JPS5818095A - Evaporator - Google Patents

Evaporator

Info

Publication number
JPS5818095A
JPS5818095A JP11504781A JP11504781A JPS5818095A JP S5818095 A JPS5818095 A JP S5818095A JP 11504781 A JP11504781 A JP 11504781A JP 11504781 A JP11504781 A JP 11504781A JP S5818095 A JPS5818095 A JP S5818095A
Authority
JP
Japan
Prior art keywords
liquid
medium
medium liquid
sections
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11504781A
Other languages
Japanese (ja)
Other versions
JPH0128316B2 (en
Inventor
Hisashi Nakayama
中山 恒
Takahiro Oguro
崇弘 大黒
Tadakatsu Nakajima
忠克 中島
Kenji Takahashi
研二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11504781A priority Critical patent/JPS5818095A/en
Publication of JPS5818095A publication Critical patent/JPS5818095A/en
Publication of JPH0128316B2 publication Critical patent/JPH0128316B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce the resistance to two-phase fluid flow of a medium to be evaporated, by arranging heat exchanger plates having corrugation with a constant pitch in the vertical direction to extend vertically and in parallel with each other, and forming cavities and grooves respectively at upward inclined sections and downward inclined sections of the corrugation on the side thereof facing the fluid passages of a work medium. CONSTITUTION:Each of heat exchanger plates 9 is formed with corrugation with a constant pitch P in the vertical direction. By connecting each two heat exchanger plates 9 facing toward each other by means of connecting plates 10, there are formed alternately medium liquid passages 11 formed with enlarged sections 11a and contracted sections 11b alternately and having an open top and a closed bottom and heating fluid passages 15 formed with contracted sections 15a and enlarged sections 15b alternately and having both of the upper and lower ends opened are formed alternately between the heat exchanger plates 9. Further, many cavities 12 are formed at upward inclined sections 9a of the passage 11, while a proper number of small grooves 14 capable of attracting liquid film 22 by the capillary action are formed at downward inclined sections 9b of the passage 11.

Description

【発明の詳細な説明】 本発明は低沸点媒体を作動流体とした2ンキンザイル、
冷凍機、電子機器および原子力発電プラントなどに使用
される蒸発器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a two-kinnel system using a low boiling point medium as a working fluid;
It relates to evaporators used in refrigerators, electronic equipment, nuclear power plants, etc.

従来、最も広く用いられている蒸発器は多数の円管を円
筒形胴内に収納したシェル・チューブ形式の熱交換器で
ある。近年は廃熱、地熱および海洋温度差などの低温度
エネルギーを有効に利用するために、低沸点媒体を作動
流体としたランキンサイクル発電プラントが注目されて
おり、その熱交換器として従来のシェル・チューブ形式
のものよシ小形で高性能のものが要望されてhる。この
要望を満足させるために、第1図ないし第3図に示すよ
うな三種類の熱交換器が提案されている。
Conventionally, the most widely used evaporator is a shell-tube heat exchanger in which a number of circular tubes are housed in a cylindrical shell. In recent years, Rankine cycle power plants that use a low boiling point medium as the working fluid have been attracting attention in order to effectively utilize low-temperature energy such as waste heat, geothermal heat, and ocean temperature differences. There is a demand for something smaller and with higher performance than the tube type one. In order to satisfy this demand, three types of heat exchangers as shown in FIGS. 1 to 3 have been proposed.

第1案の熱交換器は第1図に示すように、金属帯を折シ
曲げて小ピツチの波形を有するように形成されたフィン
31と隔離板とを交互に、かつ並列に設置して接合し、
温水34の流通する水平流路33と低沸点媒体36の流
通する垂直流路35が形成されている。その低沸点媒体
36は温水34との熱交換によシ、蒸発して媒体蒸気3
7となって流出する。この際、小さい温度差のもとて多
量の蒸気を発生させねばならなりので、密に設け九フィ
ン31によ)単位容積当シの伝熱面積を大きく子るよう
に構成されている。
As shown in Figure 1, the heat exchanger of the first plan has fins 31 formed by bending metal strips to have small pitch corrugations and separators installed alternately and in parallel. join,
A horizontal flow path 33 through which hot water 34 flows and a vertical flow path 35 through which a low boiling point medium 36 flows are formed. The low boiling point medium 36 undergoes heat exchange with the hot water 34 and evaporates into medium vapor 3.
7 and flows out. At this time, since it is necessary to generate a large amount of steam with a small temperature difference, the nine fins 31 are arranged closely to increase the heat transfer area per unit volume.

