JPS59125037A - Reflection loss measuring method - Google Patents

Reflection loss measuring method

Info

Publication number
JPS59125037A
JPS59125037A JP23366182A JP23366182A JPS59125037A JP S59125037 A JPS59125037 A JP S59125037A JP 23366182 A JP23366182 A JP 23366182A JP 23366182 A JP23366182 A JP 23366182A JP S59125037 A JPS59125037 A JP S59125037A
Authority
JP
Japan
Prior art keywords
optical
point
pulse
directional coupler
passes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23366182A
Other languages
Japanese (ja)
Inventor
Takao Funahashi
鮒橋 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23366182A priority Critical patent/JPS59125037A/en
Publication of JPS59125037A publication Critical patent/JPS59125037A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR

Abstract

PURPOSE:To measure a reflection loss by a difference of peak values of both pulses by using an optical pulse generator as a light source, and separating an optical pulse which leaks at the near end of an optical directional coupler, and an optical pulse which is reflected by an optical boundary surface of an optical fiber, etc. and goes and returns. CONSTITUTION:A pulse signal outputted from a pulse generator 5 is converted to an optical pulse having the same pulse width and period as an input by an optical transmitter 7. In an optical directional coupler 2, the optical pulse signal leaks into a point C by a near-end leakage to the point C from a point A, and it is inputted to an optical receiver 6. On the other hand, the optical pulse signal which passes through a point B from the point A passes through an optical fiber 4 for a delay, is reflected by an optical boundary surface 8, passes through the optical fiber 4 again, passes through the point C from the point B, and is inputted to the optical receiver 6. As for said two pulses which are photoelectric converted and amplified, a level ratio of its peak values is read by an oscilloscope 9.

Description

【発明の詳細な説明】 本発明に光ファイバの端面等の光学的境界面における光
の反射量を測定する反射減衰量測定方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a return loss measuring method for measuring the amount of light reflected at an optical boundary surface such as an end face of an optical fiber.

従来例の構成とその問題点 従来、光ファイバの端面(光コネクタの接合部も含む)
における光の反射量を測定する方歩として第1図に示す
測定系が用いられていた。
Conventional configuration and its problems Conventionally, the end face of optical fiber (including the joint of optical connector)
The measurement system shown in FIG. 1 was used to measure the amount of light reflected in the .

光源1からの出力光(定常光)は光方向性結合器2の近
端漏洩により直接光パワメータ3に点Aから点Bを通り
入射する。−力点Aから点Cと光方向性結合器2を通過
した光は、被測定光ファイバ4の端面に達し、ここで反
射して再び点Cから点Bと光方向性結合器2を通過して
光パワメータ3に入射する。この2つの入射パワの差よ
り被測定光ファイバ4の端面の反射減衰量を算出するこ
とができる。
The output light (stationary light) from the light source 1 directly enters the optical power meter 3 from point A to point B due to near-end leakage of the optical directional coupler 2 . - The light that passes from point A to point C and the optical directional coupler 2 reaches the end face of the optical fiber 4 to be measured, is reflected there, and passes from point C to point B and the optical directional coupler 2 again. and enters the optical power meter 3. The return loss of the end face of the optical fiber 4 to be measured can be calculated from the difference between these two incident powers.

今、光源のA点の光出力をP。dBmとすると、光フア
イバ端面の反射光のB点での光パワPr1は(1)式で
表わされる。
Now, the light output at point A of the light source is P. dBm, the optical power Pr1 of the reflected light from the end face of the optical fiber at point B is expressed by equation (1).

P 、 1−Po  (L (+L b+2 ・L 、
 ) + R(dBrr+ )   ・−・(1)ただ
し、L、は光方向性結合器接続損失、Lbll′:i光
方向性結合器接続損失、L8 は光フアイバ損失、Ri
・:を端面反射減衰附である。首だ、第1図においで、
Ll は光方向性結合器近端漏洩量である。
P, 1-Po (L (+L b+2 ・L,
) + R(dBrr+) ・-・(1) However, L is the optical directional coupler connection loss, Lbll': i is the optical directional coupler connection loss, L8 is the optical fiber loss, Ri
・:With end face reflection attenuation. It's the neck, see Figure 1.
Ll is the near-end leakage amount of the optical directional coupler.

