JPS59122894A - Heat transfer pipe of down-flowing liquid film type evaporator - Google Patents

Heat transfer pipe of down-flowing liquid film type evaporator

Info

Publication number
JPS59122894A
JPS59122894A JP22804582A JP22804582A JPS59122894A JP S59122894 A JPS59122894 A JP S59122894A JP 22804582 A JP22804582 A JP 22804582A JP 22804582 A JP22804582 A JP 22804582A JP S59122894 A JPS59122894 A JP S59122894A
Authority
JP
Japan
Prior art keywords
heat transfer
fluid
heat exchange
flowing
liquid film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22804582A
Other languages
Japanese (ja)
Inventor
Katsuya Yamashita
勝也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22804582A priority Critical patent/JPS59122894A/en
Publication of JPS59122894A publication Critical patent/JPS59122894A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To stabilize and to improve the heat transfer efficiency of the heat transfer pipe by a method wherein two heat exchange promotable corrugated sections are arranged parallel to each other in different phases along the axis of the heat transfer pipe. CONSTITUTION:In the case of the down-flowing liquid film type evaporator, a heated fluid flowing out from a fluid distributor flows down as it covers the heat transfer pipe 21 in the form of a film. When the liquid film begins to flow down, the thickness of the film is not uniform but the fluid 1 flowing down in the concave sections 24 of the second heat exchange promotable corrugated section 23 in the upper stage flows down vertically and is divided into a stream 2 flowing over the convex sections 27 of the first heat exchange promotable corrugated section 22 and streams 3 and 4 flowing separately into the concave sections 26 on both sides of the concave sections 27, respectively. Further, a stream 5 of the fluid flowing down over the upper stage convex sections 25 flows into the lower stage concave sections 26 and joins together. Thus, by such tributory flow and the joined flow of the fluid, the thickness of the fluid is made uniform in the circumferential direction, a dry patch disappears in a short time and the heat transfer efficiency of the heat pipe can be maintained high.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、流下液膜式蒸発器の伝熱管に係り、特に、伝
熱管の外表面に互いに凹凸周期の異る段部な設けて伝熱
効率慶向上しうるようにした流下液膜式蒸発器の伝熱管
に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a heat transfer tube for a falling film evaporator, and in particular, to improve heat transfer efficiency by providing steps on the outer surface of the heat transfer tube with different concave and convex periods. The present invention relates to a heat exchanger tube for a falling film evaporator that can improve performance.

〔発明の技術的背景〕[Technical background of the invention]

流下液膜式蒸発器は、たとえば海洋温度差発電プラント
に採用されている。
Falling film evaporators are used, for example, in ocean thermal power generation plants.

一般に、海洋温度差発電プラントは、第1図に示すよう
に、海水表層部の比較的高温の海水を蒸発器1に導びき
入れて、作動流体(たとえばフロン、アンモニア等の低
沸点媒体)を加熱蒸発させ、この蒸気なターくン2に導
入して膨張仕事をさせ、タービン2を駆動させる。この
タービン2の駆動により発電機3を回転させ、タービン
2からの排出蒸気は、凝縮器4&Cて海水深層部の比較
的温度の低い海水により凝縮され、その凝縮水は、一旦
タンク5に貯溜された後に循環ポンプ6によって再び蒸
発器1に戻されるようになっている。そして、前記蒸発
器1からの蒸発量は常に一定に保持され、発電機3の負
荷変動に対しては、タービンバイバス弁7を開閉すると
とによりタービン2の駆動力を調節する。
Generally, as shown in Fig. 1, in an ocean thermal power generation plant, relatively high temperature seawater at the seawater surface is introduced into an evaporator 1, and a working fluid (for example, a low boiling point medium such as fluorocarbon or ammonia) is supplied thereto. The steam is heated and evaporated and introduced into the turbine 2 to perform expansion work and drive the turbine 2. The turbine 2 is driven to rotate the generator 3, and the steam discharged from the turbine 2 is condensed with relatively low-temperature seawater in the deep seawater in the condenser 4&C, and the condensed water is temporarily stored in the tank 5. After that, it is returned to the evaporator 1 by the circulation pump 6. The amount of evaporation from the evaporator 1 is always kept constant, and the driving force of the turbine 2 is adjusted by opening and closing the turbine bypass valve 7 in response to changes in the load of the generator 3.

