JPH05256702A - Analyzer of light spectrum - Google Patents

Analyzer of light spectrum

Info

Publication number
JPH05256702A
JPH05256702A JP8995392A JP8995392A JPH05256702A JP H05256702 A JPH05256702 A JP H05256702A JP 8995392 A JP8995392 A JP 8995392A JP 8995392 A JP8995392 A JP 8995392A JP H05256702 A JPH05256702 A JP H05256702A
Authority
JP
Japan
Prior art keywords
optical
light
spectrum
mirror
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8995392A
Other languages
Japanese (ja)
Inventor
Kazuo Shigeno
和男 重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8995392A priority Critical patent/JPH05256702A/en
Publication of JPH05256702A publication Critical patent/JPH05256702A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the spectrum of high output power from an optical fiber with good accuracy by inserting an optical attenuator plate between a concave mirror and a diffraction grating. CONSTITUTION:When the light enters via an optical fiber 1 from an optical connector provided at an optical input part, the light is changed to a parallel light beam by a collimator mirror 2. Thereafter, the light is attenuated to the suitable level by a continuously variable attenuator plate 8 and a stepped variable attenuator plate 9. The light is then diffracted corresponding to the wavelength by a diffraction grating 3, reflected by a plane mirror 4 and a condenser mirror 5 to enter a photodetecting sensor 7 through a slit 6. The plates 8, 9 are inclined to the optical axis and formed in a chevron-like configuration. Accordingly, the shift of the luminous fluxes due to the refraction at the plates 8, 9 is offset, and the optical systems in front of and in the rear of the plates 8, 9 can be aligned separately. The photodetector circuit is prevented from being saturated, so that the spectrum of the measuring light of the decreased input level is obtained while the shape of the original spectrum of the transmitted light is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光スペクトラムアナラ
イザに関し、特に、光ファイバを介して高出力半導体レ
ーザ出力光等の波長測定を行う光スペクトラムアナライ
ザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical spectrum analyzer, and more particularly to an optical spectrum analyzer for measuring wavelength of high output semiconductor laser output light or the like via an optical fiber.

【0002】[0002]

【従来の技術】図2は、分散分光法による従来の光スペ
クトラムアナライザの分光部の構成を示す概略図であ
る。光ファイバ1からの入射光は、コリメート鏡2によ
り平行光線に変換された後回折格子3に入射する。この
回折格子3により波長に応じて光が異なった角度に回折
され、平面鏡4、集光鏡5を介してスリット6を通った
波長の光のみが受光センサ7に入力しここで光電流に変
換される。
2. Description of the Related Art FIG. 2 is a schematic diagram showing the structure of a spectroscopic section of a conventional optical spectrum analyzer based on dispersion spectroscopy. Incident light from the optical fiber 1 is converted into parallel rays by the collimator mirror 2 and then enters the diffraction grating 3. Light is diffracted by the diffraction grating 3 at different angles depending on the wavelength, and only the light of the wavelength that has passed through the slit 6 through the plane mirror 4 and the condenser mirror 5 is input to the light receiving sensor 7 and converted into photocurrent there. To be done.

【0003】よって、回折格子3を回転させることによ
り、スリット6で定められた分解能で光ファイバ1を伝
搬して来た光のスペクトラム測定が可能となる。実際の
アナライザでは、低レベル光の検出を可能にするため
に、光ファイバ1の直後に光チョッパを置き同期検波を
行っている。また、受光センサ7の出力電流は、高い測
定ダイナミックレンジ(例えば60dB以上)が得られ
るようにプリアンプ等で増幅される。
Therefore, by rotating the diffraction grating 3, it is possible to measure the spectrum of the light propagating through the optical fiber 1 at the resolution determined by the slit 6. In an actual analyzer, an optical chopper is placed immediately after the optical fiber 1 to perform synchronous detection in order to enable detection of low level light. The output current of the light receiving sensor 7 is amplified by a preamplifier or the like so that a high measurement dynamic range (for example, 60 dB or more) can be obtained.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の光スペ
クトラムアナライザでは、光入力が0dBm(=1m
W)を越える場合、受光回路の飽和が生じ、正確な光ス
ペクトラム測定ができないという問題があった。例え
ば、パルス使用による1550nmの高出力半導体レー
ザの測定の場合、光ファイバを伝搬する光パワーがピー
クで50mWであり、そのスペクトルは図3の(a)に
示すものとなるが、この光ファイバ出力をそのまま従来
のスペクトラムアナライザに入れた時には、受光回路で
の飽和により、図3の(c)に示すように、頂部がつぶ
れたスペクトルになってしまう。
In the conventional optical spectrum analyzer described above, the optical input is 0 dBm (= 1 m).
If it exceeds W), there is a problem in that the light receiving circuit is saturated and an accurate optical spectrum measurement cannot be performed. For example, in the case of measuring a 1550 nm high-power semiconductor laser using a pulse, the optical power propagating through the optical fiber has a peak of 50 mW, and its spectrum is as shown in FIG. 3 (a). When is put into a conventional spectrum analyzer as it is, the spectrum is crushed at the top as shown in FIG. 3C due to saturation in the light receiving circuit.

