JPS59125638A - Manufacture of semiconductor element isolation - Google Patents

Manufacture of semiconductor element isolation

Info

Publication number
JPS59125638A
JPS59125638A JP31483A JP31483A JPS59125638A JP S59125638 A JPS59125638 A JP S59125638A JP 31483 A JP31483 A JP 31483A JP 31483 A JP31483 A JP 31483A JP S59125638 A JPS59125638 A JP S59125638A
Authority
JP
Japan
Prior art keywords
film
silicon
oxide film
groove
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31483A
Other languages
Japanese (ja)
Other versions
JPS6351537B2 (en
Inventor
Keimei Mikoshiba
御子柴 啓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP31483A priority Critical patent/JPS59125638A/en
Publication of JPS59125638A publication Critical patent/JPS59125638A/en
Publication of JPS6351537B2 publication Critical patent/JPS6351537B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable to isolate an ultrafine pattern and to form a field region covered with a thick oxidized film by combining the merits of a method of burying a groove formed on a silicon substrate with an insulator and the merits of a selective oxidation method. CONSTITUTION:With a photoresist 11 as a mask grooves 12, 13 are formed on a silicon substrate 10. After the resist 11 is exfoliated, an oxidized film 14 is formed by thermal oxidation, and a silicon nitrided film 15 is formed thereon. Then, only the silicon nitrided film of the field region 16 is removed by etching. At this time, the nitrided film 17 of the part along the edge of the groove remains in the length corresponding to the intruded amount into the nitrided film by the selectively oxidized film. Subsequently, a selective oxidation is performed. At this time, a thermally oxidized film 18 which has the thickness of approx. twice of the depth of the groove 13 is formed. Thereafter, the nitrided film is etched. An oxidized film 20 is then grown. Eventually, this oxidized film is etched in the thickness amount, thereby forming an insulator isolating region having a flat surface.

Description

【発明の詳細な説明】 本発明はシリコン乗積回路における素子間の絶縁分離の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing insulation isolation between elements in a silicon product circuit.

従来よシ、素子間の絶縁分離法としては、選択酸化によ
る方法が広く用いられている。この方法では、7リコン
窒化腺をマスクにして、7リコン基板を部分的に熱ば化
する。
Conventionally, selective oxidation has been widely used as a method for insulating and isolating elements. In this method, the 7 Licon substrate is partially heated using the 7 Licon nitriding gland as a mask.

第1図にこの健米孜術の断面図をボす。1はシリコン基
板、2はシリコン窒化膜である。熱准化すると、シリコ
ン従化鴛で憶わnていない部分に酸化膜3が形成される
。この時、酸化膜の厚みイ目当のくい込み4が生じるた
め、杷縁分離領域が広がってしまう。従って、この方法
は倣lI+I11パターン形成には適さない。
Figure 1 shows a cross-sectional view of this Kenbei Keijutsu. 1 is a silicon substrate, and 2 is a silicon nitride film. When thermally assimilated, an oxide film 3 is formed in the areas not covered by the silicon layer. At this time, since the oxide film is indented 4 by the thickness of the oxide film, the lobe edge separation region becomes wider. Therefore, this method is not suitable for copying II+I11 pattern formation.

第2図は従来技術であるアイングレーナー法の断面図で
ある。この場合、選択ば化する部分を、酸化膜の厚さの
約1/2だけエツチングして溝5を形成する。仄に熱酸
化す、ると、は化膜6の底面は、シリコン基板表面とほ
ぼ同一の高さになる。
FIG. 2 is a sectional view of the conventional Einglener method. In this case, the groove 5 is formed by etching the selectively etched portion by about 1/2 of the thickness of the oxide film. When slightly thermally oxidized, the bottom surface of the oxide film 6 becomes approximately at the same height as the surface of the silicon substrate.

この方法においても、酸化膜のくい込み7が生ずるため
、微細パターン形成には適さない。
This method also causes oxidation film penetration 7, and is therefore not suitable for forming fine patterns.

本発明の目的は、従来法の欠点である酸化膜のくい込み
を防止し、微細パターン形成を町H目にすると同時に、
フィールド領域に平担でかつ厚い酸化膜全形成する方法
を提供することである。
The purpose of the present invention is to prevent the penetration of the oxide film, which is a drawback of the conventional method, and to improve the formation of fine patterns, while at the same time
It is an object of the present invention to provide a method for forming a flat and thick oxide film all over a field region.