第2案の熱交換器は伝熱室の外周面に薄い液膜を作って
蒸発させるものである。すなわち第2図に示すように水
平に1かつ数段に設置した伝熱管群39の上方よシ媒体
液38をスプレーすると、その伝熱官鮮39の各管39
mの外周面に液膜40が形成される。この場合、各伝熱
管39a内を流通する加熱流体41から各伝熱管39a
の管壁へ熱が伝達され、この熱は各伝熱管3951の内
部、それらの管壁と液膜40との境界面および液膜40
を通過して液膜表面40aに達し、この表面40aへ蒸
発潜熱を供給する。
The second heat exchanger creates a thin liquid film on the outer peripheral surface of the heat transfer chamber and evaporates it. That is, as shown in FIG.
A liquid film 40 is formed on the outer peripheral surface of m. In this case, from the heating fluid 41 flowing in each heat exchanger tube 39a to each heat exchanger tube 39a
This heat is transferred to the inside of each heat transfer tube 3951, the interface between those tube walls and the liquid film 40, and the liquid film 40.
and reaches the liquid film surface 40a, supplying latent heat of vaporization to this surface 40a.

上記液jl[40を薄層に保つことができれば、熱流に
対する液膜部分の抵抗は減少するから熱伝達率を向上さ
せることができる。また熱交換器内部に多量の液が存在
するために生ずる弊害、すなわち下方に位置する伝熱管
からの気泡の発生、表面からの液の離脱および上方への
気泡の移動などに対し、多量の液の存在が呈する大きな
抵抗を除去することができる。さらに伝熱管の外周面に
微細なフィンまたは溝を設けることによシ、蒸発の熱伝
達を促進させることが可能である。
If the liquid jl[40 can be kept in a thin layer, the resistance of the liquid film portion to heat flow will be reduced, so that the heat transfer coefficient can be improved. In addition, in order to prevent adverse effects caused by the presence of a large amount of liquid inside the heat exchanger, such as the generation of bubbles from the heat exchanger tubes located below, the separation of liquid from the surface, and the movement of bubbles upward, The large resistance presented by the presence of Furthermore, by providing fine fins or grooves on the outer peripheral surface of the heat transfer tube, it is possible to promote evaporative heat transfer.

第3案は第3図に示すように、内部を加熱流体43が流
通する鉛直管42の外周面に、媒体液の薄膜層44を、
形成して流下させることによシ蒸発を起させるようにし
たものである。このような熱交換器は化学工業、食品工
業例えば果汁の濃縮のように、液と加熱面との接触時間
を短縮して液の品質劣化を防止するのに好適である。
In the third plan, as shown in FIG. 3, a thin film layer 44 of a medium liquid is placed on the outer peripheral surface of a vertical pipe 42 through which a heating fluid 43 flows.
It is designed to cause evaporation by forming and flowing down. Such a heat exchanger is suitable for use in the chemical industry and the food industry, for example, for concentrating fruit juice, to shorten the contact time between a liquid and a heated surface to prevent quality deterioration of the liquid.

上記第1案では、媒体液36と発生した蒸気37は狭く
仕切られた流路35を同一方向に流れる。このよりな二
相流の流動状況では、液と蒸気の合流れが互いに干渉し
合うため、一部の液は加熱壁面より剥離して蒸気流に押
し流される恐れがある。その蒸気の流れは液膜および液
滴を押し流す仕事をするため、二相流の圧力損失は増大
し、媒体液流を駆動すざためのポンプ動力が増大するの
で、低温度の熱源を利用するランキンサイクルにとって
は、有効仕事を大幅に減少することになるから回避しな
ければならない。さらに蒸気流に押し流達れる液のうち
、かなシの割合を占める量が蒸発せずに蒸発器出口から
放出されるため、密に設けたフィンによシ伝熱面積を増
加したにも拘らず、これらの伝熱面積が有効に作動しな
い可能性が大である。
In the first plan, the medium liquid 36 and the generated steam 37 flow in the same direction through the narrowly partitioned channel 35. In this tight two-phase flow situation, the combined flow of liquid and steam interfere with each other, so there is a risk that some of the liquid will separate from the heated wall surface and be swept away by the steam flow. Because the vapor flow does the work of displacing the liquid film and droplets, the pressure drop in two-phase flow increases, and the pump power required to drive the media liquid flow increases, making use of a low-temperature heat source. For the Rankine cycle, this must be avoided as it will greatly reduce the effective work. Furthermore, a large proportion of the liquid flowing into the steam stream is released from the evaporator outlet without being evaporated, so even though the heat transfer area has been increased by the densely arranged fins, First, there is a high possibility that these heat transfer areas will not operate effectively.