一方、光方向性結合器2の近端漏洩によりB点に漏れ込
む光パワPr2は(2)式で表わされる。
On the other hand, the optical power Pr2 leaking into point B due to near-end leakage of the optical directional coupler 2 is expressed by equation (2).

pr2=p0+I、、  (dBm)−・−・・(2)
測定限界ばPr1ミPr2  であり、現状の光方向性
結合器2の接続損失は約2dB、  近端漏洩量は約−
30dBであるから、反射減衰量Hの測定限界は約−2
4dBとなる。但しファイバ損失はodBとしたが、フ
ァイバ損失がある場合は一24dBより大きな値となる
pr2=p0+I,, (dBm)−・−・(2)
The measurement limit is Pr1 and Pr2, and the connection loss of the current optical directional coupler 2 is about 2 dB, and the near-end leakage is about -
Since it is 30 dB, the measurement limit for return loss H is approximately -2
It becomes 4dB. However, although the fiber loss is expressed in odB, if there is fiber loss, the value will be greater than -24 dB.

半導体レーザを使用したアナログ伝送の場合、光フアイ
バ端面の反射減衰量を一40dB以下で(lill定す
る必要があり、反射減衰量−40dB以下の測定は従来
方法では前記理由により不可能であでた。
In the case of analog transmission using a semiconductor laser, it is necessary to determine the return loss at the end face of the optical fiber to -40 dB or less, and measurement of return loss of -40 dB or less is impossible with conventional methods for the reasons mentioned above. Ta.

発明の目的 本発明は上記従来の欠点を除去するものであシ、従来不
可能であった反射減衰量(−4odB以下)、の(I1
1定′f:可能とするものである。
Purpose of the Invention The present invention is intended to eliminate the above-mentioned conventional drawbacks, and to reduce the return loss (-4 odB or less) of (I1), which was previously impossible.
1 constant'f: It is possible.

発明の構成 本発明は上記目的を達成するために、光源として光パル
ス発生器を用い、光方向性結合器の近端で漏洩する光パ
ルスと、光ファイバ等の光学的境界面で反射して往復す
る光パルスとを分離し、両パルスの波高値の差より反射
減衰量を測定するものである。
Structure of the Invention In order to achieve the above object, the present invention uses an optical pulse generator as a light source, and combines the optical pulse leaking at the near end of an optical directional coupler with the optical pulse reflected at an optical boundary surface of an optical fiber or the like. This method separates the reciprocating optical pulse and measures the return loss from the difference in the peak values of both pulses.

実施例の説明 第2図は本発明の測定系の基本構成を示している。第2
図において、5は光パルス発生器、2は光方向性結合器
、4は被測定光ファイバ、6は光受信器である。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows the basic configuration of the measurement system of the present invention. Second
In the figure, 5 is an optical pulse generator, 2 is an optical directional coupler, 4 is an optical fiber to be measured, and 6 is an optical receiver.

光パルス発生器5からの光パルスは、光方向性結合器2
の近接漏洩により、直接光受信器6に漏れ込む。第3図
の受信波形P1 がこれによって発生するパルス波形で
ある。一方光方向性結合器2を通り被測定光ファイバ4
に導かれた光パルスは、この光ファイバ4の端面で反射
し、再び光方向性結合器2を通って光受信器6に導かれ
る。第3図の受信波形PRがこれによって発生ずるパル
ス波形である。受信波形PRは、光方向性結合器2と被
測定光ファイバ4の間にある長さLの光ファイバの中を
光パルスが伝搬する間に生じる伝搬遅延時間により、第
3図に示すように受信波形Pl  より時間τdだけ遅
れ分離される。τdは(3)式のように示され、長さL
(m)が長いほどτdは太きくとれる。
The optical pulse from the optical pulse generator 5 is transmitted to the optical directional coupler 2
directly leaks into the optical receiver 6 due to proximity leakage. The received waveform P1 in FIG. 3 is the pulse waveform generated by this. On the other hand, the optical fiber 4 to be measured passes through the optical directional coupler 2.
The optical pulse guided by the optical fiber 4 is reflected at the end face of the optical fiber 4 and guided to the optical receiver 6 through the optical directional coupler 2 again. The received waveform PR in FIG. 3 is the pulse waveform generated by this. The received waveform PR is as shown in FIG. It is separated with a delay of time τd from the received waveform Pl. τd is expressed as in equation (3), and the length L
The longer (m) is, the thicker τd can be.

