JPH0466835A - Testing device of optical waveguide - Google Patents

Testing device of optical waveguide

Info

Publication number
JPH0466835A
JPH0466835A JP17930190A JP17930190A JPH0466835A JP H0466835 A JPH0466835 A JP H0466835A JP 17930190 A JP17930190 A JP 17930190A JP 17930190 A JP17930190 A JP 17930190A JP H0466835 A JPH0466835 A JP H0466835A
Authority
JP
Japan
Prior art keywords
optical
signal
pulse
light
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17930190A
Other languages
Japanese (ja)
Inventor
Takao Sakurai
孝夫 桜井
Koji Sasaki
功治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP17930190A priority Critical patent/JPH0466835A/en
Publication of JPH0466835A publication Critical patent/JPH0466835A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten a dead zone and also to obtain a waveform being free from fluctuation by making a light pulse from a light pulse generator enter one end of an optical waveguide, an object of measurement, and by taking out a light signal through a directional coupler. CONSTITUTION:A pulse signal PS is supplied from a pulse generator 11 to a laser light source 12 and a light pulse PI of a prescribed period obtained therefrom is made to enter one end 1a of an optical fiber 1 being an optical waveguide, an object of measurement, through a directional coupler 14 and a photoconnector 15. A light signal PO obtained at one end 1a of the optical fiber 1 is supplied to an optical amplifier 16 through the photoconnector 15 and the directional coupler 14 and converted into an electric signal in a photoelectric converter 17, and it is subjected to amplification 18 and A/D conversion 21 and supplied to an adder 22. In the adder 22, digital signals in a plurality of times of periods of the pulse signal PS are added up, one period thereof being taken as one time, and subjected to logarithmic transformation 23, and thereafter a transformation output thus obtained is supplied to a display unit 24 and displayed as a waveform.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、光ファイバなどの光導波路の一端に光パル
スを入射させることによって光導波路の一端に得られた
後方散乱光を観測”することにより光導波路の特性を測
定する光導波路試験装置に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention is directed to "observing backscattered light obtained at one end of an optical waveguide by injecting a light pulse into one end of an optical waveguide such as an optical fiber." The present invention relates to an optical waveguide testing device that measures the characteristics of an optical waveguide.

「従来の技術」 上記のような光導波路試験装置は、従来一般に第3同に
示すように構成されている。
"Prior Art" The optical waveguide testing apparatus as described above has conventionally been generally constructed as shown in the third part.

すなわち、パルス発生器31からの第4図に示すような
一定周期のパルス信号PSがレーザダイオ−1のような
レーザ光源32に供給されてレザ光源32から第4図に
示すような一定周期の光パルスPIが得られ、その光パ
ルスPIが光方向性結合器34を通し、光コネクタ35
を通じて測定対象の光導波路、この場合には光ファイバ
1の一端】aに入射させられ、これによって光ファイバ
lの一端1aに得られた光信号POが光コ2クタ35を
通し、光方向性結合器34を通じてフォトダイオードの
ような光電変換器37に供給されて電気信号に変換され
、その電気信号が増幅器38で増幅されたのちA/D変
換器41に供給されてディジタル信号に変換され、その
ディジタル信号が加算器42に供給されて加算器42に
おいてパルス信号PSの1周期分を1回としたときの複
数回分のディジタル信号が加算され、加算器42の出力
信号が対数変換器43に供給されて対数変換され、その
変換出力が表示器44に供給されて波形として表示され
る。パルス発生器31とレーザ光源32は光パルス発生
器33を構成し、光電変換器37と増幅器38は受光系
39を構成する。
That is, a pulse signal PS with a constant period as shown in FIG. 4 from the pulse generator 31 is supplied to a laser light source 32 such as a laser diode 1, and the laser light source 32 generates light with a constant period as shown in FIG. A pulse PI is obtained, and the optical pulse PI is passed through an optical directional coupler 34 and connected to an optical connector 35.
The optical signal PO obtained at one end 1a of the optical fiber 1 passes through the optical collector 35, and the optical signal PO is input to the optical waveguide to be measured, in this case, one end 1a of the optical fiber 1. It is supplied to a photoelectric converter 37 such as a photodiode through a coupler 34 and converted into an electrical signal, and the electrical signal is amplified by an amplifier 38 and then supplied to an A/D converter 41 and converted to a digital signal. The digital signal is supplied to the adder 42, where the digital signals for a plurality of times are added, where one cycle of the pulse signal PS is counted as one time, and the output signal of the adder 42 is sent to the logarithmic converter 43. The signal is supplied and subjected to logarithmic transformation, and the converted output is supplied to the display 44 and displayed as a waveform. The pulse generator 31 and the laser light source 32 constitute an optical pulse generator 33, and the photoelectric converter 37 and the amplifier 38 constitute a light receiving system 39.

