JPS59129485A - Laser oscillation device - Google Patents

Laser oscillation device

Info

Publication number
JPS59129485A
JPS59129485A JP58004566A JP456683A JPS59129485A JP S59129485 A JPS59129485 A JP S59129485A JP 58004566 A JP58004566 A JP 58004566A JP 456683 A JP456683 A JP 456683A JP S59129485 A JPS59129485 A JP S59129485A
Authority
JP
Japan
Prior art keywords
laser
cutting
angle
optical axis
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58004566A
Other languages
Japanese (ja)
Inventor
Naoya Horiuchi
直也 堀内
Takafumi Ohara
大原 尊文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58004566A priority Critical patent/JPS59129485A/en
Publication of JPS59129485A publication Critical patent/JPS59129485A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane

Abstract

PURPOSE:To obtain an oscillation device enabling a cutting with high accuracy by setting up at least one linearly polarized light select-element arranged at a Brewster's angle on a laser optical axis in a laser oscillator and turning the select-element around the optical axis while maintaining the Brewster's angle. CONSTITUTION:A cylindrical mechanism vessel 5 having a rotary function is disposed on an axis of resonance constituted by a total reflection mirror 21 and a transmission mirror 22 as an output coupling mirror positioned at both ends of a laser oscillator 3. A polarized light select element 40 turning around a laser optical axis while maintaining a Brewster's angle to the optical axis is set up in the vessel 5, and the element 40 is turned by a motor 6. Laser beams 1 from the oscillator 3 are irradiated to a workpiece 12 through an external optical mirror 7 and a condenser lens 2 while controlling a rotation-angle input to the motor 6 by a control system 11 while X and Y tables 8, 9 on an XY driving base 10 are moved, and the quantity of the movement is fed back to the control system 11.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はレーザのエネルギーを有効に使用し、レーザ切
断等に適するレーザ発振装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a laser oscillation device that effectively uses laser energy and is suitable for laser cutting and the like.

2べ一2パ 従来例の構成とその問題点 C02やYACiレーザビームの波は一種の電磁波であ
り、レーザビームは進行方向に対して直角な方向に振動
しながら進行している。
2B-2P Conventional Structure and Problems The waves of the C02 and YACi laser beams are a type of electromagnetic wave, and the laser beams travel while vibrating in a direction perpendicular to the direction of travel.

このレーザビームの進行方向に直角な振動方向を偏光方
向と言い、偏光方向は時間と共に等方向に同じ振幅で回
転している円偏光のレーザビームや、また偏光方向が時
間と共にある一定の方向のみの成分をもって固定してい
る直線偏光レーザビームなどがある。レーザビームを円
偏光にするかあるいは直線偏光にするかはレーザ発振器
の構成とレーザ発振器から出だ後にレーザビームの偏光
方向に変調を加える外部光学系の構成によって選択する
ことができる。
The direction of vibration perpendicular to the direction of travel of the laser beam is called the polarization direction, and the polarization direction can be used for circularly polarized laser beams that rotate in the same direction with the same amplitude over time, or for circularly polarized laser beams whose polarization direction is only in a certain direction over time. There is a linearly polarized laser beam that has a fixed component of . Whether the laser beam is circularly polarized or linearly polarized can be selected depending on the configuration of the laser oscillator and the configuration of an external optical system that modulates the polarization direction of the laser beam after it exits the laser oscillator.

従来、直線偏光化されたレーザビームを用いてレーザ加
工(切断)した場合、直線偏光方向に対して切断の移動
方向を一致させることにより切断の効果は非常に差異が
あることがわかっている。
Conventionally, when laser processing (cutting) is performed using a linearly polarized laser beam, it has been found that the cutting effect is significantly different depending on the direction of movement of the cutting aligned with the direction of the linearly polarized light.