不発明の特徴は、シリコン半導体装置の素子間絶縁分離
に関して、シリコン基板の素子分離領域となるべき領域
がエツチングされ、鉾が形成きれることと、前記シリコ
ン基板表面に、酸化Mをはさんでシリコン窒化膜がM、
涜されでいることと、前記シリコン窒化膜をマスクにし
て選択酸化する時、前記シリコン窒化膜内に酸化膜が後
人する距離とほぼ等しい巾だけ、nu記シリコン窒化膜
が削記碑の低部の周囲に残されるように、月11記屑低
部の前記シリコン窒化膜がエツチングさ扛ていることと
、前記シリコン窒化膜をマスクにして、前記溝の深さの
約2借の厚めの熱酸化膜が形成されることと、前記溝お
よびn11記熱酸化によって生ずる前記シリコン基板と
前記熱酸化膜間の溝が前記シリコン基板表面がはeよ平
担になる様に他の酸化膜が埋め込まれている絶縁分離の
製造方法にある。
The inventive feature is that, regarding insulation isolation between elements of a silicon semiconductor device, a region of the silicon substrate that should become an element isolation region is etched to form a ridge, and that silicon oxide is sandwiched between the silicon substrate surface and silicon oxide. The nitride film is M,
Also, when performing selective oxidation using the silicon nitride film as a mask, the silicon nitride film is removed by a width approximately equal to the distance that the oxide film leaves behind in the silicon nitride film. The silicon nitride film at the bottom of the scrap is etched away so that it remains around the groove, and using the silicon nitride film as a mask, etching is etched to a thickness approximately two times the depth of the groove. A thermal oxide film is formed, and another oxide film is formed so that the groove and the groove between the silicon substrate and the thermal oxide film caused by the thermal oxidation become flat as the surface of the silicon substrate. The manufacturing method of the embedded insulation isolation.

本発明は、溝堀シ分離あるいはトレンチ法と呼ばれてい
る。
The present invention is called the Mizohori isolation or trench method.

シリコン基板に形成された鉤を絶縁物で埋め込む方法と
、前記選択酸化法の長所fr:組み合せることにより、
g細パターンの分離と、厚い酸化膜で伎われたフィール
ド領域の形成を可能にするものである0厚いフィールド
鍍化膜は、この上に形成される配線の寄生容量全減少さ
せるのに効果がある◎配線の寄生容量による信号伝搬の
遅れは、最小寸法が1μm以下の乗値回路において顕著
である。
By combining the method of embedding the hooks formed on the silicon substrate with an insulator and the advantages of the selective oxidation method,
A thick field plating film, which enables the isolation of thin patterns and the formation of a field region covered by a thick oxide film, is effective in reducing the total parasitic capacitance of the wiring formed on it. ◎Delay in signal propagation due to parasitic capacitance of wiring is noticeable in multiplier circuits with minimum dimensions of 1 μm or less.

本発明の実施例の素子断面図を第3図に製造工8唄を追
って示す。
A cross-sectional view of an element according to an embodiment of the present invention is shown in FIG. 3 along with eight manufacturing steps.

第3図(a)において、1oil−i、シリコン基板で
ある。
In FIG. 3(a), 1 oil-i is a silicon substrate.

例えばフォトレジスト11をマスクにして、プラズマ異
方性エツチングにょシシリコンil!;板に溝12゜1
3が形成される。溝12は素子間の狭い分離′領域に、
溝13はフィールド領域に対応する。次にレジスト11
をはくジしてから、熱酸化によシ、500人前板のりす
い酸化膜14を形成し、その上に100OA程贋のシリ
コン窒化膜15を気相成長により4着する(第3図(b
))。次に、通常の7オトリングラフイーにより、フィ
ールド領域16のシリコン窒化膜のみ、エツチングで除
去する。
For example, using the photoresist 11 as a mask, plasma anisotropic etching is performed using silicon il! ;Groove 12゜1 on the plate
3 is formed. The grooves 12 are located in the narrow separation area between the elements.
Groove 13 corresponds to the field area. Next, resist 11
After peeling off the silicon nitride film 14, a 500-layer thick oxide film 14 is formed by thermal oxidation, and four fake silicon nitride films 15 of about 100 OA are deposited on it by vapor phase growth (see Fig. 3). b
)). Next, only the silicon nitride film in the field region 16 is removed by etching using normal 7-etching technique.

