JPS59127990A - Laser cutting device - Google Patents

Laser cutting device

Info

Publication number
JPS59127990A
JPS59127990A JP58004564A JP456483A JPS59127990A JP S59127990 A JPS59127990 A JP S59127990A JP 58004564 A JP58004564 A JP 58004564A JP 456483 A JP456483 A JP 456483A JP S59127990 A JPS59127990 A JP S59127990A
Authority
JP
Japan
Prior art keywords
cutting
laser
laser beam
polarization direction
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58004564A
Other languages
Japanese (ja)
Inventor
Takafumi Ohara
大原 尊文
Tadao Nakaichi
中市 忠男
Naoya Horiuchi
直也 堀内
Reiji Sano
佐野 令而
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58004564A priority Critical patent/JPS59127990A/en
Publication of JPS59127990A publication Critical patent/JPS59127990A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To make cutting width smallest, cutting speed large, working accuracy high and efficiency better in laser cutting by making the polarization direction and cutting direction of laser light coincident with each other by the cooperation of the parallel movement and turning movement of a work. CONSTITUTION:The width of a working groove is smallest and an accelerating speed is highest when the advancing direction of a laser beam 1 with respect to a material 3 to be marked coincides with the polarization direction of the beam. The above are opposite when the laser beam scans in the direction at a right angle to the polarization direction. The horizontal two-dimensional movement and turning movement are given on the material 3 by a computer operation so as to make the cutting direction always coincident with the polarization direction of the beam 1, whereby the cutting width is stabilized at the smallest width, the working accuracy is improved and the working speed is made always highest.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はレーザのエネルギーを有効に切断のだめのエ
ネルギーに変換できるレーザ切断装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a laser cutting device that can effectively convert laser energy into cutting energy.

従来例の構成とその問題点 CO2やYAGレーザビームの波は一種の電磁波であり
、レーザビームは進行方向に対して直角な方向に振動し
ながら進行している。このレーザビームの進行方向に直
角な振動方向を偏光方向と言い、偏光方向は時間と共に
等方向に同じ振幅で回転している円偏光のレーザビーム
や、また偏光方向が時間と共にある一定の方向のみの成
分をもって固定している直線偏光レーザビーム々とがあ
る。レーザビームを円偏光にするか、直線偏光にするか
はレーザ発振器の構成とレーザ発振器から出た後にレー
ザビームの偏光方向に変調を加える外部光学系の構成に
よって選択できる。
Conventional configuration and problems The waves of CO2 and YAG laser beams are a type of electromagnetic waves, and the laser beams travel while vibrating in a direction perpendicular to the direction of travel. The direction of vibration perpendicular to the direction of travel of the laser beam is called the polarization direction, and the polarization direction can be used for circularly polarized laser beams that rotate in the same direction with the same amplitude over time, or for circularly polarized laser beams whose polarization direction is only in a certain direction over time. There are linearly polarized laser beams that have a fixed component of . Whether the laser beam is circularly polarized or linearly polarized can be selected depending on the configuration of the laser oscillator and the configuration of an external optical system that modulates the polarization direction of the laser beam after it exits the laser oscillator.

従来レーザビ ムの直線偏光方向に対して切断の移動方
向を変えることにより、切断の効果は非常に差異がある
ことがわかっている。第1図は切断の移動方向によって
切断の状況がどのように異なるかを模式的に示しだ図で
、レーザビーム1はOX方向に直線偏光している。2は
集光レンズで、被加工物3の表面にレーザビームを集束
させて切断に供する。偏光方向は集光レンズ2を通過し
た後もOX方向に保たれており、被加工物3をOX方向
に移動して切断する場合はレーザビームの吸収は高く、
従ってレーザのエネルギーは効率良く切断のエネルギー
に変換され、切断速度も早く、切断幅も狭い。−力抜加
工物3をOY方向に移動して切断する場合はレーザビー
ムの吸収は低く、且つレーザビームの吸収は切断方向O
Yと直角な切断面で主として起とるので被加工物のカー
フ幅は広く、切断速度は遅い。
It has been found that by changing the direction of movement of the cutting with respect to the linear polarization direction of a conventional laser beam, the cutting effect can be significantly different. FIG. 1 is a diagram schematically showing how the cutting situation differs depending on the direction of movement of the cutting, and the laser beam 1 is linearly polarized in the OX direction. A condenser lens 2 focuses a laser beam onto the surface of the workpiece 3 for cutting. The polarization direction is maintained in the OX direction even after passing through the condenser lens 2, and when the workpiece 3 is moved in the OX direction to be cut, the absorption of the laser beam is high;
Therefore, the laser energy is efficiently converted into cutting energy, the cutting speed is fast, and the cutting width is narrow. - When cutting the stress relief workpiece 3 by moving in the OY direction, the absorption of the laser beam is low, and the absorption of the laser beam is in the cutting direction O
Since this mainly occurs on the cutting plane perpendicular to Y, the kerf width of the workpiece is wide and the cutting speed is slow.