第1図は切断の移動方向によって切断の状況がどの様に
異なるかを模式的に示した図である。し31″  ソ ーザビーム1はOx方向に直7腺偏光している。2は集
光レンズで、被加工物120表面にレーザビーム1を集
束させて切断に供する。偏光方向は集光レンズ2を通過
した後もOx方向に保たれており被加工物12をOx方
向に移動して切断する場合はレーザビームの吸収は高く
、従ってレーザのエネルギーは効率良く切断のエネルギ
ーに変換され、切断速度も早く、切断中も狭い。一方、
被加工物12をoY方向に移動して切断する場合はレー
ザビームの吸収は低く、且つレーザビームの吸収は切断
方向OYと直角な切断面で主として起こるので被加工物
12のカーフ巾Wcは広く、切断速度は遅い。上記レー
ザビームの直線偏光の方向と切断方向が同じOx方向、
あるいは直角なOY方向について、切断速度Vと切断カ
ーフ巾Wcが鉄板の板厚によって変化する列を第2図に
示す。第2図でわかる様に直線偏光方向と同じOx方向
に切断する場合は直線偏光方向と直角なOY方向に切断
する場合に比べて切断速度は約2倍、カーフl]は約%
になる。
FIG. 1 is a diagram schematically showing how the cutting situation differs depending on the direction of movement of the cutting. 31'' The laser beam 1 is vertically polarized in the Ox direction. 2 is a condenser lens that focuses the laser beam 1 on the surface of the workpiece 120 for cutting. When the workpiece 12 is moved in the Ox direction and cut, the absorption of the laser beam is high, so the laser energy is efficiently converted into cutting energy, and the cutting speed is high. , is also narrow during cutting.On the other hand,
When cutting the workpiece 12 by moving it in the oY direction, the absorption of the laser beam is low, and the absorption of the laser beam mainly occurs at the cutting plane perpendicular to the cutting direction OY, so the kerf width Wc of the workpiece 12 is wide. , the cutting speed is slow. an Ox direction in which the direction of linearly polarized light of the laser beam and the cutting direction are the same;
Alternatively, FIG. 2 shows a row in which the cutting speed V and the cutting kerf width Wc change depending on the thickness of the iron plate in the perpendicular OY direction. As shown in Figure 2, when cutting in the Ox direction, which is the same as the linear polarization direction, the cutting speed is approximately twice that of cutting in the OY direction, which is perpendicular to the linear polarization direction, and the kerf l] is approximately %.
become.

次に従来レーザの進行方向に直角な方向に円偏光して、
等方的な切断能力のあるレーザビームをレーザ共振器外
外部光学系にて作りだす方法が行なわれている。
Next, the light is circularly polarized in a direction perpendicular to the direction of travel of the conventional laser.
A method has been used in which a laser beam with isotropic cutting ability is generated using an external optical system outside the laser resonator.

第3図に円偏光化を行なうだめの外部光学系の構成例を
示す。レーザ共振器3から出射したレーザビーム1は進
行方向垂直成分に対して46°の傾キヲモったレーザビ
ーム1となる様にレーザ共振器3を構成し円偏光化を行
うため多層蒸着された全反射鏡、フェーズリターダ−4
を入射角45°となる様に構成することによって簡単に
円偏光化することができ、集光レンズ2によって被加工
物12を等方的に切断することができる。第4図は第3
図に示したレーザビーム1の各場所における断面の偏光
特性を調べた図である。aは円偏光化する前の45°傾
いたA −A’断面における直線偏光特性を示す。但し
レーザ出力1oo%とする。bはフェーズリターダ−4
を用いて円偏光化を行い集光レンズ2を通しての:s−
B′断面円偏光特性を示す。
FIG. 3 shows an example of the configuration of an external optical system for circularly polarizing light. The laser resonator 3 is constructed so that the laser beam 1 emitted from the laser resonator 3 becomes a laser beam 1 tilted at an angle of 46° with respect to the vertical component of the traveling direction. Reflector, phase retarder-4
By configuring the beam to have an incident angle of 45°, the light can be easily circularly polarized, and the workpiece 12 can be isotropically cut by the condenser lens 2. Figure 4 is the third
It is a diagram in which the polarization characteristics of the cross section at each location of the laser beam 1 shown in the figure were investigated. a shows the linear polarization characteristic in the A-A' cross section tilted at 45 degrees before circular polarization. However, the laser output is 10%. b is phase retarder-4
circularly polarizes the light through the condenser lens 2: s-
B' section shows circular polarization characteristics.

