JPH0518618Y2 - - Google Patents

Info

Publication number
JPH0518618Y2
JPH0518618Y2 JP1990086769U JP8676990U JPH0518618Y2 JP H0518618 Y2 JPH0518618 Y2 JP H0518618Y2 JP 1990086769 U JP1990086769 U JP 1990086769U JP 8676990 U JP8676990 U JP 8676990U JP H0518618 Y2 JPH0518618 Y2 JP H0518618Y2
Authority
JP
Japan
Prior art keywords
distribution
heat exchanger
heat transfer
evaporator
water chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990086769U
Other languages
Japanese (ja)
Other versions
JPH0330069U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1990086769U priority Critical patent/JPH0518618Y2/ja
Publication of JPH0330069U publication Critical patent/JPH0330069U/ja
Application granted granted Critical
Publication of JPH0518618Y2 publication Critical patent/JPH0518618Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、低温度差、例えば海水の表層と深層
の温度差を利用して発電する海洋温度差プラント
に使用される流下液膜式蒸発器の改良に関する。
[Detailed description of the invention] (Industrial application field) This invention is a falling film evaporation system used in ocean temperature difference plants that utilize low temperature differences, such as the difference in temperature between the surface layer and the deep layer of seawater, to generate electricity. Concerning the improvement of utensils.

(従来の技術) この種のプラントは、高熱源として表層海水、
低熱源として深層海水を利用し、作動流体にはフ
ロン、アンモニア等の低沸点媒体を使用する。
(Conventional technology) This type of plant uses surface seawater as a high heat source.
Deep seawater is used as a low heat source, and low boiling point media such as chlorofluorocarbons and ammonia are used as working fluids.

第1図にその系統図を示し詳細に説明する。符
号11は表層海水を加熱媒体として利用する蒸発
器であつて、この蒸発器11で発生した蒸気は、
タービン12へ導入され、例えば、発電機13を
回転させて電気エネルギへ変換される。タービン
12で仕事を終えた蒸気は、凝縮器14へ導か
れ、ここで深層海水によつて凝縮される。凝縮し
た作動流体は、回収容器15を経て循環ポンプ1
6により昇圧され、再び蒸発器11へ戻され、以
下、このサイクルを繰り返す。発電機13の負荷
変動に対しては、タービンバイパス弁17を開閉
するので、蒸発器11からの作動流体の蒸発量は
一定である。なお、符号18は主蒸気止め弁を示
している。
The system diagram is shown in FIG. 1 and will be explained in detail. Reference numeral 11 is an evaporator that uses surface seawater as a heating medium, and the steam generated in this evaporator 11 is
It is introduced into the turbine 12 and converted into electrical energy by, for example, rotating a generator 13. The steam that has finished its work in the turbine 12 is led to a condenser 14, where it is condensed by deep sea water. The condensed working fluid passes through the recovery container 15 and is sent to the circulation pump 1.
6 and returned to the evaporator 11, and this cycle is repeated thereafter. Since the turbine bypass valve 17 is opened and closed in response to changes in the load of the generator 13, the amount of evaporation of the working fluid from the evaporator 11 is constant. In addition, the code|symbol 18 has shown the main steam stop valve.

従来、この種のプラントでは蒸発器11とし
て、プレート式、プール沸騰式、流下液膜式等が
提案されている。一般に、これら海洋温度差発電
プラントでは、プラント効率が低く、広い設置ス
ペースを必要とするため、タービン出力の増大に
伴つて、機器が巨大化し、陸上での設置が困難と
なる。また、これらの海洋温度差発電プラントで
は、海水側のわずかな圧力損失の増減が、タービ
ン12の送電端出力を左右するため、取水海水を
陸上まで圧送することは、得策とはいえない。そ
のため大形プラントでは、海上設置(浮揚)形が
検討されている。この場合、上述の各機器はパー
ジ上に設置されるため、コンパクトな機器配置を
行なう必要があり、一般的な横形蒸発器よりも縦
形に構成される流下液膜式蒸発器が用いられる。
Conventionally, in this type of plant, a plate type, a pool boiling type, a falling film type, etc. have been proposed as the evaporator 11. Generally, these ocean temperature difference power generation plants have low plant efficiency and require a large installation space, so as the turbine output increases, the equipment becomes large and difficult to install on land. In addition, in these ocean temperature difference power generation plants, a slight increase or decrease in pressure loss on the seawater side affects the power transmission end output of the turbine 12, so it is not a good idea to forcefully convey the intake seawater to land. For this reason, offshore installation (floating) type plants are being considered for large-scale plants. In this case, since each of the above-mentioned devices is installed on the purge, it is necessary to have a compact device arrangement, and a falling film evaporator configured vertically is used rather than a general horizontal evaporator.