τd= 2 X L X n/3 X 10 ” (秒
) ・・・・・・・・・・・・(3)但しnは光フアイ
バコアの屈折率である。
τd=2XLXn/3X10'' (seconds) (3) where n is the refractive index of the optical fiber core.

ここで点Aの光パルスのピーク電力をP。(dBm)と
すると受信波形Pl、PRの各々の波高埴土1.iRは
各々(4)式、(5)式で表わされる。
Here, the peak power of the optical pulse at point A is P. (dBm), the wave height of each of the received waveforms Pl and PR is 1. iR is represented by formulas (4) and (5), respectively.

11ocP1=Po−t−Ll(dBm)  −−−・
(4)i6cx:Ps=Po−(L(+Lb−+−2−
Ls)+R(dBm)・・・・・・・・・・・・・・・
・・(5)今ilとiRO比を又とすると、 )(=101og(i 1./iH)=P1−Ps(d
Bm)−=−(6)故に反射減衰量Rは(7)式のよう
に求めることができる・〕 R= (Lf+Lb+ 2 L 6) + L 1−1
o log (i8/iH) (dB )・・・・・・
・・・・・・(7) 前述したように光方向性結合器2の接続損先約2dB、
近端漏洩量−3odB でありファイバ損失をodBと
すれば、 R=−24−101og (i 1/iH)(dB)−
−軸)となる。光受信器6のS/N を考慮すれば(8
)式の第2項は2odB以上確保できることから、本発
明による測定方法によれば反射減衰量は一40dB以下
が測定可能となる。
11ocP1=Po-t-Ll (dBm) ---
(4) i6cx: Ps=Po-(L(+Lb-+-2-
Ls)+R(dBm)・・・・・・・・・・・・・・・
...(5) If we now consider il and iRO ratio, )(=101og(i 1./iH)=P1-Ps(d
Bm)-=-(6) Therefore, the return loss R can be obtained as in equation (7).] R= (Lf+Lb+ 2 L 6) + L 1-1
o log (i8/iH) (dB)...
......(7) As mentioned above, the connection loss of the optical directional coupler 2 is approximately 2 dB,
If the near end leakage amount is -3 odB and the fiber loss is odB, then R=-24-101og (i 1/iH) (dB)-
− axis). Considering the S/N of the optical receiver 6, (8
) Since the second term of the equation can be ensured to be 2 odB or more, the measurement method according to the present invention makes it possible to measure return loss of -40 dB or less.

次に本発明の一実施例について第4図とともに説明する
Next, an embodiment of the present invention will be described with reference to FIG.

パルス発生器5より出力されるパルス幅量eonSで周
期が約480 nS のパルス信号は、光送信器7によ
り入力と同一パルス幅、周期を持−)だ光・くルスに変
換される。2は光方向性結合器であり、点Aから点Bへ
の通過損失は約2 dB 、同様に点Bから点Cへの通
論損失も約2dB、点Aから点Cへの近端漏洩は約3o
dBの性能を持つC前記光パルス信号は点Aから点Cへ
の近端漏洩によ−・て点Cに漏れ込み、光受信器6に入
る。−力点Aから点Bを通過した光パルス信号は遅延用
の光ファイバ4を通り、光学的境界面8で反射し再び光
ファイバ4を通り、点Bから点Cを通過して光受信器6
に入る。光受信器6は周波数帯域幅30MHz 、入力
換算雑音電流1P A/%程度の性能を持つ。この光受
信器6で光/電気変換され増幅された上記2つのパルス
はオシロスコープ9でソノピーク値のレベル比を読み取
られる。
A pulse signal having a pulse width eonS and a period of about 480 nS outputted from the pulse generator 5 is converted by the optical transmitter 7 into light/curse having the same pulse width and period as the input. 2 is an optical directional coupler, and the passing loss from point A to point B is about 2 dB, similarly the throughput loss from point B to point C is about 2 dB, and the near-end leakage from point A to point C is Approximately 3o
The optical pulse signal C having a performance of dB leaks from point A to point C by near-end leakage and enters the optical receiver 6. - The optical pulse signal that has passed from point A to point B passes through the delay optical fiber 4, is reflected at the optical interface 8, passes through the optical fiber 4 again, and passes from point B to point C to the optical receiver 6.
to go into. The optical receiver 6 has a frequency bandwidth of 30 MHz and an input equivalent noise current of about 1 P A/%. The two pulses optically/electrically converted and amplified by the optical receiver 6 are read by an oscilloscope 9 for the level ratio of sonopeak values.