この場合、光コネクタ35においてフレネル反射を生じ
て上記の光信号POは第4図に反射光P○aとして示す
ように光パルスPIのパルス幅期間P1においてレベル
が大きくなり、その後に得られる後方散乱光POeは反
射光POaの1/1000〜1/10000程度のレベ
ルになる。そして、この後方散乱光POeが観測される
ように受光系39の感度が設定される。そのため、反射
光POaがそのまま受光系39に供給されると、受光系
39の飽和を生して後方散乱光POeの観測ができなく
なる。
In this case, Fresnel reflection occurs at the optical connector 35, and the level of the optical signal PO increases during the pulse width period P1 of the optical pulse PI, as shown as reflected light P○a in FIG. The level of the scattered light POe is about 1/1000 to 1/10000 of the reflected light POa. Then, the sensitivity of the light receiving system 39 is set so that this backscattered light POe is observed. Therefore, if the reflected light POa is supplied as is to the light receiving system 39, the light receiving system 39 will be saturated and the backscattered light POe cannot be observed.

そのため、光方向性結合器34として音響光学素子など
によって構成された光スィッチが用いられ、光パルスP
Iのパルス幅期間Piにおいては、光パルス発生器33
からの光パルスPIがそのまま光ファイバ1に入射させ
られるとともに、上記の反射光POaは第4図に反射光
PQaとして示すようにレベルが大きく減衰させられ、
その後の後方散乱光POeが得られる期間においては、
その後方散乱光POeが第4図に後方散乱光PQeとし
て示すようにそのまま受光系39に供給されるように、
光スィッチ34が切り換えられる。
Therefore, an optical switch constituted by an acousto-optic element or the like is used as the optical directional coupler 34, and the optical pulse P
In the pulse width period Pi of I, the optical pulse generator 33
The optical pulse PI from is input to the optical fiber 1 as it is, and the level of the reflected light POa is greatly attenuated as shown in FIG. 4 as reflected light PQa.
During the subsequent period when backscattered light POe is obtained,
The backscattered light POe is supplied as is to the light receiving system 39 as shown in FIG. 4 as backscattered light PQe.
Optical switch 34 is switched.

「発明が解決しようとする課題」 しかしながら、一般に音響光学素子などによって構成さ
れた光スィッチは、スイッチング時間が100ナノ秒程
度というように長いとともに、偏光依存性を有する。
"Problems to be Solved by the Invention" However, optical switches that are generally constructed from acousto-optic elements and the like have a long switching time of about 100 nanoseconds and are polarization dependent.