【0005】光入力を0dBm以下に抑え、受光回路の
飽和を避けるために、外部の光減衰器により20dBの
減衰をさせる方法が考えられるが、この方法は、発光素
子側の光ファイバとスペクトラムアナライザ側の光ファ
イバとの間に光減衰器を挿入する構成をとり、光減衰器
では、光ファイバから出射した光を平行光にコリメート
し、光減衰板を通した後、レンズ等により再び光ファイ
バに入射させるものであるため、測定器側への伝搬され
る光モードは、必ずしも入力側光ファイバの伝搬モード
の強度を再現するものとはならない。例えば、図3の
(a)のスペクトルの光を入射した場合の測定光スペク
トルは、図3の(d)のようになり、飽和は避けられる
ものの波長半値幅は異なるものになってしまう。
In order to suppress the optical input to 0 dBm or less and to avoid saturation of the light receiving circuit, a method of attenuating 20 dB by an external optical attenuator can be considered, but this method uses an optical fiber on the light emitting element side and a spectrum analyzer. The optical attenuator is inserted between the optical fiber on the side of the optical fiber and the optical attenuator. The optical mode propagated to the measuring instrument side does not necessarily reproduce the intensity of the propagation mode of the input side optical fiber. For example, the measurement light spectrum when the light of the spectrum shown in FIG. 3A is incident is as shown in FIG. 3D, and although the saturation can be avoided, the half-value width of the wavelength is different.

【0006】また、外部の光減衰器を使用する場合、そ
の入力側と出力側に光コネクタが必要となり、その着脱
を繰り返すときに、結合再現性にばらつきを生じる。即
ち、光減衰器出力側の光コネクタの後方の光ファイバを
伝搬する光のスペクトルは、着脱の都度図3の(d)の
ようになったり、また(a)のようになったり、微妙に
変化してしまう。
Further, when an external optical attenuator is used, an optical connector is required on the input side and the output side of the optical attenuator, which causes variations in coupling reproducibility when the connection and disconnection are repeated. That is, the spectrum of the light propagating through the optical fiber behind the optical connector on the output side of the optical attenuator is as shown in FIG. It will change.

【0007】このように従来の光スペクトラムアナライ
ザでは、ハイパワーレベルの光ファイバ伝搬光に関して
は正確に光スペクトル測定ができないという問題があっ
た。
As described above, the conventional optical spectrum analyzer has a problem that the optical spectrum cannot be accurately measured for the optical fiber propagating light of high power level.

【0008】[0008]

【課題を解決するための手段】本発明の光スペクトラム
アナライザは、光ファイバからの入力光が凹面鏡で平行
光線に変換された後、回折格子に入射され分光されるも
のであって、前記凹面鏡と前記回折格子との間に光減衰
板が挿入されたものである。
In the optical spectrum analyzer of the present invention, an input light from an optical fiber is converted into parallel rays by a concave mirror, and then is incident on a diffraction grating to be dispersed. An optical attenuating plate is inserted between the diffraction grating and the diffraction grating.

【0009】[0009]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は、本発明の一実施例の分光部の構成
を示す概略図である。光入力部に備えられた光コネクタ
から光ファイバ1を介して光が入射され、この入射光は
コリメート鏡2で平行光線に変換された後、連続可変減
衰板8とステップ可変減衰板9とにより適当なレベルに
まで減衰される。その後、回折格子3で波長に応じた回
折を受け、平面鏡4、集光鏡5で反射され、スリット6
を通過して受光センサに入射する。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a spectroscopic unit according to an embodiment of the present invention. Light is incident from the optical connector provided in the optical input section through the optical fiber 1, the incident light is converted into parallel rays by the collimator mirror 2, and then the continuous variable attenuation plate 8 and the step variable attenuation plate 9 are used. It is attenuated to an appropriate level. After that, it is diffracted by the diffraction grating 3 according to the wavelength, is reflected by the plane mirror 4 and the condenser mirror 5, and is reflected by the slit 6
It passes through and enters the light receiving sensor.