第3図に示しだ構成で円偏光化した場合の切断効5、ジ 果を切断速度v′及び切断カーフ巾Wc′とじて第2図
に示した。円偏光の場合、直線偏光と比較してたしかに
等方的な切断はできるがレーザエネルギー利用としては
%となるためIM線偏光OX方向切断速度Vと円偏光切
断速度V′を比較すると約25係円偏光切断速度は遅く
なり又、カーフ幅も約25%〜30%と幅広くなるため
、切断の効率と精度はかならずしも良くない。しかし円
偏光の場合等方的な切断が可能となる。
FIG. 2 shows the cutting efficiency 5 and the effect of circularly polarized light in the configuration shown in FIG. 3 in terms of cutting speed v' and cutting kerf width Wc'. In the case of circularly polarized light, it is true that it is possible to cut isotropically compared to linearly polarized light, but since the laser energy usage is %, when comparing the cutting speed V of IM line polarized light in the OX direction and the cutting speed of circularly polarized light V', it is about 25%. Since the circularly polarized light cutting speed becomes slower and the kerf width becomes wider, about 25% to 30%, the cutting efficiency and precision are not necessarily good. However, in the case of circularly polarized light, isotropic cutting becomes possible.

以上述べたごと〈従来一定の方向のみ成分をもって固定
している直線偏光を用いてレーザ切断する場合、直線偏
光方向と同等な方向に切断すればレーザエネルギーを効
率良く利用することができるが、その逆方向に対しては
偏光方向が固定しているため効率、精度とも悪くなり等
方的な切断には不向きである。そこで等方的な切断がで
きる円偏光化を行う方法がとられてきた。しかし円偏光
は第4図すに示した様にレーザ出力1oo%に対して%
と減少するためエネルギー効率、あるいは切断効率を悪
くし、又、46°の傾きをもった直線6 ハ、−−シ゛ 偏光とする共振器を構成する必要があり、かつフェーズ
リターダ−4の劣化が円偏光化特性を悪くする欠点があ
った。
As stated above, when laser cutting is performed using linearly polarized light, which has a fixed component in only a certain direction, laser energy can be used efficiently if the cutting is performed in the same direction as the linearly polarized light. In the opposite direction, the polarization direction is fixed, resulting in poor efficiency and accuracy, making it unsuitable for isotropic cutting. Therefore, a method of circularly polarizing light that allows isotropic cutting has been adopted. However, as shown in Figure 4, circularly polarized light is
In addition, it is necessary to construct a resonator that polarizes the straight line 6 with an inclination of 46°, and the deterioration of the phase retarder 4 decreases. This had the disadvantage of deteriorating the circular polarization characteristics.

発明の目的 本発明は上記欠点を解消し切断速度が早くて、効率が良
くカーフ幅が狭くて精度の高いレーザ切断ができるレー
ザ発振装置を提供するものである。
OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned drawbacks and provides a laser oscillation device that can perform high-speed cutting, high efficiency, narrow kerf width, and highly accurate laser cutting.

発明の構成 本発明は上記目的を達成するもので、レーザ発振器内部
のレーザ光学軸上にブリー−スタ角をもって配置される
少なくとも1個の直線偏光選択素子を設け、前記直線偏
光選択素子をブリー−スタ角を維持しなからレーザ光学
軸のまわりに回転させる手段を設けたレーザ発振装置を
提供するものである。
SUMMARY OF THE INVENTION The present invention achieves the above object by providing at least one linearly polarized light selection element disposed at a bleeder angle on the laser optical axis inside a laser oscillator, and in which the linearly polarized light selection element is breech-selected. The object of the present invention is to provide a laser oscillation device provided with means for rotating the laser around the optical axis while maintaining the star angle.

実施例の説明 第6図に本発明の代表的な実施例を示す。Description of examples FIG. 6 shows a typical embodiment of the invention.