そのため、光方向性結合器34として音響光学素子など
によって構成された光スィッチが用いられ、その光スィ
ッチ34が上記のように切り換えられる従来の光導波路
試験装置においては、光スィッチ34を通じて得られる
光信号PQにおいて第4図に示すように後方散乱光PQ
eの立ち上がりに100ナノ秒程度というような長い時
間を要し、その間の光ファイバ1の一端1aから数10
メートル程度までの部分からの後方散乱光は観測するこ
とができないとともに、光スィッチ34が偏光依存性を
有することによって波形の揺らぎを生しる不都合がある
Therefore, in a conventional optical waveguide testing apparatus in which an optical switch constituted by an acousto-optic element or the like is used as the optical directional coupler 34 and the optical switch 34 is switched as described above, the light obtained through the optical switch 34 is As shown in FIG. 4 in signal PQ, backscattered light PQ
It takes a long time, about 100 nanoseconds, for the rise of e, and during that time several tens of nanoseconds are emitted from one end 1a of the optical fiber 1.
Backscattered light from areas up to about a meter cannot be observed, and the polarization dependence of the optical switch 34 causes waveform fluctuations.

そこで、この発明は、光ファイバなどの光導波路の一端
に光パルスを入射させることによって先導波路の一端に
得られた後方散乱光を観測することにより光導波路の特
性を測定する光導波路試験装置において、光導波路の一
端側の後方散乱光を観測することができない部分、いわ
ゆるプントゾーンを著しく短くすることができるととも
に、揺らぎのない波形を得ることができるようにしたも
のである。
Therefore, the present invention provides an optical waveguide testing device that measures the characteristics of an optical waveguide by injecting a light pulse into one end of an optical waveguide such as an optical fiber and observing the backscattered light obtained at one end of a leading waveguide. This makes it possible to significantly shorten the so-called Punt zone, which is the part at one end of the optical waveguide where backscattered light cannot be observed, and to obtain a waveform without fluctuation.

「課題を解決するための手段」 この発明においては、光パルス発生器と、この光パルス
発生器からの光パルスを測定対象の光導波路の一端に入
射させるとともに、これによって上記光導波路の一端に
得られた光信号を取り出す光方向性結合器と、この光方
向性結合器を通じて得られた光信号を電気信号に変換し
て取り出す受光系と、上記光方向性結合器と上記受光系
との間に配された光増幅器と、この光増幅器の利得を、
上記光パルス発生器からの光パルスのパルス幅期間にお
いては、その後の後方散乱光が得られる期間に比べて十
分小さくなるように制御する利得制御回路とを設ける。
"Means for Solving the Problem" The present invention includes an optical pulse generator, and an optical pulse from the optical pulse generator that is incident on one end of an optical waveguide to be measured. an optical directional coupler for taking out the obtained optical signal; a light receiving system for converting the optical signal obtained through the optical directional coupler into an electrical signal and taking it out; and a combination of the optical directional coupler and the light receiving system. The optical amplifier placed between and the gain of this optical amplifier,
A gain control circuit is provided for controlling the pulse width period of the optical pulse from the optical pulse generator so that it is sufficiently smaller than the period during which backscattered light is obtained.

「作 用」 上記のように構成された、この発明の光導波路試験装置
においては、フレネル反射によって大きなレベルの反射
光が得られる、光パルス発生器からの光パルスのパルス
幅期間において、光増幅器の利得が十分小さくされて、
その反射光が十分減衰させられるので、その反射光によ
って受光系の飽和を生しることがない。そして、後方散
乱光が得られる期間においては光増幅器の利得が十分大
きくされるが、光増幅器のスイッチング時間は数ナノ秒
程度ないし10数ナノ秒程度というように短いので、い
わゆるデッドゾーンは数メートルないし10数メートル
程度というように著しく短くなる。また、光増幅器は偏
光依存性がなく、あるいは偏光依存性を著しく少なくす
ることができるので、揺らぎのない波形が得られる。
"Function" In the optical waveguide testing apparatus of the present invention configured as described above, the optical amplifier The gain of is made sufficiently small,
Since the reflected light is sufficiently attenuated, the light receiving system is not saturated by the reflected light. The gain of the optical amplifier is made sufficiently large during the period in which backscattered light is obtained, but since the switching time of the optical amplifier is short, ranging from several nanoseconds to tens of nanoseconds, the so-called dead zone is several meters long. It becomes extremely short, ranging from about 10 meters to more than 10 meters. Furthermore, since the optical amplifier has no polarization dependence or can significantly reduce polarization dependence, a waveform without fluctuation can be obtained.