そして、この海水温度差発電プラントの蒸発器としては
、第2図、第3図、第4図、第5図および第6図に示す
ような流下液膜式のものが採用されることが多い。第2
図に示すように、流下液膜式蒸発器11は、加熱流体(
表層海水)を入口座12から器内に導入して上下方向に
多数配列された伝熱管13内を流動させる。一方、被加
熱流体は入口座14から流入して仕切板15上に貯溜さ
れ、この仕切板15と伝熱管13との間隙部分から各伝
熱管13の外表面に沿って流下していき、その流下して
いる間に加熱され、一部が蒸発して出口座16から流出
してい(。また、蒸発しなかった被加熱流体は、図示を
省略したポンプによって再び入口座12器内に導入され
るようになっている。
As the evaporator of this seawater temperature difference power generation plant, a falling liquid film type as shown in Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6 is often adopted. . Second
As shown in the figure, the falling film evaporator 11 has a heating fluid (
Surface seawater) is introduced into the vessel from the inlet port 12 and is caused to flow through the heat transfer tubes 13 arranged in a large number in the vertical direction. On the other hand, the fluid to be heated flows in from the inlet port 14 and is stored on the partition plate 15, flows down from the gap between the partition plate 15 and the heat transfer tubes 13 along the outer surface of each heat transfer tube 13, and While it is flowing down, it is heated and a part of it evaporates and flows out from the outlet port 16 (in addition, the heated fluid that has not evaporated is reintroduced into the inlet port 12 by a pump (not shown). It has become so.

また、第3図に示すよう、に、前記伝熱管13は、仕切
板15を貫通するように設けられており、仕切板15に
形成された貫通孔に嵌挿固定された筒状の流体分配器1
7内に前記伝熱管13が遊嵌されている。
Further, as shown in FIG. 3, the heat transfer tube 13 is provided so as to pass through the partition plate 15, and is a cylindrical fluid distribution tube that is fitted and fixed in a through hole formed in the partition plate 15. Vessel 1
The heat exchanger tube 13 is loosely fitted inside the tube 7.

そして、この伝熱管13と流体分配器17との間隙部1
8から被加熱流体が伝熱管13の周囲に沿って流出して
い(。
The gap 1 between the heat transfer tube 13 and the fluid distributor 17
The fluid to be heated flows out from 8 along the periphery of the heat transfer tube 13 (.

さらに、第4図、第5図および第6図に示すように、前
記伝熱管13は、その熱貫流率を向上させるために、外
表面の円周方向に沿って凹部13aおよび凸部13bを
交互に連ねてなる波形の熱交換増進凹凸部が設けられ、
この凹部13aおよび凸部13bは管軸方向に一定形状
にて延びている。
Furthermore, as shown in FIGS. 4, 5, and 6, the heat exchanger tube 13 has recesses 13a and protrusions 13b along the circumferential direction of the outer surface in order to improve the heat transfer coefficient. A wave-shaped heat exchange enhancing uneven part formed by alternating rows is provided,
The concave portion 13a and the convex portion 13b extend in a constant shape in the tube axis direction.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、伝熱管13と流体分配器17との間隔寸
法は、通常0.5 m −0,111i!程度の微小距
離に設定されるため、このような微小間隙を管の周囲に
、沿って均一に設けることは極めて困難であった。
However, the distance between the heat exchanger tubes 13 and the fluid distributor 17 is usually 0.5 m -0.111i! It is extremely difficult to uniformly provide such a small gap around the tube because the gap is set at such a small distance.