本実施例においては、第1図にて示した様に直線偏光化
することによって同一の切断方向に対しては効率が良く
カーフ巾も狭く精度が高いものが得られるだめレーザ発
振器3内全反射鏡21と透過鏡(出力結合鏡)22にて
共振し増幅するレーザ光学’fill (Jl; 1級
1(1) l−にブリュースタ角をもって配置される直
線偏光選択素子4oを具備する。更に選択素子40は回
転1幾能を有する円筒形状機構容器5内に固定される。
In this example, as shown in FIG. 1, by linearly polarizing the light, it is possible to obtain a highly efficient and narrow kerf width for the same cutting direction, and total internal reflection within the laser oscillator 3. A laser optical 'fill (Jl; Class 1 1 (1) l-) that resonates and amplifies with a mirror 21 and a transmitting mirror (output coupling mirror) 22 is provided with a linear polarization selection element 4o arranged at a Brewster's angle. The selection element 40 is fixed in a cylindrical mechanical container 5 with one rotational geometry.

第6図は偏光選択素子40を駆動用モータ6により回転
するための拡大図であり、共帳器3内に配置される円筒
形状機構容器5内にレーザ光軸1とプリー−スタ角θを
なしたままレーザ光軸1のまわりに回転できるように偏
光選択素子4oが構成されており、この偏光選択素子4
0は2つの軸受61と、回転するだめの伝達ベルト62
を付加することによって駆動用モータ6にてレーザ光軸
1を中心に自由に回転することができる。
FIG. 6 is an enlarged view showing how the polarization selection element 40 is rotated by the driving motor 6. The laser optical axis 1 and the Priest angle θ are set in the cylindrical mechanism container 5 disposed in the co-book device 3. The polarization selection element 4o is configured so that it can be rotated around the laser optical axis 1 while the polarization selection element 4o is
0 is two bearings 61 and a rotating transmission belt 62
By adding , the drive motor 6 can freely rotate around the laser optical axis 1 .

しだがって選択素子4oは共振器内部にて直線偏光化し
又直線偏光方向を変えることかり能である。
Therefore, the selection element 4o is capable of linearly polarizing light inside the resonator and changing the direction of linear polarization.

実施−〇では選択素子4oを2枚使用しているが、これ
は選択素子4oによって共振増幅するレーザ光が屈折し
光軸のズレを補正するだめに用いたためで、かならずし
も2枚で構成する必要はなく1枚でも良いし、逆に複数
枚使用しても良い。少なくとも本実施例ではレーザ光が
レーザ共振軸と一致するごとく構成され、光の損失を最
低限おさえることができればよい。
In implementation-〇, two selection elements 4o are used, but this is because the selection element 4o refracts the laser beam that is resonantly amplified and is used to correct the deviation of the optical axis, so it is not necessary to use two selection elements. You can use one sheet instead of one, or conversely, you can use multiple sheets. At least in this embodiment, it is sufficient that the laser beam is configured to coincide with the laser resonance axis and that the loss of light can be minimized.

直線偏光素子40を回転できる機能をもだせることで任
意の方向に直線偏光を設定することができる。
By providing the ability to rotate the linearly polarizing element 40, linearly polarized light can be set in any direction.

したがってレーザビームを用いてレーザ切断する場合、
被加工物12上の加工点まで外部光学ミラー7を用いて
導入し集光レンズ2を介して集束されXY駆動台1oを
用いて照射することで任意の形状を加工切断することが
できる。
Therefore, when performing laser cutting using a laser beam,
By introducing the light to a processing point on the workpiece 12 using the external optical mirror 7, focusing it through the condensing lens 2, and irradiating it using the XY drive stage 1o, it is possible to process and cut an arbitrary shape.