第2図にこの種の蒸発器の一例を示す。加熱流
体(表層海水)は、海水入口21から上部水室2
2に送られ、蒸発器胴23の長手方向に沿つて配
置された伝熱管24の管内側を流下する。一方、
被加熱流体(フロン、アンモニア等)は蒸発液入
口25から供給され、仕切板26により区画され
た分配室26a内になる液面高さHを保つて貯蔵
される。被加熱流体はここから少しづつ伝熱管2
4の外表面に沿つて流下し、このとき伝熱管24
の外表面に液膜を形成しながら伝熱管24の内側
を通る加熱流体と熱交換し、蒸発して一部が蒸気
となつて蒸気出口27から排出される。蒸発しき
れなかつた被加熱流体は、図示しない再循環ポン
プにより昇圧され、第1図に示される循環ポンプ
16で昇圧された被加熱流体とともに再び器内に
供給される。なお、図示は省略されるが、蒸発器
には伝熱管24を流れた加熱流体を受け入れる下
部水室が備えられる。
FIG. 2 shows an example of this type of evaporator. The heating fluid (surface seawater) flows from the seawater inlet 21 to the upper water chamber 2.
2, and flows down inside the heat transfer tubes 24 arranged along the longitudinal direction of the evaporator shell 23. on the other hand,
The fluid to be heated (chlorofluorocarbon, ammonia, etc.) is supplied from the evaporated liquid inlet 25 and stored while maintaining the liquid level height H in the distribution chamber 26a partitioned by the partition plate 26. From here, the fluid to be heated is gradually transferred to heat transfer tube 2.
At this time, the heat exchanger tubes 24
It exchanges heat with the heating fluid passing inside the heat transfer tube 24 while forming a liquid film on the outer surface of the heat exchanger tube 24 , evaporates, and partially turns into steam, which is discharged from the steam outlet 27 . The fluid to be heated that has not been completely evaporated is pressurized by a recirculation pump (not shown), and is again supplied into the vessel together with the fluid to be heated whose pressure has been increased by the circulation pump 16 shown in FIG. Although not shown, the evaporator is equipped with a lower water chamber that receives the heating fluid that has flowed through the heat transfer tubes 24.

第3図は上述した蒸発器において用いられる蒸
発液の分配手段を示している。この分配手段は分
配室26を区画している仕切板28によつて支持
された分配管29によつて環状の分配口30を形
成したものである。この図に示されるようなある
液面高さHを有する液体は、伝熱管24と伝熱管
29との間に形成される分配口30を通過すると
きに流量が制限され、伝熱管24の外表面に薄い
液膜が形成されるようになつている。
FIG. 3 shows the evaporated liquid distribution means used in the evaporator described above. This distribution means has an annular distribution port 30 formed by a distribution pipe 29 supported by a partition plate 28 that partitions a distribution chamber 26. When the liquid having a certain liquid level height H as shown in this figure passes through the distribution port 30 formed between the heat exchanger tubes 24 and 29, the flow rate is restricted and A thin liquid film is formed on the surface.