前記第2案は媒体の流動に対する抵抗が少ない構造であ
るが、実際には伝熱管39aの下部に液が懸垂して厚い
液膜4oを形成する。また下方の伝熱管は上方の管群か
らの滴下液を受けるが、伝熱管39mの外周全面にわた
って液膜4oが必ずしも薄くならないため、期待したよ
うな熱伝達促進効果はえられない。
Although the second plan has a structure with less resistance to the flow of the medium, in reality, the liquid hangs below the heat transfer tube 39a, forming a thick liquid film 4o. Furthermore, although the lower heat transfer tube receives the dripping liquid from the upper tube group, the expected heat transfer promoting effect cannot be obtained because the liquid film 4o does not necessarily become thin over the entire outer periphery of the heat transfer tube 39m.

一方、伝熱管39mの外周面にフィンまたは溝を設ける
と、伝熱管39mの表面積は増加する。
On the other hand, when fins or grooves are provided on the outer peripheral surface of the heat exchanger tube 39m, the surface area of the heat exchanger tube 39m increases.

しかしフィンの山あるいは溝と溝との間の隆起部におけ
る液膜は薄くなるが、フィンとフィンとの間あるいは溝
内は厚い液膜で覆われるから、熱伝達率は著しく向上し
ない。上記のように第2案では、媒体液は流動しやすい
が、熱交換容積を画期的に小さくすることができない。
However, although the liquid film on the ridges of the fins or the protrusions between the grooves becomes thinner, the areas between the fins or inside the grooves are covered with a thicker liquid film, so that the heat transfer coefficient does not improve significantly. As described above, in the second plan, the medium liquid flows easily, but the heat exchange volume cannot be dramatically reduced.

さらに第3案では、媒体液44が垂直管42の管壁に沿
って流下するので、第2案におけるように懸垂液によ#
)*効伝熱面積が減少する恐れはない。ところが伝熱管
42が長くなると、その下部に乾き面を生じないように
上方から十分な量の媒体液44を供給する必要がある。
Furthermore, in the third plan, the medium liquid 44 flows down along the pipe wall of the vertical pipe 42, so that the suspended liquid is used as in the second plan.
) *There is no risk that the effective heat transfer area will decrease. However, as the heat transfer tube 42 becomes longer, it is necessary to supply a sufficient amount of the medium liquid 44 from above so as not to form a dry surface in the lower part.

このため液膜厚さを伝熱管全長にわたって平均にすると
、平均の液膜厚さは必ずしも小さくならない。
Therefore, when the liquid film thickness is averaged over the entire length of the heat exchanger tube, the average liquid film thickness does not necessarily become small.

そこで伝熱管42の長手方向に小ピツチで液供給口を設
け、これらの供給口に少量の媒体液を供給することによ
シ液膜を薄く保つ方法が考えられる。ところが液供給口
を多数設けると構造が複雑となシ、さらに蒸発器の計画
負荷以外の作動点では、上方の液供給口から流下する媒
体液が完全に蒸発せずに下方の液供給口に達するので、
流下液と供給液は重なシ合って蒸発器の性能を大幅に低
下させる。
Therefore, a method can be considered to keep the liquid film thin by providing liquid supply ports at small pitches in the longitudinal direction of the heat transfer tube 42 and supplying a small amount of medium liquid to these supply ports. However, providing a large number of liquid supply ports complicates the structure, and furthermore, at operating points other than the planned load of the evaporator, the medium liquid flowing down from the upper liquid supply port does not completely evaporate and flows into the lower liquid supply port. Because it reaches
The effluent and feed liquid overlap and significantly reduce the performance of the evaporator.

また上方の液供給口から流下する液が下方の液供給口に
達する以前に完全に蒸発するので、乾けた伝熱面が出現
するから蒸発器の性能は琳下する。
In addition, since the liquid flowing down from the upper liquid supply port is completely evaporated before reaching the lower liquid supply port, a dry heat transfer surface appears, which reduces the performance of the evaporator.

このrうに第3案では、蒸発器の性能を大幅に向上させ
ることが困難でラシ、仮シに計画負荷では高性能がえら
れたとしても、蒸発器の負荷変動に対応させることが至
難である。これは排熱利用の蒸発器のように熱源の容量
が大きく変動する場合に特に重大な問題を生ずる恐れが
ある。
In the third option, it is difficult to significantly improve the performance of the evaporator, and even if high performance can be obtained under the planned load, it is extremely difficult to adapt to the fluctuations in the evaporator load. be. This may pose a particularly serious problem when the capacity of the heat source fluctuates widely, such as in an evaporator that utilizes waste heat.