その結果、被加熱流体が流体分配器17の出口から円周
方向に不均一な状態で流出し、伝熱管13の周囲に不拘
−厚さの液膜が管全長にわたって生じ伝熱効率が悪化し
てしまい、さらに液膜厚さの薄い部分には、ドライパッ
チが発生することがしばしばあり、このようなドライパ
ッチが発生すると、その部分にはもはや永久的に被加熱
流体が供給されず、伝熱面として作用しなくなり、その
分だけ蒸発量が低下すると共に、伝熱効率が大きく低下
し、プラント全体の運転効率も低下してしまって〜また
As a result, the fluid to be heated flows out from the outlet of the fluid distributor 17 in a non-uniform manner in the circumferential direction, and a liquid film of an unrestricted thickness is formed around the heat transfer tube 13 over the entire length of the tube, deteriorating the heat transfer efficiency. Furthermore, dry patches often occur in areas where the liquid film is thin, and when such dry patches occur, the fluid to be heated is no longer permanently supplied to that area, and heat transfer As a result, the amount of evaporation decreases accordingly, and the heat transfer efficiency also decreases, resulting in a decrease in the operating efficiency of the entire plant.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の流下液膜式蒸発器の上記欠点を解消し
、液膜の厚さが均一化で伝熱効率の高い流下液膜式蒸発
器を提供することを目的としている。
An object of the present invention is to eliminate the above-mentioned drawbacks of conventional falling film evaporators, and to provide a falling film evaporator with uniform liquid film thickness and high heat transfer efficiency.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は、管軸方向に所定長
さを有する凹凸部を伝熱管の管外表面の周方向に沿って
交互に形成してなる熱交換凹凸段部を管軸方向に複数段
並設し、各隣接熱交換凹凸段部の周方向の凹凸周期を互
いに異らしめたことを特徴とし、管表面に流動する被加
熱流体が合流。
In order to achieve the above object, the present invention provides a heat exchange uneven stepped portion in which uneven portions having a predetermined length in the tube axis direction are alternately formed along the circumferential direction of the outer surface of the heat transfer tube. The pipe is characterized by having multiple stages arranged in parallel, and each adjacent heat exchange uneven step section having a different period of unevenness in the circumferential direction, so that the fluid to be heated flowing on the tube surface merges.

分流を繰返すようにしている。I am trying to repeat the diversion.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基いて詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第7図ないし第11図に示すように、本発明の一実施例
における伝熱管21の外表面には、管軸方向に第1熱交
換増進凹凸部22と第2熱交換増進凹凸部23とが交互
に連設されており、この第1および第2熱交換増進凹凸
部22 、23は、周方向に凹部スと凸部25および凹
部26と凸部dとをそれぞれ連ねて波形状に形成されて
いる。そして、互いに管軸方向に隣接する前記第1およ
び第2熱交換増進凹凸部22 、23の波形凹凸部24
 、25および26 、27は、相互に周方向にずらし
て設けられており、各熱交換増進凹凸部22 、23の
波形凹凸部24 、25および26゜dの周期位相が互
いに異るようになっている。その結果、一つの熱交換増
進凹凸部22の凹部24 、26は、隣接する他の熱交
換増進凹凸部23の凸部25゜γに管軸方向に連なり、
また、一方の凸部25 、27は他方段の凹部ア、26
に連なっている。したがって、両段の凹部24 、26
どうしおよび凸部δ、27どうしは隣接していない。な
お、凹部24 、26と凸部25%27とは極めて滑ら
からに連続されており、流体が非常に流動し易すくなっ
ている。
As shown in FIGS. 7 to 11, the outer surface of the heat exchanger tube 21 in one embodiment of the present invention has a first heat exchange enhancing uneven portion 22 and a second heat exchange enhancing uneven portion 23 in the tube axis direction. The first and second heat exchange enhancing uneven parts 22 and 23 are formed in a wave shape by connecting a recess 25 and a convex part 25 and a recess 26 and a convex part d in the circumferential direction, respectively. has been done. The wave-shaped uneven portions 24 of the first and second heat exchange enhancing uneven portions 22 and 23 adjacent to each other in the tube axis direction
, 25, 26, and 27 are provided so as to be offset from each other in the circumferential direction, and the periodic phases of the wave-shaped uneven portions 24, 25, and 26°d of the respective heat exchange enhancing uneven portions 22, 23 are different from each other. ing. As a result, the concave portions 24 and 26 of one heat exchange enhancement uneven portion 22 are connected to the convex portion 25°γ of the other adjacent heat exchange enhancement uneven portion 23 in the tube axis direction,
Furthermore, the convex portions 25 and 27 on one side correspond to the concave portions a and 26 on the other stage.
It is connected to Therefore, the recesses 24 and 26 on both stages
The protrusions δ and 27 are not adjacent to each other. Note that the concave portions 24 and 26 and the convex portion 25% 27 are extremely smoothly connected, making it easy for the fluid to flow.

このような構成からなる流下液膜式蒸発器の伝熱管にお
いては、伝熱管の上部に設けられた流体 。
In the heat exchanger tube of the falling film evaporator having such a configuration, the fluid is provided at the upper part of the heat exchanger tube.