本実施例であるレーザ発振器ばXY駆動台1oを用いる
ことで被加工物12の自由切断を行なう時加工形状の接
線方向が絶えず直線偏光の方向になる如くX軸テーブル
8を動作させるモータ8oとY軸テーブル9を動作させ
るモータ90を動作させる。たとえばX軸及びY軸用駆
動モータ80 、90の回転量から自動的に接線方向を
求めて必要な選択素子4oの、1躯動モータ6の回転角
入力を自動的に与える様に制御系11にて行なう。ある
いは加工するだめの切断形状から加工点の接線方向を求
めて必要な回転角を入力しておいて加工形状接線方向と
偏光方向を一致させる様にしても良い。電気的前脚系1
1の具体的実施例として、Pという図形を切断していく
過程を第7図を用いて説明する。実線は切断済部分で点
線が未切)@部分である。
The laser oscillator of this embodiment includes a motor 8o that operates the X-axis table 8 so that when freely cutting the workpiece 12, the tangential direction of the processed shape is always in the direction of linearly polarized light by using the XY drive base 1o. The motor 90 that operates the Y-axis table 9 is operated. For example, the control system 11 automatically determines the tangential direction from the rotation amounts of the X-axis and Y-axis drive motors 80 and 90 and automatically provides the necessary rotation angle input of the single-stroke motor 6 to the selection element 4o. I'll do it at Alternatively, the tangential direction of the processing point may be determined from the cut shape of the workpiece to be processed, and the necessary rotation angle may be inputted to match the tangential direction of the processing shape with the polarization direction. Electric front leg system 1
As a specific example of Embodiment 1, the process of cutting a figure P will be explained using FIG. The solid line is the cut part and the dotted line is the uncut part).

レーザビームの偏光方向÷OY方向とし、第5図のX軸
テーブル8及びY軸テーブル9を移動させてビームを第
7図イの状態にあわせる。
The polarization direction of the laser beam is divided by the OY direction, and the X-axis table 8 and Y-axis table 9 in FIG. 5 are moved to adjust the beam to the state shown in FIG. 7A.

過程イ22ロ、ホへ、トでは第5図及び第6図に示しだ
共振器内偏光選択素子4oは一定の方向を向いている。
In steps A22B, E and G, the intra-cavity polarization selection element 4o shown in FIGS. 5 and 6 is oriented in a fixed direction.

一方過程ハ、二においては選択素子4oを回転させて偏
光の方向と切断の方向が一致するように変化させる。
On the other hand, in steps C and 2, the selection element 4o is rotated so that the direction of polarization and the direction of cutting coincide with each other.

第8図は第5図、第6図に示した選択素子駆動モータ6
に与えるべき回転角を指令するだめのフローチャート例
である。61は加工図形を入力するブロックで紙テープ
、磁気テープ、カード等で入10、 。
FIG. 8 shows the selection element drive motor 6 shown in FIGS. 5 and 6.
This is an example of a flowchart for commanding the rotation angle to be given to. 61 is a block for inputting processing figures, which can be input using paper tape, magnetic tape, cards, etc. 10.

力する。52は加工点を読み出すブロックで、ブロック
53でレーザの集束スポット点に加工点が来る様に並進
移動量を計算する。ブロック54で並進移動量を指示す
る。ブロック55では切断点が直線状の部分にあるのか
、曲線状の部分にあるのかを判断する。もし直線部分に
ある時にはブロック66で回転台の回転角を計算し、ブ
ロック58で回転モータに与えるべき回転角を指示する
Strengthen. A block 52 reads out the processing point, and a block 53 calculates the amount of translational movement so that the processing point comes to the focused spot of the laser. Block 54 indicates the amount of translational movement. In block 55, it is determined whether the cutting point is on a straight line or a curved line. If it is on a straight line, the rotation angle of the rotary table is calculated in block 66, and the rotation angle to be given to the rotary motor is specified in block 58.

ブロック65で、切断点が曲線状であるという判断をし
たときは、ブロック57で図形接線での回転角を計算し
、ブロック68で回転モータに与えるべき回転角を指示
する。
When it is determined in block 65 that the cutting point is curved, the rotation angle on the figure tangent is calculated in block 57, and the rotation angle to be given to the rotary motor is specified in block 68.

第9図はg5図に示す直線偏光選択素子4oを具備する
機構容器6を回転動作することによってレーザビームの
偏光方向がどの様に変わるかを示しだ図であり断面A 
−A’における直線偏光特性を示す。直線偏光選択素子
40を制御することにより偏光方向をβからβ′と任意
の角度にコントロールできる。駆動モータ6の動作は少
なくとも0°〜18CI′の回転を伝達するのみで良く
かならずしも直続的動作だけでなくステップ動作として
も良い。
FIG. 9 is a diagram showing how the polarization direction of the laser beam changes by rotating the mechanical container 6 equipped with the linear polarization selection element 4o shown in FIG.
- Linear polarization characteristics at A' are shown. By controlling the linear polarization selection element 40, the polarization direction can be controlled to any angle from β to β'. The operation of the drive motor 6 only needs to transmit a rotation of at least 0° to 18 CI', and may be not only a continuous operation but also a step operation.

