JPS59124123A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59124123A
JPS59124123A JP57234283A JP23428382A JPS59124123A JP S59124123 A JPS59124123 A JP S59124123A JP 57234283 A JP57234283 A JP 57234283A JP 23428382 A JP23428382 A JP 23428382A JP S59124123 A JPS59124123 A JP S59124123A
Authority
JP
Japan
Prior art keywords
recess part
layer
semiconductor film
substrate
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57234283A
Other languages
Japanese (ja)
Inventor
Nobuhiro Shimizu
信宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP57234283A priority Critical patent/JPS59124123A/en
Publication of JPS59124123A publication Critical patent/JPS59124123A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve crystallinity, and to obtain an FET having the favorable characteristic by a method wherein a recess part is formed on the surface of a substrate consisting of an insulating material, a semiconductor film is grown on the whole surface containing the recess part thereof, annealing is performed to bury a part of the semiconductor film in the recess part, and a thin film transistor is formed in the place thereof. CONSTITUTION:A recess part 10 is provided according to etching, etc., in an insulating substrate 1 consisting of quartz, Pyrex glass, etc., and a semiconductor layer 2 of amorphous Si or polycrystalline Si is grown on the whole surface containing the recess part thereof. Then the layer 2 is selectively etched to leave the layer 2 only on the recess part 10, while at this time, the surface of the layer 2 burying the recess part 10 is not flattened, and protrusion parts 2a, 2b are generated at the edge parts. Therefore, the protrusion parts are molten according to the annealing of a beam to remove the protrusion parts 2a, 2b, and at the same time, the layer 2 is buried satisfactorily in the recess part 10 to enhance crystallinity. After then, a thin film transistor is formed in the layer 2 thereof, and a gate electrode 4, and a drain electrode 5 and a source electrode 6 interposing the gate electrode between them are provided on the surface of the layer thereof interposing an insulating film 3 between them.

Description

【発明の詳細な説明】 不発明は、絶縁材料から成る基板上に段差の小さい半導
体N膜トランジスタ(TPT)を形成する製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method for forming a semiconductor N-film transistor (TPT) with small steps on a substrate made of an insulating material.

従来、この種のTPTは、表面が平坦な基板を使用して
いた。第1図に従来の平面基板上に作成したTPTの一
例を断面図で示す。1は絶縁基板、2はビームアニール
した半導体膜、3は絶縁膜、4.5および6はそれぞれ
ゲート、ソーヌ、ドレイン邂極である。第1図に示すよ
うに1°FTに対する表面の段差が犬さく、荷にゲート
電極4においては、基板1からの段差が太さいため断線
を起こしやすく、ま′fC牛導体模2はビームアニール
しても基板1が平坦であるため十分結晶性を同上させる
ことが困難であった。
Conventionally, this type of TPT has used a substrate with a flat surface. FIG. 1 shows a cross-sectional view of an example of TPT fabricated on a conventional flat substrate. 1 is an insulating substrate, 2 is a semiconductor film subjected to beam annealing, 3 is an insulating film, and 4.5 and 6 are gate, sone, and drain electrodes, respectively. As shown in Fig. 1, the surface level difference for 1°FT is quite large, and the gate electrode 4 on the load is easy to break because the level difference from the substrate 1 is large, and the conductor pattern 2 is beam annealed. However, since the substrate 1 is flat, it is difficult to achieve sufficient crystallinity.

本発明は、上記のような従来の欠点を除去するためにな
されたものであり、基板上に凹部を設ける事でTPTの
歩留シを上げ、結晶性を上げてTF’Tの特性を向上さ
せる製造方法を提供することを目的としたものである。
The present invention was made to eliminate the above-mentioned drawbacks of the conventional technology, and by providing recesses on the substrate, the yield of TPT is increased, and the crystallinity is increased to improve the characteristics of TF'T. The purpose of this invention is to provide a manufacturing method that allows

以下図面によって本発明の半導体装置の製造方法を詳述
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a semiconductor device according to the present invention will be explained in detail below with reference to the drawings.

第2図(a)は、絶縁基板またとえば石英やパイレツク
ス等のガラス基板に、四部10を設ける工程であシ、フ
ォトリングラフィによるウエントエッチングおよびグラ
ズマまたはイオン等によるドライエンチングによって形
成することができ、その寸法と個数は、目標とする設計
値に合わせて自由に変えることができる。
FIG. 2(a) shows a step of providing the four parts 10 on an insulating substrate, such as a glass substrate made of quartz or pyrex, and may be formed by wet etching using photolithography and dry etching using glazma or ions. The dimensions and number can be changed freely according to the target design values.