レーザビームの直線偏光の方向に対して切断方向が等し
い場合(Ox方向)及び垂直な場合(Ox方向)につい
て、板厚一対する切断速度V (m/m1n)、切断カ
ーフ幅W。(mm)の関係を第2図に示す。
When the cutting direction is equal (Ox direction) and perpendicular to the direction of linear polarization of the laser beam (Ox direction), the cutting speed V (m/m1n) and the cutting kerf width W are determined for each plate thickness. (mm) is shown in FIG.

第2図かられかるように直線偏光方向と同じ方向である
Ox方向に切断する場合は、直線偏光方向と直角な方向
であるOY方向に切断する場合に比べて切断速度は約2
倍、カーフ幅は約2になる。
As shown in Figure 2, when cutting in the Ox direction, which is the same direction as the linear polarization direction, the cutting speed is about 2 times faster than when cutting in the OY direction, which is perpendicular to the linear polarization direction.
twice, the kerf width will be approximately 2.

次に円偏光されたレーザビームを使用する場合について
述べる。
Next, a case will be described in which a circularly polarized laser beam is used.

レーザビームの進行方向に直角な方向に円偏光して、等
方向な切断能力のあるレーザビームで被加工物を切断す
る際に用いられるレーザ切断装置の従来例を第3図に示
す。
FIG. 3 shows a conventional example of a laser cutting device used to cut a workpiece with a laser beam that is circularly polarized in a direction perpendicular to the direction of travel of the laser beam and has an isodirectional cutting ability.

図中1は円偏光されたレーザビームで、集光レンズ2で
集光し、第2のテーブル12上に設置された被加工物3
の加工点4にビームを集束させる。
In the figure, 1 is a circularly polarized laser beam, which is focused by a condenser lens 2 and directed to a workpiece 3 placed on a second table 12.
The beam is focused on processing point 4.

13は基台で、駆動モ=り5の回転トルクを伝達機構で
ある送りねじ6で並進動に変え、スライドレール7上で
第1のテーブル8をY方向に移動できるように構成され
ている。
Reference numeral 13 denotes a base, which is configured to convert the rotational torque of the drive motor 5 into translational motion by a feed screw 6, which is a transmission mechanism, and to move the first table 8 in the Y direction on a slide rail 7. .

同様に駆動モータ9の回転トルクを伝達機構である送り
ねじ10で並進運動に変え、スライドレール11上で第
2のテーブル12をX方向に移動させることにより被加
工物3を移動させ、被加工物3の任意の加工点4をレー
ザビーム照射位置にもって来ることが出来る。しかしな
がら上記の円偏光化したレーザビームで被加工物を任意
の形状に切断するためにはレーザ発振器と外部光学系で
レーザビームを円偏光化しなければならず、レーザ発振
器のコストが高く々す、外部光学系の部品の劣化に対す
る保守手続きが必要となる。まだ円偏光化レーザビ一ム
で切断する場合には切断速度、カーフ幅共に第2図で示
した偏光方向と切断方向が平行な場合と垂直な場合のほ
とんど中間の切断状況を示し、切断速度で偏光方向に平
行な切断の51・−ジ 場合に比べて’/1.5倍になり、カーフ幅は1.5倍
になり切断の効率と精度は良くない。
Similarly, the rotational torque of the drive motor 9 is converted into translational motion by the feed screw 10, which is a transmission mechanism, and the workpiece 3 is moved by moving the second table 12 in the X direction on the slide rail 11. Any processing point 4 on the object 3 can be brought to the laser beam irradiation position. However, in order to cut a workpiece into an arbitrary shape with the above circularly polarized laser beam, the laser beam must be circularly polarized using a laser oscillator and an external optical system, which increases the cost of the laser oscillator. Maintenance procedures are required to prevent deterioration of parts of the external optical system. When cutting with a circularly polarized laser beam, both the cutting speed and the kerf width are almost intermediate between the cases where the cutting direction is parallel to the polarization direction shown in Figure 2 and the case where the cutting direction is perpendicular. Compared to the case of cutting parallel to the polarization direction of 51.--, the width is '/1.5 times, the kerf width is 1.5 times as large, and the cutting efficiency and precision are not good.