(考案が解決しようとする課題) ところで、この種の蒸発器において、伝熱性能
を十分に発揮するためには、流下する流体の流量
をできるだけ多くして、均一で安定な液膜を形成
することが必要である。しかしながら、流体の流
下量を多くすると、蒸発しきれない量が増え、再
循環ポンプの駆動動力が増大し、発電端出力の減
少につながる。つまり、伝熱性能の面から言え
ば、流体流下量は多いほど良いが、流体流下量が
多いと再循環流量が増え発電端出力が減少するこ
とになる。かかる観点から実用されている海洋温
度差発電プラントの蒸発器では、蒸発量の数倍程
度の被加熱流体を流下させているが、この流体流
下量に対応する間隙は、0.5〜1.0mm程度である。
長尺(10m前後)の伝熱管を用いる海洋温度差発
電プラント用の蒸発器では、伝熱管の長手方向に
数ケ所の分配室を設け、また、分配管は各部にお
いて伝熱管毎に必要である。第3図に示した従来
の分配室26は仕切板28を用いるように構成さ
れているが、この仕切板28は上述したように一
定の流体流下量を確保するために伝熱管24と直
接係合させることができない。このため伝熱管2
4の中心と分配管29の中心とを同心にすること
は、高度の製造技術をもつてしても困難である。
まして、間隙が0.5〜1.0mmと微小であることか
ら、微小の偏心が分配口30の間隙に偏りを生じ
させ、極端な例では中心間の距離が間隙の距離に
等しくなり、伝熱管24の外表面と分配管29の
内面とが直接接触することもある。この場合、均
一で安定な流下液膜が形成されないため、伝熱管
24の外表面にドライパツチ(液で濡らされてい
ない部分)が発生したり、加熱流体の液膜から剥
離を生じたりする。そのため、蒸発器は所定の性
能を発揮できなくなるとともに、蒸発器での蒸気
発生量が減少し、発電端出力の減少が起こる。
(Problem that the invention aims to solve) By the way, in order to fully demonstrate heat transfer performance in this type of evaporator, it is necessary to increase the flow rate of the flowing fluid as much as possible to form a uniform and stable liquid film. It is necessary. However, when the flow rate of the fluid is increased, the amount that cannot be evaporated increases, the driving power of the recirculation pump increases, and the power generation output decreases. In other words, from the standpoint of heat transfer performance, the larger the amount of fluid flowing down, the better, but if the amount of fluid flowing down is large, the recirculation flow rate will increase and the power output will decrease. From this point of view, in the evaporator of the ocean temperature difference power generation plant that is put into practical use, a heated fluid of several times the amount of evaporation flows down, but the gap corresponding to this amount of fluid flow is about 0.5 to 1.0 mm. be.
In evaporators for ocean thermal power generation plants that use long heat transfer tubes (approximately 10 m), several distribution chambers are provided in the longitudinal direction of the heat transfer tube, and distribution piping is required for each heat transfer tube in each section. . The conventional distribution chamber 26 shown in FIG. 3 is configured to use a partition plate 28, which is in direct contact with the heat transfer tube 24 in order to ensure a constant fluid flow rate as described above. cannot be matched. Therefore, heat exchanger tube 2
4 and the center of the distribution pipe 29 are difficult to make concentrically, even with advanced manufacturing technology.
Moreover, since the gap is as small as 0.5 to 1.0 mm, a minute eccentricity causes the gap between the distribution ports 30 to be biased, and in an extreme case, the distance between the centers becomes equal to the gap distance, and the heat exchanger tube 24 There may also be direct contact between the outer surface and the inner surface of the distribution pipe 29. In this case, since a uniform and stable falling liquid film is not formed, dry patches (portions not wetted with liquid) may occur on the outer surface of the heat transfer tube 24 or peeling may occur from the liquid film of the heating fluid. Therefore, the evaporator is no longer able to exhibit a predetermined performance, and the amount of steam generated in the evaporator decreases, resulting in a decrease in the power generation output.

本考案の目的は流下液膜式蒸発器における伝熱
面の構成要素、すなわち伝熱管の外表面に均一で
安定な液膜を形成することのできる流下液膜式蒸
発器を提供することにある。
The purpose of the present invention is to provide a falling film evaporator that can form a uniform and stable liquid film on the outer surface of the heat transfer tube, which is a component of the heat transfer surface in the falling film evaporator. .

(問題点を解決するための手段) 上記目的を達成するために本考案は円筒状の蒸
発器胴と、この蒸発器胴の上部に区画して設けら
れた上部水室と、この上部水室の下側に連設さ
れ、水室から下方の下部水室にかけて延在する多
数の伝熱管の上端に近い一定区間を収容し、供給
される蒸発液を各伝熱管外面に膜状に付着させて
流す分配口を有する分配室と、この分配室内にあ
つて、分配室内を通る各伝熱管との間に環状空間
を保持して各々嵌入され、伝熱管に供給される蒸
発液の流量を調節する複数の透孔を有する分配カ
ラーとを備えてなり、透孔は蒸発液が前記伝熱管
の外表面に旋回流として供給されるように分配カ
ラーの軸心を横切り、かつ伝熱管の接線と一致す
る方向に形成されることを特徴とするものであ
る。
(Means for Solving the Problems) In order to achieve the above object, the present invention includes a cylindrical evaporator shell, an upper water chamber partitioned at the upper part of the evaporator shell, and an upper water chamber. It accommodates a certain section near the upper end of a large number of heat transfer tubes that are connected in series on the lower side and extends from the water chamber to the lower water chamber below, and allows the supplied evaporated liquid to adhere to the outer surface of each heat transfer tube in the form of a film. An annular space is maintained between a distribution chamber having a distribution port through which the liquid flows through the distribution chamber, and each heat transfer tube passing through the distribution chamber is inserted into the distribution chamber, and the flow rate of the evaporated liquid supplied to the heat transfer tubes is adjusted. a distribution collar having a plurality of through holes, the through holes extending across the axis of the distribution collar and tangential to the heat exchanger tubes so that the evaporated liquid is supplied to the outer surface of the heat exchanger tubes as a swirling flow. It is characterized by being formed in the same direction.