発明の効果 本発明は、レーザ発振器内に直線偏光化素子を具備し回
転機能を加えることによって直線偏光方向を変えられる
様なレーザ発振装置を提供するもので円偏光化するだめ
の部品や保守手続きが省け、かつレーザ切断速度を早く
して切断効率を上げ、スカーフ巾を狭くして精度の高い
レーザビームが出来る。
Effects of the Invention The present invention provides a laser oscillation device that is equipped with a linear polarization element in the laser oscillator and can change the direction of linear polarization by adding a rotation function, and requires no parts or maintenance procedures for circular polarization. In addition, the laser cutting speed can be increased to increase cutting efficiency, and the scarf width can be narrowed to produce a highly accurate laser beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図′I′i切断方向と偏光方向との関係を模式的に
示した図、第2図は切断速度及び切断カーフ巾と板厚と
の関係を示した図、第3図は円偏光を使用した従来のレ
ーザ発振装置の構成図、第4図は第3図に示したレーザ
発振装置の各場所におけるビーム断面の偏光特性を示す
図で、aはA −A’断面の直線偏向特注、bはB−B
’断面の円偏光特性をそれぞれ示す。第6図は本発明の
一実施例としてのレーザ発振装置の構成図、第6図は第
6図に示す実施例の主要部の断面図、第7図は本発明の
レーザ発振装置の切断過程を説明する図、第8図は本発
明のレーザ発振装置の回転量を計算するブロックダイア
グラム、第9図は第5図に示す本発明のレーザ発振装置
のA −A’断面における偏光特注を示す図である。 1−・−・・レーザビーム、2・・・・・・集光レンズ
、3・・・・・レーザ発振器、4− ・−7エーズリタ
ーダー、4゜・・・・・・直線偏光選択素子、5・・−
・・機構容器、6・・−・駆動モータ、7・・−・外部
反射鏡、8−・・・・X軸テーブル、80・・・X軸モ
ータ、9・・・ Y軸テーブル、90・・・・・Y軸モ
ータ、1o・・・・・・xY駆動台、11・・・・・・
制御系、12・・・・・−被加工物、21・・・・・・
全反射鏡、22−・・・・出力透過窓、51・・−・・
軸受、52・・・・・・伝達ベルト。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−存 感 37
Figure 1 is a diagram schematically showing the relationship between cutting direction and polarization direction, Figure 2 is a diagram showing the relationship between cutting speed, cutting kerf width, and plate thickness, and Figure 3 is circularly polarized light. 4 is a diagram showing the polarization characteristics of the beam cross section at each location of the laser oscillation device shown in FIG. , b is B-B
'The circular polarization characteristics of each cross section are shown. FIG. 6 is a configuration diagram of a laser oscillation device as an embodiment of the present invention, FIG. 6 is a sectional view of the main part of the embodiment shown in FIG. 6, and FIG. 7 is a cutting process of the laser oscillation device of the present invention. FIG. 8 is a block diagram for calculating the amount of rotation of the laser oscillation device of the present invention, and FIG. 9 shows custom polarization in the A-A' cross section of the laser oscillation device of the present invention shown in FIG. It is a diagram. 1-... Laser beam, 2... Condensing lens, 3... Laser oscillator, 4-...-7 Aze retarder, 4°... Linear polarization selection element, 5...-
... Mechanism container, 6... Drive motor, 7... External reflector, 8-... X-axis table, 80... X-axis motor, 9... Y-axis table, 90... ...Y-axis motor, 1o...xY drive stand, 11...
Control system, 12...-Workpiece, 21...
Total reflection mirror, 22-... Output transmission window, 51...
Bearing, 52...Transmission belt. Name of agent: Patent attorney Toshio Nakao and 1 other person - Senkan 37

Claims (2)