発明の目的 本発明は上記従来の欠点を解消し、切断速度が早くて効
率が良く、カーフ幅が狭くて精度の良いレーザ切断装置
を提供することを目的とするものである。
OBJECTS OF THE INVENTION An object of the present invention is to eliminate the above-mentioned conventional drawbacks and to provide a laser cutting device that has high cutting speed, high efficiency, narrow kerf width, and high precision.

発明の構成 本発明は上記目的を達成するもので、直線偏光レーザビ
ームを用いてレーザ切断するに際し、レーザビームの直
線偏光の方向にレーザ切断する方向を一致させるが如く
、被加工物を平行及び回転移動させる手段を具備するレ
ーザ切断装置を提供するものである。
Structure of the Invention The present invention achieves the above-mentioned object, and when performing laser cutting using a linearly polarized laser beam, the workpiece is cut in parallel and parallel to the direction of the linearly polarized laser beam. A laser cutting device is provided which includes means for rotationally moving the laser cutting device.

実施例の説明 本発明のレーザ切断装置の一実施例を第4図に示す。Description of examples An embodiment of the laser cutting device of the present invention is shown in FIG.

本実施例においては、例えばOx方向に直線偏向された
レーザビーム21を集光レンズ2で集束し、被加工物3
上の加工点4に照射されるように6・  ・ なっており、被加工物3はOX、OY方向に第1のテー
ブル8.第2のテーブル12で移動できるのに加えて被
加工物の加工形状の接線方向が絶えず直線偏光の方向に
なる如く被加工物を回転する構造の駆動装置と々ってい
る。
In this embodiment, a laser beam 21 linearly polarized, for example, in the Ox direction is focused by a condenser lens 2, and the workpiece 3 is
6... so that the upper processing point 4 is irradiated, and the workpiece 3 is placed on the first table 8. in the OX and OY directions. In addition to being movable by the second table 12, the drive device is structured to rotate the workpiece so that the tangential direction of the processed shape of the workpiece is always in the direction of linearly polarized light.

第1のテーブル8は駆動モータ5により送りねじ6を介
してスライドレ=ルア」−をOY方向に移動可能であり
、第2のテーブル12は駆動モータ9により送りねじ1
0を介してスライドレール11上をOx方向に移動可能
に構成されている。寸だ駆動モータ15は被加工物3を
回転するだめの回転トルクを発生させ、伝達機構、例え
ばベルト16によって第3のテーブル14を回転し、そ
の上に設置された被加工物3の切断形状と偏光方向が一
致する様な駆動構造であり、回転用モータ15に入力す
べき信号としてはあらかじめ切断形状から加工点の接線
方向を求めて必要な回転角を入力しておいても良いし、
または切断形状から加工点の接線方向を自動的に求めて
、必要な回転角入力を自動的に与えるようにしても良い
The first table 8 is movable in the OY direction by a drive motor 5 via a feed screw 6, and the second table 12 is movable by a drive motor 9 via a feed screw 6.
0 on the slide rail 11 in the Ox direction. The cutting drive motor 15 generates rotational torque to rotate the workpiece 3, and rotates the third table 14 by means of a transmission mechanism, for example, a belt 16, thereby changing the cutting shape of the workpiece 3 placed thereon. The driving structure is such that the polarization direction matches that of the cut shape, and the signal to be input to the rotation motor 15 may be obtained by determining the tangential direction of the processing point from the cutting shape in advance and inputting the necessary rotation angle.
Alternatively, the tangential direction of the processing point may be automatically determined from the cutting shape, and the necessary rotation angle input may be automatically provided.