「実施例」 第1図は、この発明の光導波路試験装置の一例を示す。"Example" FIG. 1 shows an example of an optical waveguide testing apparatus of the present invention.

パルス発生器11からの第2図に示すような一定周期の
パルス信号PSがレーザダイオードのようなレーザ光源
12に供給されてレーザ光源12から第2図に示すよう
な一定周期の光パルスPIが得られ、その光パルスPI
が光方向性結合器14を通し、光コネクタ15を通じて
測定対象の光導波路、この場合には光ファイバIの一端
1aに入射させられ、これによって光ファイバlの一端
1aに得られた光信号POが光コネクタ15を通し、光
方向性結合器14を通じて光増幅器I6に供給され、光
増幅器16からの光信号PCがフォトダイオードのよう
な光電変換器17に供給されて電気信号に変換され、そ
の電気信号が増幅器18で増幅されたのちA/D変換器
21に供給されてディジタル信号に変換され、そのディ
ジタル信号が加算器22に供給されて加算器22におい
てパルス信号PSの1周期分を1回としたときの複数回
分のディジタル信号が加算され、加算器22の出力信号
が対数変換器23に供給されて対数変換され、その変換
出力が表示器24に供給されて波形として表示される。
A pulse signal PS having a constant period as shown in FIG. 2 from the pulse generator 11 is supplied to a laser light source 12 such as a laser diode, and the laser light source 12 generates a light pulse PI having a constant period as shown in FIG. obtained, and its optical pulse PI
is made to pass through the optical directional coupler 14 and enter the optical waveguide to be measured, in this case, one end 1a of the optical fiber I, through the optical connector 15, whereby the optical signal PO obtained at the one end 1a of the optical fiber I is supplied to the optical amplifier I6 through the optical connector 15 and the optical directional coupler 14, and the optical signal PC from the optical amplifier 16 is supplied to a photoelectric converter 17 such as a photodiode to be converted into an electrical signal. After the electrical signal is amplified by the amplifier 18, it is supplied to the A/D converter 21 and converted into a digital signal, and the digital signal is supplied to the adder 22, which divides one period of the pulse signal PS into one. The digital signals for a plurality of times are added, and the output signal of the adder 22 is supplied to a logarithmic converter 23 for logarithmic conversion, and the converted output is supplied to a display 24 and displayed as a waveform.

パルス発生器11とレーザ光源12は光パルス発生器1
3を構成し、光電変換器17と増幅器18は受光系19
を構成する。
The pulse generator 11 and the laser light source 12 are the optical pulse generator 1
A photoelectric converter 17 and an amplifier 18 constitute a light receiving system 19.
Configure.

光方向性結合器14としては、光スィッチではなく、例
えば光フアイバカブラが用いられる。光増幅器16とし
ては、光フアイバアンプや半導体光増幅器が用いられる
As the optical directional coupler 14, for example, an optical fiber coupler is used instead of an optical switch. As the optical amplifier 16, an optical fiber amplifier or a semiconductor optical amplifier is used.

第2図においては、光方向性結合器14を通じて光増幅
器16に供給される光信号P○に、光コネクタ15にお
いて生したフレネル反射による反射光POaのほかに、
光ファイバ1の図示していない接続点において生したフ
レぶル反射による反射光PObおよびPOcが含まれて
いる場合を示している。
In FIG. 2, in addition to the reflected light POa due to Fresnel reflection generated at the optical connector 15, in the optical signal P○ supplied to the optical amplifier 16 through the optical directional coupler 14,
A case is shown in which reflected lights POb and POc due to freble reflection generated at a connection point (not shown) of the optical fiber 1 are included.