本発明は上記にかんがみ小形で高い熱交換性能を有し、
かつ蒸発する媒体の二相流流動に対する抵抗の小さい蒸
発器を提供することを目的とするもので、作動媒体液の
ヘッダと作動媒体蒸気のヘッダとの間に、鉛直方向に一
定ピッチの波形を有するように形成した熱交換板を鉛直
に、かつ並列に設置して作動媒体液流路と加熱流体流路
を交互に形成し、前記熱交換板波形の上向き傾斜部およ
び下向き傾斜部の作動媒体液流路側表面に空洞および溝
をそれぞれ設けたことを特徴とするものである。
In view of the above, the present invention is compact and has high heat exchange performance,
The purpose is to provide an evaporator with low resistance to the two-phase flow of the medium to be evaporated, and a waveform with a constant pitch is formed in the vertical direction between the header of the working medium liquid and the header of the working medium vapor. The heat exchange plates formed to have such a shape are installed vertically and in parallel to alternately form a working medium liquid flow path and a heating fluid flow path, and the working medium in the upwardly inclined part and the downwardly inclined part of the heat exchanger plate waveform is arranged vertically and in parallel. It is characterized in that a cavity and a groove are provided on the surface on the side of the liquid flow path.

以下本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第4図および第5図において、2は作動媒体液6を導入
する液配管5が喉付けられた液ヘッダ、3は媒体蒸気8
を導出する蒸気配管7が取付けられた蒸気ヘッダ、9は
液へラダ2と蒸気ヘッダ3との間に鉛直に、かつ並列に
任意数設置された熱変換板で、これらの熱交換板9によ
シ媒体液6の流通する媒体液流路11および加熱流体1
2の流通する加熱流体流路15が交互に任意数形成され
ている。
4 and 5, 2 is a liquid header to which a liquid pipe 5 for introducing the working medium liquid 6 is attached, and 3 is a liquid header having a medium vapor 8.
A steam header is attached with a steam pipe 7 for deriving the water, and 9 is a heat exchange plate installed in any number vertically and in parallel between the liquid ladder 2 and the steam header 3. A medium liquid channel 11 through which a medium liquid 6 flows and a heating fluid 1
An arbitrary number of two circulating heating fluid channels 15 are formed alternately.

上記熱交換板9は第6図に示すように、鉛直方向に一定
ピツチPの波形、すなわち上向き傾斜部9aと下向き傾
斜部9bを交互に連設して形成されている。これらの熱
交換板9のうち相対向するものを下端で結合板10を介
して一体に結合することにより、拡大部11aと縮小部
11bが交互に連設され、かつ上端および下端をそれぞ
れ開口および閉塞した媒体液流路11が形成されると共
に、縮小部15aと拡大部15bが交互に連設され、か
つ上・下端をそれぞれ開放した加熱流体流路15が形成
されている。
As shown in FIG. 6, the heat exchange plate 9 is formed in a waveform with a constant pitch P in the vertical direction, that is, upwardly inclined portions 9a and downwardly inclined portions 9b are alternately arranged in series. By joining the opposing heat exchange plates 9 together at the lower ends via the coupling plate 10, the enlarged parts 11a and the reduced parts 11b are arranged in succession alternately, and the upper and lower ends are respectively opened and closed. A closed medium liquid flow path 11 is formed, and a heating fluid flow path 15 is formed in which contracted portions 15a and enlarged portions 15b are alternately arranged and open at the upper and lower ends.

上記媒体液流路11には、第5図に示すようにとい16
が適宜間隔を保って任意数(図では5個)並設さδると
共に、底部に蒸気泡18を含有する自由液面19を有す
る媒体液を収納する液だめ17が設けられている。また
前記上向き傾斜部9aの内表面、すなわち媒体液流路1
1の内壁面には、第7図に示すように断面の相当直径1
■以下の空洞12が多数設けられておシ、これらの空洞
12は開孔13を介して媒体液流路11内の液膜流22
に連通されている。一方、下向き傾斜部9bの内表面に
は、毛細管力によりllI記内表内表面膜22を付着さ
せる作用を有する微細な溝14が任意数設けられている
The medium liquid flow path 11 has a groove 16 as shown in FIG.
An arbitrary number (5 in the figure) of .delta. are arranged in parallel at appropriate intervals, and a liquid reservoir 17 for storing a medium liquid having a free liquid surface 19 containing vapor bubbles 18 at the bottom is provided. In addition, the inner surface of the upwardly inclined portion 9a, that is, the medium liquid flow path 1
1 has an equivalent cross-sectional diameter of 1 as shown in FIG.
■ A large number of cavities 12 are provided as shown below.
is communicated with. On the other hand, an arbitrary number of fine grooves 14 are provided on the inner surface of the downwardly inclined portion 9b and have the function of adhering the inner surface film 22 by capillary force.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