第2図(1))は、基板1上に均一に半導体膜2を成長
させる工程である。たとえば、アモルファスシリコン(
a81)や多結晶シリコン等を形成することが考えられ
る。ここではアモルファスシリコンをプラズマCVD法
を用いて成長させる場合を説明する。原料はおもにシラ
ン(SiH4)を使い、成長温度は室温から約500℃
の間で行う。
FIG. 2(1)) is a step in which the semiconductor film 2 is grown uniformly on the substrate 1. For example, amorphous silicon (
A81), polycrystalline silicon, or the like may be formed. Here, a case will be described in which amorphous silicon is grown using a plasma CVD method. The raw material is mainly silane (SiH4), and the growth temperature is from room temperature to about 500℃.
Do it between.

次の工程は、凹部の牛導体膜會ビームアニールし、結晶
性を上げて表面を平坦にする工程である。
The next step is beam annealing of the conductor film in the recesses to improve crystallinity and flatten the surface.

この工程には、半導体膜を凹部のみ残して他を除去し、
ビームアニールする場合(前者)と、半導体膜はそのま
までビームアニールする場合(後者)とが考えられる。
This process involves removing the rest of the semiconductor film, leaving only the recessed parts.
There are two possible cases: beam annealing (the former) and beam annealing with the semiconductor film as it is (the latter).

始めに前者について説明する。この場合は、第2図(b
)に続く工程として第2図(b)に示す半導体膜2と基
板1の凹部10の大きさ及び深さとの関係によシ次の3
つの工程AとBとCがある。
The former will be explained first. In this case, Figure 2 (b
), the following three steps are performed depending on the relationship between the size and depth of the semiconductor film 2 and the recess 10 of the substrate 1 shown in FIG. 2(b).
There are three processes A, B, and C.

次にAの工程を第2図(C)と(d)に示す。この場合
半導体膜2の厚さと、四部の深さとはほぼ等しい。
Next, the step A is shown in FIGS. 2(C) and 2(d). In this case, the thickness of the semiconductor film 2 and the depth of the four parts are approximately equal.

(第2@o)参照)聾ず、第2図(c)に示すように、
均一に形成した半導体膜の凹部以外を選択エツチングす
る。すなわち、アモルファスシリコン2をエンチングす
−る場合、基板1の四部1oのみレジストを残しその後
CF4 などのガスを使うズラズマドライエッチンググ
ロセスを用いて#−1saの凹部以外を選択エンチング
する。この時、レジストのマスクの多少のずれは間鴇す
い。その後アモルファスシリコン2の上のレジストをエ
ツチングし、アモルファスシリコン2のみ残す。この段
階では82図(c) 7)−られかるように半導体膜2
(アモルファスシリコン)は、基板1の凹部1oの端に
凸部2aと2bをもち、基板10表面は平坦にはならな
い。
(See 2nd @o)) Deaf, as shown in Figure 2(c),
Selective etching is performed on areas other than the concave portions of the uniformly formed semiconductor film. That is, when etching the amorphous silicon 2, the resist is left only on the four parts 1o of the substrate 1, and then the parts other than the recess #-1sa are selectively etched using a plasma dry etching process using a gas such as CF4. At this time, slight deviations of the resist mask may occur. Thereafter, the resist on the amorphous silicon 2 is etched, leaving only the amorphous silicon 2. At this stage, as shown in Figure 82(c) 7), the semiconductor film 2
(Amorphous silicon) has convex portions 2a and 2b at the ends of the concave portion 1o of the substrate 1, and the surface of the substrate 10 is not flat.

第2図(d)は、第2図<c>に示すように選択エンチ
ングによって残った半導体膜2をビームアニールして溶
融して半導体膜2の端の凸部2aと2bをなくして基に
1の表面を平坦にしたものである。
In FIG. 2(d), as shown in FIG. 2<c>, the semiconductor film 2 remaining by selective etching is beam-annealed and melted to eliminate the protrusions 2a and 2b at the ends of the semiconductor film 2, and to form a base. 1 with a flat surface.