この時、溝のエツジに沿った部分の窒化膜17は、選択
酸化膜が窒化膜内にくい込む長さだけ残しておく(第3
図(C))。仄に、選択酸化を行う。この時、溝13の
深さの約2倍の厚みを持つ熱酸化膜18Th形成する(
第3図(d))。こうすると、シリコン基板表面とフィ
ールド酸化膜180表面とがほぼ同一の高さになる。次
に、窒化膜をエツチングする。そして、溝12あるいは
溝19が完全に埋この酸化形美には、ステップカバレッ
ジの艮い、プラ、(マcVD Sin、、スパッターs
io、6るいは元CV D S 102告が適する。こ
の酸化膜厚は、溝12ろるいは19の巾の1/2よジも
厚いことが必要である。最後に、この酸化膜を丁度厚さ
分だけエツチングする。
At this time, the portion of the nitride film 17 along the edge of the groove is left with a length that allows the selective oxide film to sink into the nitride film (third
Figure (C)). In addition, selective oxidation is performed. At this time, a thermal oxide film 18Th having a thickness approximately twice the depth of the trench 13 is formed (
Figure 3(d)). In this way, the surface of the silicon substrate and the surface of field oxide film 180 become approximately at the same height. Next, the nitride film is etched. Then, to completely fill the grooves 12 or 19 with oxidation, step coverage, plastic, (McVD Sin, sputtering) etc.
io, 6 or former CV D S 102 notification is suitable. The thickness of this oxide film needs to be about 1/2 the width of the groove 12 or 19. Finally, this oxide film is etched to just the desired thickness.

こうすることによシ、第3図(f)に示される様に、表
面が平担な絶縁分離領域が形成される。
By doing this, an insulating isolation region with a flat surface is formed as shown in FIG. 3(f).

本発明の特徴は、微細な素子分離領域と、厚い酸化膜で
伝われたフィールド・領域が同時に形成できることと、
基板表面が平担であることにある。
The features of the present invention are that a fine element isolation region and a field/region propagated through a thick oxide film can be simultaneously formed;
The reason is that the substrate surface is flat.

又、通常の選択酸化汰全そのまま用いているため、シリ
コン基板にストレスを発生させたジ、結晶欠陥を誘起さ
せたシすることがない。
In addition, since all the usual selective oxidation is used as is, stress on the silicon substrate and crystal defects are not induced.

本発明を笑施することによシ、微細分離領域による高乗
積密度と、ノ4いフィールド絶縁膜によるを主容量の減
少が実現できる。
By implementing the present invention, a high product density due to the fine isolation region and a reduction in main capacitance due to the small field insulating film can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来法による素子分離法を説明す
るための素子断面図、第3図は、本発明の詳細な説明す
るための素子断面図である。 尚、図において、 l・・・・・・シリコンi板、2・・自・・シリコンi
化膜、3.6・・・・・・フィールド熱酸化膜、4,7
・・・・・・酸化膜のくい込み、5・・・・・・溝、1
0・・・・・・シリコン基板、11・・・・・・フォト
レジスト、12・・・・・・狭い素子分離溝、13・・
・・・・フィールド溝、14・・・・・・熱酸化膜、1
5・・・・・・7リコン窒化膜、16・・・・・・フィ
ールド領d、17・・・・・・シリコyffl(IJL
  18・・・・・・フィールド熱酸化膜、19・・・
・・・溝、20・・・・・・酸化膜、21・・・・・・
フィールド歇化膜、22・・・・・・累子分離′碩域で
ある。
1 and 2 are device cross-sectional views for explaining a conventional device isolation method, and FIG. 3 is a device cross-sectional view for explaining the present invention in detail. In the figure, l...Silicon i plate, 2...Self...Silicon i
oxide film, 3.6...Field thermal oxide film, 4,7
...... Oxide film penetration, 5... Groove, 1
0...Silicon substrate, 11...Photoresist, 12...Narrow element isolation trench, 13...
...Field groove, 14...Thermal oxide film, 1
5...7 silicon nitride film, 16... field region d, 17... silicon yffl (IJL
18...Field thermal oxide film, 19...
...Groove, 20...Oxide film, 21...
Field temporization film, 22... is a gradation separation'segregation area.

Claims (1)

【特許請求の範囲】[Claims] シリコン基板の素子分離領域となるべき頚城に酵金形成
する工程と、前記シリコン基板衆囲に、酸化族をはさん
でシリコン電化膜が破着する工程と、前記シリコン窒化
膜をマスクにして選択酸化する時、前記シリコン窒化膜
内に酸化膜が侵入する距離とほぼ等しい巾だけ、前記シ
リコン窒化膜が前記溝の低部の周囲に残されるように、
前記溝低部の前記シリコン窒化膜をエツチングする工程
と、前記シリコン窒化膜をマスクにして熱酸化膜を形成
する工程と、前記溝および前dC熱酸化によって生ずる
前記シリコン基板と前記熱は化膜間の溝に前記シリコン
基板表面がほぼ平担になる様に他の酸化膜を埋め込む工
程とを有すること全特徴とする半導体素子分離の製造方
法。
A step of forming an enzyme on the silicon substrate which is to become an element isolation region, a step of adhering a silicon electrified film around the silicon substrate with an oxide group in between, and a step of making a selection using the silicon nitride film as a mask. When oxidizing, the silicon nitride film is left around the bottom of the trench by a width approximately equal to the distance that the oxide film penetrates into the silicon nitride film,
a step of etching the silicon nitride film at the bottom of the trench; a step of forming a thermal oxide film using the silicon nitride film as a mask; A method for manufacturing semiconductor element isolation, comprising the step of embedding another oxide film in the groove between the silicon substrates so that the surface of the silicon substrate becomes substantially flat.
JP31483A 1983-01-05 1983-01-05 Manufacture of semiconductor element isolation Granted JPS59125638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31483A JPS59125638A (en) 1983-01-05 1983-01-05 Manufacture of semiconductor element isolation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31483A JPS59125638A (en) 1983-01-05 1983-01-05 Manufacture of semiconductor element isolation