(作用) 分配カラーの透孔から噴流となつて流出する流
体は伝熱管の外表面に旋回しながら付着し、その
外表面に均一な厚さの液膜を形成する。
(Function) The fluid flowing out as a jet from the through holes of the distribution collar adheres to the outer surface of the heat transfer tube while swirling, and forms a liquid film of uniform thickness on the outer surface.

この際、分配カラーと伝熱管との間の環状空間
は、全周にわたつて一様に保たれているから、透
孔から出る噴流の伝熱管への到達距離は常に一定
である。
At this time, since the annular space between the distribution collar and the heat transfer tube is kept uniform over the entire circumference, the distance that the jet flow from the through hole reaches the heat transfer tube is always constant.

これにより、伝熱管の外表面に生じるドライパ
ツチを一切なくすことができる。
This completely eliminates dry patches that occur on the outer surface of the heat exchanger tube.

(実施例) 以下、伝熱管に装着して用いられる分配手段を
示す第4図および第5図を参照して本考案の一実
施例を説明する。
(Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 4 and 5, which show a distribution means attached to a heat exchanger tube.

第4図において、符号31は伝熱管24に合わ
せて分配口32を穿つている仕切板を示してい
る。この仕切板31の上方空間は従来と同様に被
加熱流体のための貯蔵空間として形成され、分配
室26aを構成している。この分配室26a内を
通る伝熱管24にパツキン33を装着した中心孔
34によつて伝熱管24と同心を保つている分配
カラー35が備えられる。この分配カラー35の
内部は分配室26aから区画された環状空間36
を形成しており、その開口を下に向けて環状空間
36よりも口径の大きい分配口32と通じさせる
ようにしている。
In FIG. 4, reference numeral 31 indicates a partition plate in which distribution ports 32 are bored to match the heat exchanger tubes 24. The space above the partition plate 31 is formed as a storage space for the fluid to be heated, as in the conventional case, and constitutes a distribution chamber 26a. The heat exchanger tube 24 passing through the distribution chamber 26a is provided with a distribution collar 35 which is kept concentric with the heat exchanger tube 24 by a center hole 34 fitted with a packing 33. The interior of this distribution collar 35 is an annular space 36 separated from the distribution chamber 26a.
The opening thereof faces downward and communicates with a distribution port 32 having a larger diameter than the annular space 36.

また、第5図に示されるように分配カラー35
はその軸心を横切り、かつ伝熱管の接線と一致す
る方向に穿たれた透孔37を備えている。本実施
例の場合、この透孔37は仕切板31からある高
さの位置による円周上に等間隔に4ケ所穿設され
ている。
Additionally, as shown in FIG.
is provided with a through hole 37 bored in a direction that crosses its axis and coincides with the tangent line of the heat exchanger tube. In the case of this embodiment, four through holes 37 are formed at equal intervals on the circumference at a certain height from the partition plate 31.

上記構成によるところの本考案の実施例は伝熱
管24を流下する流体の経路は透孔37から環状
空間36を経て伝熱管24の外表面に達する経路
のみであり、透孔37の向きが分配カラー35の
軸心を横切り、かつ伝熱管24の接線と一致する
方向に向けられているから、流体は伝熱管24の
外表面に旋回しつつ流れる。透孔37の数と口径
とを適切に定めることにより上記働きは一層顕著
になる。
In the embodiment of the present invention having the above configuration, the only path for the fluid flowing down the heat transfer tube 24 is the path from the through hole 37 to the outer surface of the heat transfer tube 24 via the annular space 36, and the direction of the through hole 37 is distributed. Since it is oriented in a direction that crosses the axis of the collar 35 and coincides with a tangent to the heat exchanger tube 24, the fluid flows to the outer surface of the heat exchanger tube 24 while swirling. By appropriately determining the number and diameter of the through holes 37, the above-mentioned function becomes even more remarkable.