この場合、基板1の凹部10の端によるグラフオエピタ
キシーの効果にニジ、ビームアニールした半導体2は、
第1図に示す平面基板1の上の半導体膜2をビームアニ
ールしたものに比べ結晶性が良く、単結晶に近くなる。
In this case, due to the effect of graphoepitaxy caused by the edge of the recess 10 of the substrate 1, the beam annealed semiconductor 2 is
The crystallinity is better than that obtained by beam annealing the semiconductor film 2 on the flat substrate 1 shown in FIG. 1, and it becomes close to a single crystal.

上述の効果により半導体膜2は第5図に示すように基板
1の四部を完全に埋めており、基板1の表面は完全に平
坦になっている。その後第6図に示すように半導体膜2
にTPTが形成される。
Due to the above-mentioned effect, the semiconductor film 2 completely fills all four parts of the substrate 1, as shown in FIG. 5, and the surface of the substrate 1 becomes completely flat. After that, as shown in FIG.
TPT is formed.

次にBの工程を第3図(a)と(b)に示す。この場合
半導体膜2の厚さd:凹部の深さより小さい。(第5図
(a)参照j)Iノ 第5図(a)でアニールを行って第51凶(b)が得ら
れる。このとき第3図(b)に示すように基板1の凹部
10を半導体膜2が完全に埋めておらず凹部が少し残る
。その後第6図に示すように半導体膜2にTPTが作ら
れる。更vcCの工程を第4図(a)と(b)に示す。
Next, step B is shown in FIGS. 3(a) and 3(b). In this case, the thickness d of the semiconductor film 2 is smaller than the depth of the recess. (Refer to FIG. 5(a)) I No. 51(b) is obtained by performing annealing in FIG. 5(a). At this time, as shown in FIG. 3(b), the semiconductor film 2 does not completely fill the recess 10 of the substrate 1, and a small recess remains. Thereafter, a TPT is formed on the semiconductor film 2 as shown in FIG. The process of further vcC is shown in FIGS. 4(a) and 4(b).

この場合半導体膜2の厚さは凹部の深さより太きい。(
第41J(a)参照)第4図(a)でアニールを行って
第4 j!ZJ(b)が得られる。このとき第4図(b
)に示すように基板1の凹部10以上に半導体膜2があ
り、やや凸状になっている。ビームアニールの方法とし
て(ハ、たとえば局所加熱方式のAr。
In this case, the thickness of the semiconductor film 2 is greater than the depth of the recess. (
(See Section 41J(a)) Perform annealing as shown in FIG. 4(a) and proceed to Section 4j! ZJ(b) is obtained. At this time, Fig. 4 (b
), the semiconductor film 2 is located above the recess 10 of the substrate 1 and has a slightly convex shape. As a beam annealing method (e.g. local heating Ar).

YAGレーザlどを用いたアニール、1)辻は電子ビー
ムアニールなどがある。全木刀n熱方式としては、ヒー
タアニール、ラングアニールなどがある。
Annealing using a YAG laser, etc., and 1) electron beam annealing are available. Examples of the all-wooden heat method include heater annealing and rung annealing.

このあと第6図に示すように半導体膜2にTTI’Tが
作られる。
Thereafter, TTI'T is formed in the semiconductor film 2 as shown in FIG.

次に後者の場合、すなわち第2図(b)の半導体膜2を
選択エンチングせずビームアニールする工程を説明する
。第5図(a)は絹2図(1))において凹部1aが深
い場合で、全体加熱方式のビームアニールを行った場合
、半導体@2全体を浴融し、第5図(b)に示すように
基板1の凹部10を完全に埋め、表面を平坦にし、結晶
性を良くすることができる。
Next, a description will be given of the latter case, that is, the step of beam annealing the semiconductor film 2 shown in FIG. 2(b) without selectively etching it. Figure 5 (a) shows the case where the recess 1a is deep in silk 2 (1)), and when beam annealing using the whole heating method is performed, the entire semiconductor @ 2 is bath melted, as shown in Figure 5 (b). In this way, the recess 10 of the substrate 1 can be completely filled, the surface can be flattened, and the crystallinity can be improved.