そして、パルス発生器11からのパルス信号PSがマス
クパルス形成回路25に供給されて、最初に表示器24
に表示された波形を見てマスクパルス形成回路25を手
動操作することにより、マスクパルス形成回路25から
第2図に示すように上記の反射光PObおよびPOcが
得られる期間PbおよびPcにおいてマスクパルスMP
が得られるとともに、パルス信号PSが期間区分信号形
成回路26に供給されて、期間区分信号形成回路26か
ら第2図に示すように光パルスPIのパルス幅期間Pi
の直後の光信号POに相対的にレベルの大きい後方散乱
光POxが得られる期間Pxを示す信号PXおよびその
後の光信号POにレベルの微小な後方散乱光POyが得
られる期間pyを示す信号PYが得られ、パルス信号P
S、マスクパルスMPおよび信号PX、PYが利得制御
回路27に供給されて、利得制御回路27から第2図に
示すように、期間Piにおいては光増幅器16の利得を
ゼロにし、期間PbおよびPcにおいても光増幅器16
の利得をゼロにし、期間Pχにおいては期間pbを除い
て光増幅器16の利得を十分大きくし、期間Pyにおい
ては期間Pcを除いて光増幅器16の利得を期間Pbを
除く期間PXにおける利得の例えば2倍にし、期間py
と期間P1の間の期間P zにおいては光増幅器16の
利得をゼロにする利得制御信号GCが得られ、その利得
制御信号GCが光増幅器16に供給されて光増幅W16
の利得が制御される。
Then, the pulse signal PS from the pulse generator 11 is supplied to the mask pulse forming circuit 25, and first the display 24
By manually operating the mask pulse forming circuit 25 while looking at the waveform displayed in FIG. MP
At the same time, the pulse signal PS is supplied to the period segment signal forming circuit 26, and the pulse width period Pi of the optical pulse PI is obtained from the period segment signal forming circuit 26 as shown in FIG.
A signal PX indicating a period Px during which backscattered light POx having a relatively large level is obtained in the optical signal PO immediately after the signal PO, and a signal PY indicating a period py during which backscattered light POy having a small level is obtained in the subsequent optical signal PO. is obtained, and the pulse signal P
S, mask pulse MP and signals PX, PY are supplied to the gain control circuit 27, and as shown in FIG. Also in the optical amplifier 16
For example, the gain of the optical amplifier 16 is set to zero during the period Pχ except for the period pb, and the gain of the optical amplifier 16 is made sufficiently large during the period Py except for the period Pc. Double the period py
During the period Pz between and period P1, a gain control signal GC is obtained that makes the gain of the optical amplifier 16 zero, and the gain control signal GC is supplied to the optical amplifier 16 and the optical amplifier W16 is
gain is controlled.

したがって、光増幅器16に供給される光信号Pc中の
反射光POa、PObおよびP Oc ’=:、それぞ
れ光増幅器16からの光信号PC中の反射光PCa、P
CbおよびPCcとして示すようにレベルが大きく減衰
させられ、光信号Pc中の後方散乱光POxおよびPO
yは、それぞれ光信号PC中の後方散乱光PCxおよび
PCyとしで示すようにレベルが十分大きくされ、その
増幅後の後方散乱光PCxおよびPCyが観測されるよ
うに受光系19の感度が設定されることにより、受光系
19の飽和を生じない。
Therefore, the reflected lights POa, POb and P Oc' in the optical signal Pc supplied to the optical amplifier 16 =:, the reflected lights PCa, P in the optical signal PC from the optical amplifier 16, respectively.
The levels are greatly attenuated as shown as Cb and PCc, and the backscattered lights POx and PO in the optical signal Pc
The level of y is set to be sufficiently large as shown by the backscattered lights PCx and PCy in the optical signal PC, respectively, and the sensitivity of the light receiving system 19 is set so that the amplified backscattered lights PCx and PCy can be observed. By doing so, saturation of the light receiving system 19 does not occur.