また、中心孔34に装着したパツキン33はそ
の弾力性によつて分配カラー35の中心を伝熱管
24の中心に合わせるのを容易にしている。これ
により双方の中心は一致するから、環状空間36
が一方に偏ることはない。
Further, the elasticity of the packing 33 attached to the center hole 34 makes it easy to align the center of the distribution collar 35 with the center of the heat transfer tube 24. As a result, both centers coincide, so the annular space 36
is not biased to one side.

すなわち、ある高さHを有する流体は、4個の
透孔37より噴流となつて伝熱管24の外表面に
旋回しながら付着し、伝熱管24の外表面に均一
な厚さを液膜を形成する。この際、分配カラー3
5と伝熱管24との間の環状空間36は、全周に
わたつて一様に保たれているから、透孔37から
噴流の伝熱管24への到達距離は、常に一定であ
る。
That is, the fluid having a certain height H forms a jet from the four through holes 37 and attaches to the outer surface of the heat exchanger tube 24 while swirling, thereby forming a liquid film with a uniform thickness on the outer surface of the heat exchanger tube 24. Form. At this time, distribution color 3
Since the annular space 36 between the heat exchanger tube 24 and the heat exchanger tube 24 is kept uniform over the entire circumference, the distance that the jet stream reaches from the through hole 37 to the heat exchanger tube 24 is always constant.

また、第3図に示される従来の蒸発器では、仕
切板28に分配管29を固定するにあたつては、
分配口30の間隙の一様性を確保する上から、す
きまゲージ等による間隙の測定、および間隙調整
を強いられていたが、本実施例によれば、分配カ
ラー35を伝熱管24に装着したのち、分配カラ
ー35を仕切板31に固定するだけで、容易に環
状空間36を均一な隙間とすることができる。
Furthermore, in the conventional evaporator shown in FIG. 3, when fixing the distribution pipe 29 to the partition plate 28,
In order to ensure the uniformity of the gap between the distribution ports 30, it has been necessary to measure the gap using a feeler gauge or the like and adjust the gap, but according to this embodiment, the distribution collar 35 is attached to the heat transfer tube 24. Afterwards, simply by fixing the distribution collar 35 to the partition plate 31, the annular space 36 can be easily made into a uniform gap.