ここで電気/光変換器を行う光送信器7の光源として半
導体レーザを用い、その出力される光パルスのピーク電
力ばOdBm以上となる。故に光受信器6での光方向性
結合器2の近端漏洩によ−て点Cに漏れ込む光パルスの
受光ピーク電力は一30dBm以」二となり、前記した
光受信器の性能を考慮すると、光受信器の出力でのS/
N は40dB L、I、上が確保できる。よって(8
)式の第2項は20dB以」二確保できることが明らか
である。
Here, a semiconductor laser is used as the light source of the optical transmitter 7 which performs an electrical/optical converter, and the peak power of the output optical pulse is OdBm or more. Therefore, the received peak power of the optical pulse leaking into point C due to near-end leakage of the optical directional coupler 2 at the optical receiver 6 is less than 130 dBm, and considering the performance of the optical receiver described above, , S/ at the output of the optical receiver
N can be secured at 40dB L, I, and above. Therefore (8
) It is clear that the second term in the equation can be maintained at 20 dB or more.

一方W9L用光ファイバは6m以」二の長さとする。On the other hand, the W9L optical fiber has a length of 6 m or more.

これによる遅延時間ば(3)式より約60nS以上とな
り、前記2つの受信光パルスを時間的に分離することか
できる。
The delay time resulting from this is approximately 60 nS or more from equation (3), and the two received optical pulses can be separated in time.

発明の効果 本発明は上記のような構成であり、本発明によれば、フ
ァイバ端面等の光学的境界面での反射量(これはファイ
バ端面での反射に限らず、ファイバ内部の散乱による反
射、ファイバ端面の光射光に対する入射光の比率等も島
む)がオシロスコープ上のパルスのピーク値を読むこと
により一40dB以上測定可能となるものである。
Effects of the Invention The present invention has the above configuration, and according to the present invention, the amount of reflection at an optical boundary surface such as a fiber end face (this is not limited to the reflection at the fiber end face, but also the reflection due to scattering inside the fiber). The ratio of the incident light to the incident light on the fiber end face can be measured by -40 dB or more by reading the peak value of the pulse on an oscilloscope.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光ファイバの端面における光反射減衰量
を測定する測定系のブロック図、第2図は本発明の反射
減衰量測定方法の測定系の基本構成を示すブロック図、
第3図は同測定系における光受信器の受信波形図、第4
図は本発明の一実施例における測定系のブロック図であ
る・2・・・・・・光方向性結合器、4・・・光ファイ
バ、5・・・・光パルス発生器、6・・・・・光受信器
、7・・・・・・光送信器、8・・・・・・光学的境界
面、9・・・・・オシロスコープ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
l 凶 第3図 F’t
FIG. 1 is a block diagram of a conventional measurement system for measuring the optical return loss at the end face of an optical fiber, and FIG. 2 is a block diagram showing the basic configuration of the measurement system of the return loss measurement method of the present invention.
Figure 3 is a received waveform diagram of the optical receiver in the same measurement system;
The figure is a block diagram of a measurement system in an embodiment of the present invention. 2... Optical directional coupler, 4... Optical fiber, 5... Optical pulse generator, 6... ... optical receiver, 7 ... optical transmitter, 8 ... optical interface, 9 ... oscilloscope. Name of agent: Patent attorney Toshio Nakao and 1 other person
l F't

Claims (2)