【0010】各減衰板は波長による減衰量に差がないも
のであり、それぞれは光軸に対して傾いて配置され、両
者はハの字型を構成している。それぞれの減衰板が光軸
に対し傾いて配置されるのは、減衰板からの反射光が、
光ファイバ1の端面や受光センサ7の表面との間に外部
共振器を形成しモードを混乱させるのを防ぐためであ
り、また、ハの字型にするのは傾いた各々の減衰板での
屈折による光束のズレを相互に打ち消すようにして、減
衰板の前後の光学系の整列をそれぞれ独立に行えるよう
にするためである。
Each of the attenuating plates has no difference in the amount of attenuation depending on the wavelength, and the attenuating plates are arranged so as to be inclined with respect to the optical axis. Each attenuating plate is arranged to be inclined with respect to the optical axis, because the reflected light from the attenuating plate is
This is to prevent an external resonator from being formed between the end face of the optical fiber 1 and the surface of the light receiving sensor 7 to confuse the mode, and the V-shape is used for each inclined attenuation plate. This is because the deviations of the light beams due to refraction are canceled each other so that the optical systems before and after the attenuation plate can be aligned independently.

【0011】この減衰板を用いて入力光強度を適正に減
衰させることにより、受光回路の飽和を避けることがで
き、図3の(b)に示されるように、当初の伝搬光スペ
クトル[図3の(a)]の形状を保ったままレベルが下
がった測定光スペクトルを得ることができる。
By properly attenuating the intensity of the input light using this attenuator, it is possible to avoid the saturation of the light receiving circuit, and as shown in FIG. It is possible to obtain a measurement light spectrum with a lowered level while maintaining the shape of (a)].

【0012】2枚の光減衰板の減衰量は、光スペクトラ
ムアナライザのフロントパネルよりマニュアルで指定し
て設定することができる。あるいは強度レベルが飽和レ
ベルより適正に下がった設定レベルになるまで制御CP
Uにより調整されるようにしてもよい。この2枚の光減
衰板によって設定できる減衰量の範囲が例えば〜20d
Bであるとき、従来の光スペクトルアナライザの測定レ
ベル範囲(例えば0〜−60dBm)を上方に(即ち、
20〜−60dBmに)拡張することができる。
The attenuation amount of the two optical attenuating plates can be manually specified and set from the front panel of the optical spectrum analyzer. Alternatively, control CP until the intensity level reaches a set level that is appropriately lower than the saturation level.
It may be adjusted by U. The range of the attenuation amount that can be set by the two optical attenuating plates is, for example, up to 20d.
When it is B, the measurement level range (for example, 0 to −60 dBm) of the conventional optical spectrum analyzer is moved upward (ie,
20 to -60 dBm).

【0013】[0013]

【発明の効果】以上説明したように、本発明による光ス
ペクトラムアナライザは、分光部の内部に減衰器を備え
たものであるので、本発明によれば、従来正確に測定で
きなかった光ファイバからの高光出力の光スペクトルを
精度よく測定することが可能になる。
As described above, since the optical spectrum analyzer according to the present invention is provided with the attenuator inside the spectroscopic unit, the present invention allows the optical fiber which cannot be accurately measured conventionally. It becomes possible to measure the optical spectrum of the high light output with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の分光部の構成図。FIG. 1 is a configuration diagram of a spectroscopic unit according to an embodiment of the present invention.

【図2】 従来例の分光部の構成図。FIG. 2 is a configuration diagram of a conventional spectroscopic unit.

【図3】 高レベルの被測定入力光スペクトル例とそれ
に対応した実施例および従来例による測定光スペクト
ル。
FIG. 3 shows an example of a high-level input optical spectrum to be measured and a corresponding measurement optical spectrum according to an embodiment and a conventional example.