Publications (2)

Publication Number Publication Date
JPS59125638A true JPS59125638A (en) 1984-07-20
JPS6351537B2 JPS6351537B2 (en) 1988-10-14

Family

ID=11470446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31483A Granted JPS59125638A (en) 1983-01-05 1983-01-05 Manufacture of semiconductor element isolation

Country Status (1)

Country Link
JP (1) JPS59125638A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252450A2 (en) * 1986-07-07 1988-01-13 Texas Instruments Incorporated Integrated circuit isolation process
US4892614A (en) * 1986-07-07 1990-01-09 Texas Instruments Incorporated Integrated circuit isolation process
JPH09153542A (en) * 1995-11-30 1997-06-10 Nec Corp Method of manufacturing semiconductor device
KR100329606B1 (en) * 1995-06-02 2002-10-25 주식회사 하이닉스반도체 Method for forming isolation layer in semiconductor device
KR100361762B1 (en) * 1995-11-06 2003-02-11 주식회사 하이닉스반도체 Isolation method of semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179246A (en) * 1988-12-28 1990-07-12 Fanuc Ltd Stator construction of built-in motor
JPH0635652Y2 (en) * 1989-02-06 1994-09-14 神鋼電機株式会社 Core retainer plate for semi-finished stator that separates cutting chips
JPH0617345U (en) * 1992-07-22 1994-03-04 東洋電機製造株式会社 Alternator stator without frame

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0252450A2 (en) * 1986-07-07 1988-01-13 Texas Instruments Incorporated Integrated circuit isolation process
JPS6340337A (en) * 1986-07-07 1988-02-20 テキサス インスツルメンツ インコ−ポレイテツド Method of isolating integrated circuit
US4892614A (en) * 1986-07-07 1990-01-09 Texas Instruments Incorporated Integrated circuit isolation process
KR100329606B1 (en) * 1995-06-02 2002-10-25 주식회사 하이닉스반도체 Method for forming isolation layer in semiconductor device
KR100361762B1 (en) * 1995-11-06 2003-02-11 주식회사 하이닉스반도체 Isolation method of semiconductor device
JPH09153542A (en) * 1995-11-30 1997-06-10 Nec Corp Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS6351537B2 (en) 1988-10-14

Similar Documents

Publication Publication Date Title
JPH0779133B2 (en) Method for manufacturing semiconductor device
JPH118295A (en) Semiconductor device and its manufacture
JPS59125638A (en) Manufacture of semiconductor element isolation
JPS59186342A (en) Manufacture of semiconductor device
US4544941A (en) Semiconductor device having multiple conductive layers and the method of manufacturing the semiconductor device
JP2786199B2 (en) Method for manufacturing thin film semiconductor device
JPS5992547A (en) Isolation process
JP2775845B2 (en) Method for manufacturing semiconductor device
KR100273244B1 (en) Method for fabricating isolation region of semiconductor device
JP2003023066A (en) Manufacturing method for semiconductor device
JPH02156537A (en) Manufacture of semiconductor device
JPS62130543A (en) Manufacture of semiconductor device
JP2758765B2 (en) Method for manufacturing semiconductor device
JPH0249017B2 (en)
JPS62217629A (en) Semiconductor device
JPS6265437A (en) Manufacture of semiconductor device
JPS60202954A (en) Manufacture of semiconductor device
JPH05226278A (en) Manufacture of semiconductor device
JPS6116545A (en) Manufacture of semiconductor integrated device
JPH06177264A (en) Fabrication of semiconductor device
JPH03159259A (en) Semiconductor device and manufacture thereof
JPH03225922A (en) Manufacture of semiconductor device
JPH06326098A (en) Manufacture of semiconductor device
JPH01251641A (en) Manufacture of semiconductor device
JPS621243A (en) Manufacture of semiconductor device