection output is extracted from a connection point between the second bias resistance and the connection circuit.
JP16589475U 1975-12-08 1975-12-08 Detection device with temperature compensation Expired JPS5912803Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16589475U JPS5912803Y2 (en) 1975-12-08 1975-12-08 Detection device with temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16589475U JPS5912803Y2 (en) 1975-12-08 1975-12-08 Detection device with temperature compensation

Publications (2)

Publication Number Publication Date
JPS5277647U JPS5277647U (en) 1977-06-09
JPS5912803Y2 true JPS5912803Y2 (en) 1984-04-17

Family

ID=28644610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16589475U Expired JPS5912803Y2 (en) 1975-12-08 1975-12-08 Detection device with temperature compensation

Country Status (1)

Country Link
JP (1) JPS5912803Y2 (en)

Also Published As

Publication number Publication date
JPS5277647U (en) 1977-06-09

Similar Documents

Publication Publication Date Title
JP2586495B2 (en) High frequency detection circuit
US4187537A (en) Full-wave rectifier
KR880002499B1 (en) Linear full ware rectifier circuit
JPS5912803Y2 (en) Detection device with temperature compensation
JPS6253967B2 (en)
JPS585594B2 (en) rectifier circuit
JPH05121946A (en) Balanced modulation circuit
JPS6146566A (en) Absolute value circuit
JPH0158893B2 (en)
JPH0527282B2 (en)
JPH0127602B2 (en)
JP2680807B2 (en) Amplifier circuit for diode detection output
JPH0159812B2 (en)
JPH0410810A (en) Fm modulator
JPH0122288Y2 (en)
JPS6210917A (en) Differential amplifier type hysteresis comparator circuit
JPH084748Y2 (en) Reference voltage circuit and oscillator circuit
JP2674096B2 (en) Multiplication circuit
JPS58133048A (en) Signal meter driving circuit of receiver
JPH0650045Y2 (en) DC AC addition circuit
JPS62210707A (en) Temperature compensation type level detection circuit
JPH0216042B2 (en)
JPS58120311A (en) Limiter
JPS5830321Y2 (en) Detection circuit
JPH0254688B2 (en)