分配器の内周間隙から流出し前記伝熱管21を膜状に覆
いながら流下してくる被加熱流体は、流出当初は、液膜
の厚さは不均一になっているが、第7図矢印で示すよう
に、上段側の凹部別を流下してきた流体■は、そのまま
鉛直方向に流下してf段側の凸部n上を流動するもの■
と、この下段側凸部lの両側凹部26 、26に分流す
るもの■、■とに分かれて流れる。また、上段側の凸部
25上を流下してきた流体■は、はとんど−そのまま流
下して下段側凹部26内に流入し、上記上段側凹部葛か
らの流れ■、■に分流する。
The fluid to be heated flows out from the inner circumferential gap of the distributor and flows down while covering the heat transfer tube 21 in a film shape. At the beginning of the flow, the thickness of the liquid film is uneven, but as shown by the arrow in FIG. As shown in , the fluid ■ that has flowed down through the concave part on the upper stage side continues to flow down in the vertical direction and flows over the convex part n on the f side.
The flow is divided into (1) and (2) which are divided into the concave portions 26 and 26 on both sides of the lower convex portion l. Further, the fluid (2) that has flown down on the upper convex portion 25 almost flows down as it is, flows into the lower concave portion 26, and is divided into flows (2) and (2) from the upper concave portion (1).

この−果、液膜が厚くなっている部分の流体は、上記分
流9合流を繰返して液膜の薄い部分に流れていき、伝熱
管21の外表面上に形成される液膜の厚さは周方向に均
一化され、伝熱効率は非常に高く維持される。さらに、
ドライパッチが発生してもそのドライパッチ発生部分に
は上段側から流体が直ちに流入して(るため、そのドラ
イパッチが極めて短時間に消滅し1.伝熱面としての機
能は直ちに回復する。
As a result, the fluid in the part where the liquid film is thick repeats the above-mentioned branch flow 9 convergence and flows into the thin part of the liquid film, and the thickness of the liquid film formed on the outer surface of the heat transfer tube 21 is The heat transfer efficiency is maintained evenly in the circumferential direction and extremely high. moreover,
Even if a dry patch occurs, fluid immediately flows into the area where the dry patch occurs from the upper stage, so the dry patch disappears in a very short time, and 1. The function as a heat transfer surface is immediately restored.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、所定長さの波形凹凸部を
周方向に形成してなる第1および第2熱交換増進凹凸部
な伝熱管の管軸方向に沿って交互に並設し、この伝熱管
を流下する被加熱流体を分流9合流させるように第1熱
交換増進凹凸部と、第2熱交換増進凹凸部との凹凸周期
位相を異らしめたから、伝熱管上に形成される被加熱流
体の液膜厚さを周方向に均一化し、ドライパッチを直ち
に消滅させることができ、極めて伝熱効率の高い安定し
た ′     °    流下液膜式蒸気発生器を提
供することができる。
As described above, the present invention provides first and second heat exchange enhancing uneven portions formed by forming wave-shaped uneven portions of a predetermined length in the circumferential direction, which are alternately arranged in parallel along the tube axis direction of the heat exchanger tube. , the periodic phase of the irregularities of the first heat exchange enhancing uneven part and the second heat exchange enhancing uneven part are made different so that the fluid to be heated flowing down the heat exchanger tube is divided into 9 converges. The thickness of the liquid film of the fluid to be heated can be made uniform in the circumferential direction, dry patches can be immediately eliminated, and a stable falling liquid film steam generator with extremely high heat transfer efficiency can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般の海洋温度差発電プラントの系統図、第2
図は流下液膜式蒸発器の縦断面図、第3図は伝熱管取付
部9部分拡大図、第4図、第5図および第6図は従来の
伝熱管の横断面図、部分側面図および部分横断面拡大図
、第7図は本発明の一実施例における伝熱管の部分側面
図、第8図。 第9図および第10図は第7図中のA−A線断面図、B
−B線断面図およびC−C線断面図、第11図は第7図
に示す伝熱管の部分展開斜視図である。 21・・・伝熱管、22・・・第1熱交換増進凹凸部、
23・・・第2熱交換増進凹凸部、24 、26・・・
波形凹部、怒。 d・・・波形凸部。 出願人代理人  猪  股    清 第1図 2 第2図 第3図 第4図 第5図 第6図 第7図 26 第8図 第9図 第10図 26    26    26
Figure 1 is a system diagram of a general ocean temperature difference power generation plant, Figure 2
The figure is a longitudinal sectional view of a falling film evaporator, Figure 3 is a partial enlarged view of the heat exchanger tube attachment part 9, and Figures 4, 5, and 6 are cross sectional views and partial side views of conventional heat exchanger tubes. FIG. 7 is an enlarged partial cross-sectional view, and FIG. 8 is a partial side view of a heat exchanger tube in an embodiment of the present invention. Figures 9 and 10 are cross-sectional views taken along line A-A in Figure 7;
11 is a partially developed perspective view of the heat exchanger tube shown in FIG. 7. 21... Heat exchanger tube, 22... First heat exchange enhancement uneven part,
23...Second heat exchange enhancing uneven portion, 24, 26...
Wavy concave, angry. d... Waveform convex portion. Applicant's agent Kiyoshi Inomata Figure 1 2 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 26 Figure 8 Figure 9 Figure 10 Figure 26 26 26