【特許請求の範囲】[Claims] (1)全反射鏡と出力結合鏡との間で共振、増幅を行わ
せるレーザ発振器内部に少なくとも1個の直線偏光選択
素子を設け、前記直線偏光選択素子はレーザ光学軸上に
プリー−スタ角をもって配置されており、前記直線偏光
選択素子をブリュースタ角に維持しなからレーザ光学軸
のまわりに回転させるようにしたことを特徴とするレー
ザ発掘装置。
(1) At least one linear polarization selection element is provided inside a laser oscillator that performs resonance and amplification between a total reflection mirror and an output coupling mirror, and the linear polarization selection element is arranged at a Priester angle on the laser optical axis. 1. A laser excavation device, characterized in that the linearly polarized light selection element is rotated around the laser optical axis without being maintained at the Brewster's angle.
(2)直線偏光方向を加工方向と一致させるごとく、直
線偏光選択素子の回転を制御する手段を設けたことを特
徴とする特許請求の範囲第1項記載のレーザ発振装置。
(2) The laser oscillation device according to claim 1, further comprising means for controlling the rotation of the linear polarization selection element so that the linear polarization direction coincides with the processing direction.
JP58004566A 1983-01-13 1983-01-13 Laser oscillation device Pending JPS59129485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004566A JPS59129485A (en) 1983-01-13 1983-01-13 Laser oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004566A JPS59129485A (en) 1983-01-13 1983-01-13 Laser oscillation device

Publications (1)

Publication Number Publication Date
JPS59129485A true JPS59129485A (en) 1984-07-25

Family

ID=11587583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004566A Pending JPS59129485A (en) 1983-01-13 1983-01-13 Laser oscillation device

Country Status (1)

Country Link
JP (1) JPS59129485A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110291A (en) * 1984-06-26 1986-01-17 Toshiba Corp Carbonic gas laser device
JPS6423586A (en) * 1987-07-20 1989-01-26 Mitsubishi Electric Corp Laser machining apparatus
JPH01122682A (en) * 1987-11-04 1989-05-15 Nec Corp Laser beam machine
EP1223452A1 (en) * 2001-01-11 2002-07-17 Nec Corporation Method and device for correcting laser beam intensity and laser device utilising the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110291A (en) * 1984-06-26 1986-01-17 Toshiba Corp Carbonic gas laser device
JPS6423586A (en) * 1987-07-20 1989-01-26 Mitsubishi Electric Corp Laser machining apparatus
JPH01122682A (en) * 1987-11-04 1989-05-15 Nec Corp Laser beam machine
EP1223452A1 (en) * 2001-01-11 2002-07-17 Nec Corporation Method and device for correcting laser beam intensity and laser device utilising the same
US6770844B2 (en) 2001-01-11 2004-08-03 Nec Corporation Method of correcting laser beam intensity, laser beam intensity correction mechanism and multi-branched laser oscillation device having the same

Similar Documents

Publication Publication Date Title
US4707584A (en) Dual-polarization, dual-frequency cutting machine
JP2013086129A (en) Glass substrate processing apparatus using laser beam
JPH10291084A (en) Laser machining method for brittle material and its device
JPH11170072A (en) Method and device for laser beam machining and for forming circuit of nonconductive transparent substrate
JPS59129485A (en) Laser oscillation device
JP6030747B2 (en) Glass substrate processing equipment by laser beam
JP2019013962A (en) Laser processing device
JPH11245074A (en) Focal point spot diameter variable device of laser beam in laser processing machine
JP2017164754A (en) Laser processing apparatus and laser processing method
JPH05504723A (en) Cutting method using high energy radiation
JPS6054153B2 (en) Laser processing machine
CN112823075B (en) Laser processing machine and laser processing method
JPH11267873A (en) Scan optical system of laser light and laser processing device
JPH0243598B2 (en)
JPH09298331A (en) Selectable wavelength laser oscillator of variable wavelength laser
JPH0929467A (en) Laser beam machine
JP2000176669A (en) Laser beam cutting device
JP2006272431A (en) Laser beam machining apparatus
JPH01192492A (en) Laser processing device
JP2014111259A (en) Laser processing method, laser processing device, and laser processing program
JP2001038484A (en) Injection optical system for laser processing device
JPS59150691A (en) Laser working machine
JPH01122682A (en) Laser beam machine
JPS6137391A (en) Laser working method
JPH01130894A (en) Laser beam machine