【符号の説明】[Explanation of symbols]

1…光ファイバ、 2…コリメート鏡、 3…
回折格子、 4…平面鏡、 5…集光鏡、
6…スリット、 7…受光センサ、8…連続可変減
衰板、 9…ステップ可変減衰板。
1 ... Optical fiber, 2 ... Collimating mirror, 3 ...
Diffraction grating, 4 ... Plane mirror, 5 ... Focusing mirror,
6 ... Slit, 7 ... Light receiving sensor, 8 ... Continuous variable attenuation plate, 9 ... Step variable attenuation plate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバを介して入力された光が、コ
リメータにより平行光線に変換された後回折素子に入射
され、分光される光スペクトラムアナライザにおいて、 前記コリメータと前記回折素子との間には光減衰板が配
置されていることを特徴とする光スペクトラムアナライ
ザ。
1. An optical spectrum analyzer in which light input through an optical fiber is converted into parallel rays by a collimator and then is incident on a diffractive element, where the light is split between the collimator and the diffractive element. An optical spectrum analyzer characterized in that an optical attenuating plate is arranged.
JP8995392A 1992-03-13 1992-03-13 Analyzer of light spectrum Pending JPH05256702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8995392A JPH05256702A (en) 1992-03-13 1992-03-13 Analyzer of light spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8995392A JPH05256702A (en) 1992-03-13 1992-03-13 Analyzer of light spectrum

Publications (1)

Publication Number Publication Date
JPH05256702A true JPH05256702A (en) 1993-10-05

Family

ID=13985066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8995392A Pending JPH05256702A (en) 1992-03-13 1992-03-13 Analyzer of light spectrum

Country Status (1)

Country Link
JP (1) JPH05256702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241731A (en) * 1994-03-04 1995-09-19 Sakae Denshi Kogyo Kk Board material small diameter hole machining method and device therefor
JP2009133735A (en) * 2007-11-30 2009-06-18 Otsuka Denshi Co Ltd Optical characteristic measurement apparatus
JP2010204106A (en) * 2010-04-09 2010-09-16 Anritsu Corp Optical sampling device and optical signal quality monitor
KR20210140880A (en) * 2020-05-14 2021-11-23 (주)에이앤아이 Color and luminance measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241731A (en) * 1994-03-04 1995-09-19 Sakae Denshi Kogyo Kk Board material small diameter hole machining method and device therefor
JP2009133735A (en) * 2007-11-30 2009-06-18 Otsuka Denshi Co Ltd Optical characteristic measurement apparatus
JP2010204106A (en) * 2010-04-09 2010-09-16 Anritsu Corp Optical sampling device and optical signal quality monitor
KR20210140880A (en) * 2020-05-14 2021-11-23 (주)에이앤아이 Color and luminance measuring device

Similar Documents

Publication Publication Date Title
DE69435085T2 (en) Optical reflection measurement in the time domain
US4378490A (en) Optical attenuator providing controlled attenuation
CN111829981B (en) Gas heterodyne detection device and detection method based on TDLAS
JPS6352033A (en) Device for optically measuring quantity of back scattering dispersed with time of optical fiber
CN108692918B (en) Device and method for evaluating time domain stability of high-power fiber laser system
US20060012786A1 (en) Optical measurement device
US4295042A (en) Method of and device for measuring chlorophyll of living leaves
US7012697B2 (en) Heterodyne based optical spectrum analysis with controlled optical attenuation
CA2505044A1 (en) Device for optical spectra analysis by means of brillouin scattering and associated measurement method
CN105699053A (en) Device and method for precisely measuring laser line width on the basis of cyclic self-heterodyne interferometry
GB2352576A (en) Arrangement for adjusting the laser power and/or the pulse length of a short-pulse laser in a microscope
US6317214B1 (en) Method and apparatus to determine a measurement of optical multiple path interference
US4779984A (en) Method and apparatus for holographic spectrometry
JPH05256702A (en) Analyzer of light spectrum
JP2659554B2 (en) Light intensity correlator
EP1130813B1 (en) Method and system for optical heterodyne detection using optical attenuation
US6417926B1 (en) Wavelength measuring system
JP4576716B2 (en) Raman gain coefficient measurement method
JP2791771B2 (en) Optical pulse generation circuit and spectrum measuring device
Hosch et al. Instrumental Sources of Noise in a Pulsed Dye Laser Double Beam Spectrometer
CN210571295U (en) Device for measuring SOA line width enhancement factor of semiconductor optical amplifier
US20020060794A1 (en) Low coherent reflectometer
JPS60185132A (en) Measuring method of coupling state in nonlinear mode
US20020048016A1 (en) Apparatus and method for measuring refractive index profile of optical fiber or waveguide surface
Kawahata et al. Development of terahertz laser diagnostics for electron density measurements