なお、アニール後の状態は凹部10の深さによっては第
5図<b)の鶏舎以外に前記の掘6図(b)と第4図(
’b)の状態も考えられる。また、第5図(a)と第5
図(b)とに示す方式は、前者の方式に比べて、基板1
の凹部10が深く、数が多く、全体加熱方式のビームア
ニールを行う場合に適する。
Note that depending on the depth of the recess 10, the state after annealing may be different from the poultry house shown in Fig. 5<b) to the above-mentioned poultry house shown in Fig. 6(b) and Fig. 4(b).
The situation 'b) is also possible. Also, Figure 5(a) and Figure 5
Compared to the former method, the method shown in FIG.
The recesses 10 are deep and large in number, making it suitable for performing beam annealing using the entire heating method.

第6図は、ビームアニール後平坦になった半導体膜2の
上に作成したTPTを示す。第6図に於いてたとえば半
導体膜2がビームアニールされたアモルファスシリコン
である場合、半導体膜2の中央部に絶縁膜6(たとえば
二酸化ケイ素−19i−02)をプラズマDVD法を用
いて形成する。この場合絶縁膜6の原料としてシラン(
SiH2)と酸素ガス(02)が使用され、また成長温
度としては室温から約500℃の間の温度が用いられる
。その後生導体1摸2の両端にドレイン電極5とソース
電極6を、絶縁膜3上にゲート電極4をマグネットロン
スパンタ法ヲ用い、アルミニウムとシリコンの合金(A
A−Bi)で形成する。
FIG. 6 shows the TPT formed on the semiconductor film 2 which has become flat after beam annealing. In FIG. 6, for example, when the semiconductor film 2 is made of beam-annealed amorphous silicon, an insulating film 6 (for example, silicon dioxide-19i-02) is formed in the center of the semiconductor film 2 using the plasma DVD method. In this case, silane (
SiH2) and oxygen gas (02) are used, and the growth temperature is between room temperature and about 500°C. Thereafter, a drain electrode 5 and a source electrode 6 were placed on both ends of the raw conductor 1 and 2, and a gate electrode 4 was placed on the insulating film 3 using the magnetron spunter method.
A-Bi).

以上、ここでは単一のTPTについて説明したが、TP
Tは基板上に複数あっても良い。
Above, we have explained a single TPT, but the TP
There may be a plurality of T's on the substrate.

本発明は、上記のように絶縁基板上に凹部をもうけて、
半導体膜をビームアニールし、TPTを作成するため、 ■ TPT表面の段差を小さくすることができ、電極の
断線を減少させ、歩留シを上げることができる。
The present invention provides a recessed portion on an insulating substrate as described above,
Since the semiconductor film is beam-annealed to create the TPT, (1) the level difference on the TPT surface can be reduced, electrode disconnection can be reduced, and the yield can be increased;

■ 基板の凹部によるグラフオエピタキシーの効果によ
シビームアニール時に、結晶性を単結晶に近づけること
ができ、TPTの電気的特性を向上できる。
(2) Due to the effect of graphoepitaxy caused by the concave portions of the substrate, the crystallinity can be made close to that of a single crystal during Sibeam annealing, and the electrical characteristics of TPT can be improved.

■ 半導体膜と基板との接触面積が太きいため、ビーム
アニール時に十分なエネルギーを供給でき、結晶性を1
9良くできる。
■ Because the contact area between the semiconductor film and the substrate is large, sufficient energy can be supplied during beam annealing, reducing crystallinity to 1.
9 I can do it well.

等の諸効果がある。There are various effects such as.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のTPTの断面図、 第2図(a)から第2図(d)及び第6図は本発明の半
導体装置の製造方法の工程順を説明するための断面図で
ある。 第5図(a)と(b)及び第4図(a)と(b)は、そ
れぞれ第2図(b)から続き第6図に終る鵠÷他の工程
を、示す断面図、 第5図(a)と(b)は第2図(a)から続き、第6図
に終る他の工程を示す断面図である。 1・・・絶縁基板   2・・・半導体膜6・・・絶縁
膜    2a、2b・・・凸部4・・・ゲート電極 
 5・・・ドレイン電極6・・・ソース電極  10・
・・凹部以  上 出願人 株式会社 第二精工合 ¥10 第2図(の 第3倣α)      第3山し)
FIG. 1 is a sectional view of a conventional TPT, and FIGS. 2(a) to 2(d) and 6 are sectional views for explaining the process order of the method of manufacturing a semiconductor device of the present invention. FIGS. 5(a) and (b) and FIGS. 4(a) and (b) are sectional views showing the other steps continuing from FIG. 2(b) and ending in FIG. 6, respectively. Figures (a) and (b) are cross-sectional views showing other steps continuing from Figure 2 (a) and ending in Figure 6. 1... Insulating substrate 2... Semiconductor film 6... Insulating film 2a, 2b... Convex portion 4... Gate electrode
5...Drain electrode 6...Source electrode 10.
...Recessed part and above Applicant Daini Seiko Co., Ltd. ¥10 Figure 2 (3rd copy α) 3rd peak)