(考案の効果) 以上の説明から明らかなように本考案は分配室
内を通る各伝熱管との間に環状空間を保持して
各々嵌入される分配カラーを備え、その透孔を分
配カラーの軸心を横切り、かつ、伝熱管の接線と
一致する方向に形成しているから、伝熱面の外表
面に均一で安定な液膜を形成することができ、伝
熱管の外表面にドライパツチが生じず、蒸発器の
安定な性能が維持されるという優れた効果を奏す
る。
(Effects of the invention) As is clear from the above explanation, the present invention includes a distribution collar that is inserted into each heat transfer tube while maintaining an annular space between the heat transfer tubes passing through the distribution chamber, and the through hole is aligned with the axis of the distribution collar. Since it is formed in a direction that crosses the center and coincides with the tangent line of the heat transfer tube, it is possible to form a uniform and stable liquid film on the outer surface of the heat transfer surface, causing dry patches on the outer surface of the heat transfer tube. First, it has the excellent effect of maintaining stable performance of the evaporator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は海洋温度差発電プラントの構成機器を
示す系統図、第2図は従来の流下液膜式蒸発器の
要部を示す断面図、第3図は従来の流下液膜式蒸
発器において用いられる流体分配手段の一例を示
す断面図、第4図は本考案による流下液膜式蒸発
器の一実施例を示す断面図、第5図は第4図のV
−V線に沿う断面図である。 23……蒸発器胴、24……伝熱管、26……
分配室、31……仕切板、32……分配口、33
……パツキン、35……分配カラー、36……環
状空間、37……透孔。
Figure 1 is a system diagram showing the components of an ocean thermal power generation plant, Figure 2 is a sectional view showing the main parts of a conventional falling film evaporator, and Figure 3 is a diagram showing the main parts of a conventional falling film evaporator. 4 is a cross-sectional view showing an example of a falling film type evaporator according to the present invention, and FIG. 5 is a cross-sectional view showing an example of the fluid distribution means used.
- It is a sectional view along the V line. 23...Evaporator shell, 24...Heat transfer tube, 26...
Distribution room, 31... Partition plate, 32... Distribution port, 33
...Putskin, 35...Distribution collar, 36...Annular space, 37...Through hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 円筒状の蒸発器胴と、この蒸発器胴の上部に区
画して設けられた上部水室と、この上部水室の下
側に連設され、該水室から下方の下部水室にかけ
て延在する多数の伝熱管の上端に近い一定区間を
収容し、供給される蒸発液を前記各伝熱管外面に
膜状に付着させて流す分配口を有する分配室と、
この分配室内にあつて、該分配室内を通る前記各
伝熱管との間に環状空間を保持して各々嵌入さ
れ、該伝熱管に供給される蒸発液の流量を調節す
る複数の透孔を有する分配カラーとを備えてな
り、前記透孔は蒸発液が前記伝熱管の外表面に旋
回流として供給されるように該分配カラーの軸心
を横切り、かつ該伝熱管の接線と一致する方向に
形成されることを特徴とする流下液膜式蒸発器。
A cylindrical evaporator body, an upper water chamber partitioned into the upper part of the evaporator body, and an upper water chamber connected to the lower side of the upper water chamber and extending from the water chamber to the lower water chamber below. a distribution chamber that accommodates a certain section near the upper ends of a large number of heat exchanger tubes, and has a distribution port through which the supplied evaporated liquid is deposited in a film form on the outer surface of each of the heat exchanger tubes;
The distribution chamber includes a plurality of through holes that are fitted into each of the heat transfer tubes passing through the distribution chamber while maintaining an annular space therebetween to adjust the flow rate of the evaporated liquid supplied to the heat transfer tubes. a distribution collar, and the through hole extends in a direction that crosses the axis of the distribution collar and coincides with a tangent to the heat exchanger tube so that the evaporated liquid is supplied to the outer surface of the heat exchanger tube as a swirling flow. A falling film evaporator characterized in that:
JP1990086769U 1990-08-21 1990-08-21 Expired - Lifetime JPH0518618Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990086769U JPH0518618Y2 (en) 1990-08-21 1990-08-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990086769U JPH0518618Y2 (en) 1990-08-21 1990-08-21

Publications (2)

Publication Number Publication Date
JPH0330069U JPH0330069U (en) 1991-03-25
JPH0518618Y2 true JPH0518618Y2 (en) 1993-05-18

Family

ID=31636396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990086769U Expired - Lifetime JPH0518618Y2 (en) 1990-08-21 1990-08-21

Country Status (1)

Country Link
JP (1) JPH0518618Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3011660U (en) * 1994-11-29 1995-05-30 冨士工芸株式会社 Board space

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145853A (en) * 1976-05-26 1977-12-05 Commissariat Energie Atomique Thin film drop heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145853A (en) * 1976-05-26 1977-12-05 Commissariat Energie Atomique Thin film drop heat exchanger

Also Published As

Publication number Publication date
JPH0330069U (en) 1991-03-25

Similar Documents

Publication Publication Date Title
FI106577B (en) Device for transmitting heating and cooling power
CN105042326B (en) Close-coupled intermediate fluid type gasifier
CN103613155B (en) Heat pipe-type low temperature two sea water desalting equipment
JPS5818574B2 (en) heat pump
JP2650395B2 (en) Absorption cycle heat pump
CN105600854B (en) A kind of seawater desalination system that loop circuit heat pipe is set
CA2206847A1 (en) Heat exchanging apparatus
JPH0518618Y2 (en)
US4656839A (en) Heat pumps
US4553408A (en) Centrifugal heat pump
CN103185425B (en) Shell-and-tube sewage-refrigerant phase change heat exchanger
JPS59119073A (en) Low temperature difference power plant
JPS59212601A (en) Falling liquid-film type evaporator
JPS5971983A (en) Gravity liquid film type evaporator
JPS5933828B2 (en) Heat exchanger
RU2489575C1 (en) Steam turbine solar thermal pipe plant
SU1101565A1 (en) Thermal power station
SU1174719A1 (en) Shell-and-tube film-type heat exchanger
SU1442804A1 (en) Heat tube
SU1326864A1 (en) Cooling device
RU2018032C1 (en) Heat power-to-pressure control energy converter
JPS6314882Y2 (en)
JPS5820679B2 (en) watermelon watermelon
SU1399619A1 (en) Liquid cooling installation
CN117771705A (en) Central liquid spraying capillary tube type steam generator and system thereof