そして、光増幅器16のスイッチング時間は、光増幅器
16として半導体光増幅器が用いられる場合には数ナノ
秒程度、光増幅器16として光フアイバアンプが用いら
れる場合でも10数ナノ秒程度というように短いので、
光ファイバ1の一端】a側の後方散乱光を観測すること
ができない部分、いわゆるプツトゾーンは数メートルな
いし10数メートル程度というように著しく短くなる。
The switching time of the optical amplifier 16 is as short as about several nanoseconds when a semiconductor optical amplifier is used as the optical amplifier 16, and about 10-odd nanoseconds even when an optical fiber amplifier is used as the optical amplifier 16. ,
[One end of the optical fiber 1] The part on the a side where backscattered light cannot be observed, the so-called put zone, is extremely short, ranging from several meters to more than 10 meters.

また、光増幅器16として光フアイバアンプが用いられ
る場合には光増幅器16に偏光依存性がなく、光増幅器
16として半導体光増幅器が用いられる場合でも光増幅
器16の偏光依存性を著しく少なくすることができるの
で、揺らぎのない波形が得られる。さらに、特に光増幅
器16として光フアイバアンプが用いられる場合には、
期間PPbおよびPcにおいて光増幅器16の利得がゼ
ロにされたとき、光の吸収によって反射光POaPOb
およびPOcのレベルが60dB程度というように大き
く減衰させられ、第3回に示したように光方向性結合器
34として光スィッチが用いられる従来の光導波路試験
装置に比べて15〜20dB程度もアイソレーションが
向上する。
Furthermore, when an optical fiber amplifier is used as the optical amplifier 16, the optical amplifier 16 has no polarization dependence, and even when a semiconductor optical amplifier is used as the optical amplifier 16, the polarization dependence of the optical amplifier 16 can be significantly reduced. As a result, a waveform without fluctuation can be obtained. Furthermore, especially when an optical fiber amplifier is used as the optical amplifier 16,
When the gain of the optical amplifier 16 is made zero during periods PPb and Pc, the reflected light POaPOb is
The level of POc is greatly attenuated to about 60 dB, and as shown in Part 3, the isometry is about 15 to 20 dB compared to the conventional optical waveguide test equipment that uses an optical switch as the optical directional coupler 34. ration is improved.

また、図示した例のようにレベルの微小な後方散乱光P
Oyに対しては光増幅器16の利得が特に大きくされる
ときには、レベルの微小な後方散乱光POyについても
A/D変換器21において高い感度でA/D変換され、
対数変換器234こおいで高い分解能で対数変換される
In addition, as shown in the example shown in the figure, backscattered light P
When the gain of the optical amplifier 16 is particularly increased for Oy, even the minute backscattered light POy is A/D converted with high sensitivity in the A/D converter 21.
A logarithmic converter 234 performs logarithmic conversion with high resolution.

「発明の効果」 上述したように、この発明によれば、光導波路の一端側
の後方散乱光を観測することができない部分、いわゆる
プントゾーンを著しく短くすることができるとともに、
揺らぎのない波形を得ることができる。
"Effects of the Invention" As described above, according to the present invention, it is possible to significantly shorten the so-called Punt zone, which is the part at one end of the optical waveguide where backscattered light cannot be observed, and
A waveform without fluctuation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の光導波路試験装置の一例を示す回
、第2図は、その動作の説明に供するタイムチャート、
第3圀は、従来の光導波路試験装置の一例を示す回、第
4図は、その動作の説明に供するタイムチャートである
。 ヤ 2圓
FIG. 1 is a time chart showing an example of the optical waveguide testing device of the present invention, and FIG. 2 is a time chart for explaining its operation.
The third panel shows an example of a conventional optical waveguide testing device, and FIG. 4 is a time chart for explaining its operation. Ya 2 circles

Claims (1)