Claims (1)

【特許請求の範囲】[Claims] 絶縁材料から成る基板の表面に凹部を設ける工程と、前
記凹部上に半導体膜を成長させる工程と、アニールによ
って前記半導体物を溶融して前記四部に前記半導体膜の
一部を埋め込む工程と、前記埋め込−4、ftた半導体
膜に薄膜トランジスタを形成する工程とからなる半導体
装置の製造方法。
a step of providing a recess in the surface of a substrate made of an insulating material, a step of growing a semiconductor film on the recess, a step of melting the semiconductor material by annealing and embedding a part of the semiconductor film in the four parts; A method for manufacturing a semiconductor device comprising the step of forming a thin film transistor in a buried semiconductor film.
JP57234283A 1982-12-28 1982-12-28 Manufacture of semiconductor device Pending JPS59124123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57234283A JPS59124123A (en) 1982-12-28 1982-12-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57234283A JPS59124123A (en) 1982-12-28 1982-12-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59124123A true JPS59124123A (en) 1984-07-18

Family

ID=16968546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57234283A Pending JPS59124123A (en) 1982-12-28 1982-12-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59124123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128420A (en) * 1987-11-13 1989-05-22 Agency Of Ind Science & Technol Glass substrate for semiconductor element and manufacture thereof
CN106653861A (en) * 2017-01-03 2017-05-10 京东方科技集团股份有限公司 Thin film transistor, fabrication method of thin film transistor, array substrate and fabrication method of array substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658269A (en) * 1979-10-17 1981-05-21 Seiko Epson Corp Mos type semiconductor device
JPS5678495A (en) * 1979-11-29 1981-06-27 Toshiba Corp Preparation of base

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658269A (en) * 1979-10-17 1981-05-21 Seiko Epson Corp Mos type semiconductor device
JPS5678495A (en) * 1979-11-29 1981-06-27 Toshiba Corp Preparation of base

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128420A (en) * 1987-11-13 1989-05-22 Agency Of Ind Science & Technol Glass substrate for semiconductor element and manufacture thereof
CN106653861A (en) * 2017-01-03 2017-05-10 京东方科技集团股份有限公司 Thin film transistor, fabrication method of thin film transistor, array substrate and fabrication method of array substrate

Similar Documents

Publication Publication Date Title
US4448632A (en) Method of fabricating semiconductor devices
JPH0476503B2 (en)
JPS61145868A (en) Manufacture of semiconductor device
JPS6178120A (en) Manufacture of thin film single crystal
JPS59124123A (en) Manufacture of semiconductor device
JPS62104021A (en) Formation of silicon semiconductor layer
JPS621220A (en) Manufacture of defect localized orientation silicon monocrystalline film on insulation support
JP2579494B2 (en) SOI wafer manufacturing method
JPS5885520A (en) Manufacture of semiconductor device
JPH0468770B2 (en)
JPS58139423A (en) Lateral epitaxial growing method
JPS5825220A (en) Manufacture of semiconductor substrate
JPS58180019A (en) Semiconductor base body and its manufacture
JPH065862A (en) Production of thin film transistor
JPS63228730A (en) Manufacture of semiconductor integrated circuit
JPS59154072A (en) Semiconductor device and manufacture thereof
JPS61116821A (en) Formation of single crystal thin film
JPH01225130A (en) Manufacture of semiconductor device
JPH01138749A (en) Manufacture of semiconductor device
KR100745056B1 (en) Method for forming the Isolation Layer of Semiconductor Device
JPS60752A (en) Manufacture of semiconductor device
JPS632349A (en) Manufacture of semiconductor device
JPH0845837A (en) Production process of polycrystalline semiconductor film
JPS60176220A (en) Manufacture of semiconductor device
JPS5892209A (en) Manufacture of semiconductor device