Claims (1)

【特許請求の範囲】[Claims] 伝熱管の外表面に第1および第2熱交換増進凹凸部を管
軸方向に交互に連ねてなり、前期第1熱交換増進凹凸部
は周方向に波形の凹凸を連ねて構成し、第2熱交換増進
凹凸部は前記第1熱交換凹凸部と略同−の波形の凹凸を
連ねて構成し、かつ前記第1および第2熱交換増進凹凸
部の凹凸周期位相を相互に異らしめたことを特徴とする
流下液膜式蒸発器の伝熱管。
First and second heat exchange enhancing uneven parts are arranged alternately in the tube axis direction on the outer surface of the heat transfer tube; The heat exchange enhancing uneven portion is constituted by a series of unevenness having substantially the same waveform as the first heat exchange enhancing uneven portion, and the uneven periodic phases of the first and second heat exchange enhancing uneven portions are made to be different from each other. A heat transfer tube for a falling film evaporator characterized by:
JP22804582A 1982-12-28 1982-12-28 Heat transfer pipe of down-flowing liquid film type evaporator Pending JPS59122894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22804582A JPS59122894A (en) 1982-12-28 1982-12-28 Heat transfer pipe of down-flowing liquid film type evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22804582A JPS59122894A (en) 1982-12-28 1982-12-28 Heat transfer pipe of down-flowing liquid film type evaporator

Publications (1)

Publication Number Publication Date
JPS59122894A true JPS59122894A (en) 1984-07-16

Family

ID=16870332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22804582A Pending JPS59122894A (en) 1982-12-28 1982-12-28 Heat transfer pipe of down-flowing liquid film type evaporator

Country Status (1)

Country Link
JP (1) JPS59122894A (en)

Similar Documents

Publication Publication Date Title
FI106577B (en) Device for transmitting heating and cooling power
JPS5818574B2 (en) heat pump
CN107101247A (en) A kind of portable regenerative apparatus
US5205352A (en) Heat exchanger for condensing vapor into liquid phase, power generating plant using the heat exchanger and absorption refrigerator using the heat exchanger
JPS59122894A (en) Heat transfer pipe of down-flowing liquid film type evaporator
RU96110288A (en) HEAT EXCHANGER FOR HEAT EXCHANGE BETWEEN THE BOILER AND THE ABSORBER, METHOD OF HEAT EXCHANGE AND APPLICATION OF IT IN THE HEAT PUMP
JPS5610692A (en) Heat exchanger
JPH037877B2 (en)
JPS6314882Y2 (en)
JPH0518618Y2 (en)
JPH0148373B2 (en)
JPH11182968A (en) Heat exchanger for reactor of chemical heat pump
JPS59212601A (en) Falling liquid-film type evaporator
RU1814023C (en) Heat transfer apparatus (options)
JPS61138067A (en) Evaporator
JPS5824077Y2 (en) liquefied natural gas evaporation equipment
SU848949A1 (en) Shell-and-tube heat exchanger
JPS58195782A (en) Heat exchanger
JPS60181587A (en) Cascade cycle type heat converting system
RU1732759C (en) Plate heat exchanger
JPH09303701A (en) Exhaust gas boiler evaporator
SU640110A1 (en) Vapour-to-air exchanger heat-exchange surface
JPS58200995A (en) Condensing heat transfer pipe
JPS58117964A (en) Solar heat hot water supply system employing latent heat accumulating tank
JPS5818095A (en) Evaporator