【特許請求の範囲】[Claims] (1)光パルス発生手段で発生し光方向性結合器に入射
して近端で漏洩する光パルスと、上記光方向性結合器の
出射側の光ファイバ等の光学的境界面で反射した光パル
スとを分離し、両光パルスの波高値の差より上記光学的
境界面の反射減衰量を測定することを特徴とする反射減
衰量測定方法。
(1) The optical pulse generated by the optical pulse generating means, incident on the optical directional coupler, and leaking at the near end, and the light reflected at the optical boundary surface of the optical fiber, etc. on the output side of the optical directional coupler. A method for measuring return attenuation, characterized in that the return attenuation of the optical interface is measured from the difference in the peak values of both optical pulses.
(2)光パルス発生手段を構成する光送信器としてパル
ス幅60nS以下の光パルスを発生する光送信器を用い
、かつ光方向性結合器の近端で漏洩する光パルスと、光
ファイバ等の光学的境界面で反射した光パルスとを受信
する光受信器の帯域幅を30 MHz以上とした特許請
求の範囲第1項記載の反射減衰量測定方法。
(2) An optical transmitter that generates optical pulses with a pulse width of 60 nS or less is used as the optical transmitter constituting the optical pulse generation means, and the optical pulse leaking at the near end of the optical directional coupler and the optical fiber etc. 2. The return loss measuring method according to claim 1, wherein the bandwidth of the optical receiver that receives the optical pulse reflected from the optical boundary surface is 30 MHz or more.
JP23366182A 1982-12-29 1982-12-29 Reflection loss measuring method Pending JPS59125037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23366182A JPS59125037A (en) 1982-12-29 1982-12-29 Reflection loss measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23366182A JPS59125037A (en) 1982-12-29 1982-12-29 Reflection loss measuring method

Publications (1)

Publication Number Publication Date
JPS59125037A true JPS59125037A (en) 1984-07-19

Family

ID=16958541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23366182A Pending JPS59125037A (en) 1982-12-29 1982-12-29 Reflection loss measuring method

Country Status (1)

Country Link
JP (1) JPS59125037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189299A (en) * 1988-06-20 1993-02-23 Virginia Polytechnic Institute & State University Method and apparatus for sensing strain in a waveguide
EP1462788A1 (en) * 2003-03-28 2004-09-29 Agilent Technologies Inc. a Delaware Corporation Bidirectional optical loss measurement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149737A (en) * 1974-10-25 1976-04-30 Nippon Electric Co HIKARIFUAI BADANSENKEN SASOCHI
JPS536059A (en) * 1976-07-07 1978-01-20 Sumitomo Electric Ind Ltd Measuring method and apparatus for optical fiber transmission characteristics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149737A (en) * 1974-10-25 1976-04-30 Nippon Electric Co HIKARIFUAI BADANSENKEN SASOCHI
JPS536059A (en) * 1976-07-07 1978-01-20 Sumitomo Electric Ind Ltd Measuring method and apparatus for optical fiber transmission characteristics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189299A (en) * 1988-06-20 1993-02-23 Virginia Polytechnic Institute & State University Method and apparatus for sensing strain in a waveguide
EP1462788A1 (en) * 2003-03-28 2004-09-29 Agilent Technologies Inc. a Delaware Corporation Bidirectional optical loss measurement

Similar Documents

Publication Publication Date Title
CA2075961C (en) Optical test apparatus
US11402295B2 (en) Optical fiber loss measurement device and optical fiber loss measurement method
JP7322960B2 (en) Optical fiber testing method and optical fiber testing apparatus
US4257707A (en) Device for measuring the attenuation of optical waves on optical transmission paths
JP3206168B2 (en) Optical pulse tester
US5295015A (en) Optical amplifying apparatus
CN110635841B (en) Method and device for improving echo signal of chaotic optical time domain reflectometer
CN206422377U (en) A kind of multi-wavelength single frequency optical fiber laser of short straight cavity configuration
JPS59125037A (en) Reflection loss measuring method
JPS5478156A (en) Detector of break point of optical fibers
US5870183A (en) Method of measuring on an optical fibre
CN108983253A (en) A kind of high-precision laser microspur measurement method
CN106207721A (en) Light source line width compressibility step by step
JP2747565B2 (en) Method and apparatus for measuring curvature distribution of optical fiber
JPS59126224A (en) Elongation distribution measurement of optical fiber
CN219370000U (en) Optical path for eliminating echo interference of transmitting end face of FMCW optical fiber laser radar
RU2179374C1 (en) Device for measurement of characteristics of fiber of optical communication cable (modifications)
JP3231117B2 (en) Measurement method of nonlinear refractive index of optical fiber
WO2023053250A1 (en) Device and method for measuring loss and crosstalk produced in optical fiber transmission line
Nelson et al. Passive multiplexing techniques for fiber optic sensor systems
JPH0466835A (en) Testing device of optical waveguide
JPH0130097B2 (en)
JPH0354291B2 (en)
JPH05256702A (en) Analyzer of light spectrum
JPH05172657A (en) Optical fiber distributed temperature sensor