7、−−7 今Pという図形を切断していく過程を第5図を用いて説
明する。レーザビームの偏光方向をoy力方向し、第4
図の第1及び第2テ=プル8,12を移動させて、ビー
ムを第5図イの状態にあわせる。図で実線は切断済部、
点線は未切断部分を示すが、過程イ99ロ、ホへ、トで
は第4図の第3のテーブル14は一定の方向を向いてい
るので第3のテーブル14は各過程の間は一定の方向を
向いたiXである。一方、過程ハ、二においては第3の
テーブル14を絶えず回転しながら偏光の方向と切断の
方向が一致するように変化させる必要がある。
7, --7 Now, the process of cutting the figure P will be explained using FIG. The polarization direction of the laser beam is set to the oy force direction, and the fourth
Move the first and second table pullers 8 and 12 in the figure to adjust the beam to the state shown in FIG. 5A. In the figure, the solid line is the cut part,
The dotted lines indicate the uncut portions, but since the third table 14 in FIG. This is iX facing the direction. On the other hand, in steps C and 2, it is necessary to constantly rotate the third table 14 so that the polarization direction and the cutting direction match.

第6図は第4図の駆動モータ15に与えるべき回転角を
指令するだめのフローチャート例である。
FIG. 6 is an example of a flowchart for commanding the rotation angle to be given to the drive motor 15 of FIG.

61は加工図形を入力するブロックで、紙テープ。61 is a block for inputting processing figures, and is a paper tape.

磁気テープ、カードなどで入力する。52は加工点を読
み出すブロックで、53でレーザの集束スポット点に加
工点が来る様に並進移動量を計算する。ブロック64で
並進移動量を指示する。ブロック55では切断点が直線
状の部分にあるのか、曲線状の部分にあるのかを判断し
、もし直線部分にある時にはブロック66で回転台の回
転角を割算し、もし曲線部分にある時にはブロック67
で図形の接線から回転台の回転角を計算し、ブロック6
8で回転モーターに与えるべき回転角を指示する。
Input using magnetic tape, card, etc. 52 is a block for reading out the processing point, and 53 calculates the amount of translational movement so that the processing point comes to the focused spot point of the laser. Block 64 indicates the amount of translational movement. Block 55 judges whether the cutting point is on a straight line or a curved line. If it is on a straight line, block 66 divides the rotation angle of the turntable, and if it is on a curved line, it is divided by the rotation angle of the turntable. block 67
Calculate the rotation angle of the turntable from the tangent to the figure, and then proceed to block 6.
8 indicates the rotation angle to be given to the rotary motor.

このようにして、どのような形状の加工であっても常に
切断方向と直線偏光との方向を一致させながら切断を行
うことができる。
In this way, no matter what shape is being processed, cutting can be performed while always matching the cutting direction with the direction of the linearly polarized light.

発明の効果 以上要するに本発明は直線偏光レーザビームを使用し、
被加工物を平行及び回転移勤行わせる手段を用いて、直
線偏光の方向と切断方向とが常に一致するように制御さ
れるごとく構成されたもので、円偏光化するだめの部品
や保守手続きが省け、かつ、レーザ切断速度を早くして
切断効率を上げ、カーフ幅を狭くして精度の高い加工が
出来る利点を有する。
Effects of the Invention In short, the present invention uses a linearly polarized laser beam,
It is constructed so that the direction of linearly polarized light and the cutting direction always match by means of parallel and rotational movement of the workpiece, and there are no parts or maintenance procedures for circularly polarized light. It has the advantage that it can reduce the laser cutting speed, increase the cutting efficiency, and narrow the kerf width to perform highly accurate processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直線偏光レーザを使用した従来の切断91・−
ゾ 状況を示す模式図、第2図は第1図のレーザを使用した
時の板厚と切断速度及び切断カーフ幅との関係を示す図
、第3図は円偏光レーザを用いた従来のレーザ切断装置
の斜視図、第4図は本発明の一実施例としてのレーザ切
断装置の斜視図、第5図は本発明のレーザ切断装置の切
断過程を説明する図、第6図は本発明のレーザ切断装置
で、切断時に第3テーブルに与える回転量を計算するブ
ロックダイアグラムである。 1.21  ・レーザビーム、2  ・集光レンズ、3
−被加工物、5,9.15   駆動モータ、6.1o
・・−送りねじ、7.11  スライドレール、8  
第1テーブル、12  第2テーブル、13・−基台、
14−第3テーブル、16・・−ベルト。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−4
ε
Figure 1 shows conventional cutting using a linearly polarized laser 91.-
Fig. 2 is a diagram showing the relationship between plate thickness, cutting speed, and cutting kerf width when using the laser in Fig. 1, and Fig. 3 is a diagram showing the relationship between the plate thickness, cutting speed, and cutting kerf width when using the laser in Fig. 1. FIG. 4 is a perspective view of a laser cutting device as an embodiment of the present invention, FIG. 5 is a diagram explaining the cutting process of the laser cutting device of the present invention, and FIG. It is a block diagram for calculating the amount of rotation given to the third table during cutting in the laser cutting device. 1.21 ・Laser beam, 2 ・Condensing lens, 3
- Workpiece, 5,9.15 Drive motor, 6.1o
...-Feed screw, 7.11 Slide rail, 8
1st table, 12 2nd table, 13 - base,
14-Third table, 16...-Belt. Name of agent: Patent attorney Toshio Nakao and 1 other person-4
ε