【特許請求の範囲】[Claims] (1)光パルス発生器と、 この光パルス発生器からの光パルスを測定対象の光導波
路の一端に入射させるとともに、これによって上記光導
波路の一端に得られた光信号を取り出す光方向性結合器
と、 この光方向性結合器を通じて得られた光信号を電気信号
に変換して取り出す受光系と、 上記光方向性結合器と上記受光系との間に設けられた光
増幅器と、 この光増幅器の利得を、上記光パルス発生器からの光パ
ルスのパルス幅期間においては、その後の後方散乱光が
得られる期間に比べて十分小さくなるように制御する利
得制御回路と、を備える光導波路試験装置。
(1) An optical pulse generator, and an optical directional coupling that makes the optical pulse from the optical pulse generator enter one end of the optical waveguide to be measured, and extracts the optical signal obtained at one end of the optical waveguide. a light-receiving system that converts the optical signal obtained through the optical directional coupler into an electrical signal and extracts it; an optical amplifier provided between the optical directional coupler and the light-receiving system; an optical waveguide test comprising: a gain control circuit that controls the gain of the amplifier so that it is sufficiently smaller during the pulse width period of the optical pulse from the optical pulse generator than during the subsequent period during which backscattered light is obtained; Device.
JP17930190A 1990-07-06 1990-07-06 Testing device of optical waveguide Pending JPH0466835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17930190A JPH0466835A (en) 1990-07-06 1990-07-06 Testing device of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17930190A JPH0466835A (en) 1990-07-06 1990-07-06 Testing device of optical waveguide

Publications (1)

Publication Number Publication Date
JPH0466835A true JPH0466835A (en) 1992-03-03

Family

ID=16063434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17930190A Pending JPH0466835A (en) 1990-07-06 1990-07-06 Testing device of optical waveguide

Country Status (1)

Country Link
JP (1) JPH0466835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239889B1 (en) 1997-10-22 2001-05-29 Nortel Networks Limited Optical signal power detection with signature bit pattern in WDM systems
KR20030089873A (en) * 2002-05-20 2003-11-28 한국건설기술연구원 Otdr measurement system for landslides protection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239889B1 (en) 1997-10-22 2001-05-29 Nortel Networks Limited Optical signal power detection with signature bit pattern in WDM systems
KR20030089873A (en) * 2002-05-20 2003-11-28 한국건설기술연구원 Otdr measurement system for landslides protection

Similar Documents

Publication Publication Date Title
US7423736B2 (en) Low-cost doppler frequency shift measuring device
JP3206168B2 (en) Optical pulse tester
US5295015A (en) Optical amplifying apparatus
JPH0466835A (en) Testing device of optical waveguide
JP3378969B2 (en) Receiving system
CN108337046B (en) FTTx terminal line tester
CN110082075B (en) Ultra-high wavelength resolution passive optical device spectrum scanning device and method
JPS58113831A (en) Measuring device for loss distribution
JPH04337437A (en) Fresnel reflection detection system
JPH05256702A (en) Analyzer of light spectrum
JPH06273273A (en) Optical pulse test device displaying raman scattered light
JP2763586B2 (en) Optical fiber fault point searching method and apparatus
CN113037367B (en) Optical time domain reflectometer
JP3059580B2 (en) Optical pulse tester
JP2556921Y2 (en) Return loss measuring device using optical time domain reflectometer
JP3279393B2 (en) Noise figure calculating method and noise figure measuring apparatus
JPS59125037A (en) Reflection loss measuring method
JPH06221930A (en) Distribution type temperature sensor
JPS6144334A (en) Temperature measuring device
JP3424103B2 (en) Signal converter
JP2563767Y2 (en) Optical pulse tester
JPH06132899A (en) Optical reception circuit
JPH05282589A (en) High-speed and minute current source
CN115395348A (en) Fiber laser for simply monitoring output power
JPH1174838A (en) Analog intensity signal transmission method using optical fiber and system therefor