Claims (1)

【特許請求の範囲】[Claims] 直線偏光レーザビームを発生する手段と、被加工物を平
行移動及び回転移動させる手段とを具備し、前記レーザ
ビームの直線偏光の方向と切断方向とが常に一致するよ
うに制御されるごとく構成したことを特徴とするレーザ
切断装置。
The machine comprises means for generating a linearly polarized laser beam, and means for moving the workpiece in parallel and rotation, and is configured so that the direction of the linearly polarized light of the laser beam and the cutting direction are controlled to always match. A laser cutting device characterized by:
JP58004564A 1983-01-13 1983-01-13 Laser cutting device Pending JPS59127990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004564A JPS59127990A (en) 1983-01-13 1983-01-13 Laser cutting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004564A JPS59127990A (en) 1983-01-13 1983-01-13 Laser cutting device

Publications (1)

Publication Number Publication Date
JPS59127990A true JPS59127990A (en) 1984-07-23

Family

ID=11587529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004564A Pending JPS59127990A (en) 1983-01-13 1983-01-13 Laser cutting device

Country Status (1)

Country Link
JP (1) JPS59127990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300756A (en) * 1991-10-22 1994-04-05 General Scanning, Inc. Method for severing integrated-circuit connection paths by a phase-plate-adjusted laser beam
WO2024080198A1 (en) * 2022-10-13 2024-04-18 株式会社アマダ Polarized light adjustment device and laser processing machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300756A (en) * 1991-10-22 1994-04-05 General Scanning, Inc. Method for severing integrated-circuit connection paths by a phase-plate-adjusted laser beam
WO2024080198A1 (en) * 2022-10-13 2024-04-18 株式会社アマダ Polarized light adjustment device and laser processing machine

Similar Documents

Publication Publication Date Title
US7994452B2 (en) Laser beam machining apparatus
US20120199565A1 (en) Laser beam applying mechanism and laser processing apparatus
JPH0531590A (en) Laser beam machine
WO1994003302A1 (en) Photo-scanning type laser machine
JP2892459B2 (en) Blade position adjustment method for precision cutting equipment
JPS59127990A (en) Laser cutting device
JP7033485B2 (en) Cutting blade shaping method
JPS584601B2 (en) Equipment for making fasteners
JP3447063B2 (en) Positioning device for cutting work pieces
KR20180094481A (en) Laser machining apparatus
JPS6054153B2 (en) Laser processing machine
JPS59124546A (en) Device for positioning body
JP3126216B2 (en) Laser processing machine
JPS5978793A (en) Laser working device
JPS5913589A (en) Laser working device
JPS59129485A (en) Laser oscillation device
JP2014111259A (en) Laser processing method, laser processing device, and laser processing program
JPS59150691A (en) Laser working machine
JPH08132268A (en) Laser beam machining equipment
JPH0985470A (en) Laser beam marking device
JP7173809B2 (en) Laser processing method
JP3825683B2 (en) Laser processing method and laser processing apparatus
JP2749712B2 (en) Workpiece positioning method in laser processing
JPS63317270A (en) Laser beam machine
JPH01122682A (en) Laser beam machine