媒体液6は液配管5によυ液ヘッダ2内に流入され、し
かもそのヘッダ2の内部に自由液面20を定位置に保つ
のに十分な流量で流通する。そして各とい16にそれぞ
れ流入する媒体液21はヘッダ2壁のとい連結口におけ
る液流の流路断面積と液ヘッダ2の自由液面20からの
距離に比例する液圧ヘッドから決まる流量で流れる。前
記とい16に流入した媒体液は、とい16と熱交換板9
との間の隙間から液膜流22と表って媒体液流路11を
形成する両熱交換板9の波状面に沿って流下しながら蒸
発して蒸気8を発生する。この蒸気8は蒸気へラダ3に
向って流れ、その蒸気ヘッダ4に集められた蒸気8は配
管7を経て流出する。
The liquid medium 6 flows into the v liquid header 2 by means of liquid piping 5 and flows within the header 2 at a flow rate sufficient to maintain the free liquid level 20 in place. The medium liquid 21 flowing into each gutter 16 flows at a flow rate determined by the liquid flow path cross-sectional area at the gutter connection port on the wall of the header 2 and the hydraulic head which is proportional to the distance from the free liquid surface 20 of the liquid header 2. . The medium liquid that has flowed into the gutter 16 passes through the gutter 16 and the heat exchange plate 9.
A liquid film flow 22 appears from the gap between the medium and liquid, and evaporates while flowing down along the corrugated surfaces of both heat exchange plates 9 forming the medium liquid flow path 11 to generate steam 8. This steam 8 flows toward the steam rudder 3 , and the steam 8 collected in the steam header 4 flows out via the pipe 7 .

一方、温水12は相隣る熱交換板9によシ形成された加
熱流体流路15の底部開口15Cから流入し、その流路
15の縮小部15aと拡大部15bを交互に流通するの
で、水流の乱nと縮小部15aにおける加速流により、
温水12から熱交換板9へ熱が高い熱伝達率で伝達され
る。この伝達された熱は媒体液流路11内の液膜流22
を蒸発させる。前記水の乱れのために流下する液膜流2
2から剥+aされた液滴および温水12の非定常温度低
下のために完全に蒸発しなかった液は、媒体液流路11
の底部の液だめ17にたまって自由液面19を形成する
On the other hand, the hot water 12 flows in from the bottom opening 15C of the heated fluid flow path 15 formed by the adjacent heat exchange plates 9, and flows alternately through the contracted portion 15a and enlarged portion 15b of the flow path 15. Due to the turbulence n of the water flow and the accelerated flow in the contraction part 15a,
Heat is transferred from the hot water 12 to the heat exchange plate 9 at a high heat transfer coefficient. This transferred heat is transferred to the liquid film flow 22 in the medium liquid flow path 11.
evaporate. Liquid film flow 2 flowing down due to the turbulence of the water
The liquid droplets peeled off from the medium liquid flow path 11 and the liquid that has not completely evaporated due to the unsteady temperature drop of the hot water 12
The liquid accumulates in a liquid reservoir 17 at the bottom of the liquid, forming a free liquid level 19.

ところが熱交換板9の蒸発伝熱面(上向き傾斜面)9.
lは核沸騰熱伝達に有効な多孔面に構成されていまため
、液だめ17に接する伝熱面9aから活発に気泡18を
発生するから高い熱伝達率をうろことができる。
However, the evaporative heat transfer surface (upward inclined surface) 9 of the heat exchange plate 9.
Since the porous surface 1 is configured to be effective for nucleate boiling heat transfer, bubbles 18 are actively generated from the heat transfer surface 9a in contact with the liquid reservoir 17, so that a high heat transfer coefficient can be achieved.

すなわち任意の開孔13からの蒸気の噴出によ〕、その
空洞12から脱出する蒸気質量を補足するために、他の
開孔13から液が空洞1.2内に浸入する。この浸入液
は、空洞12の壁面が僅かな温度差のもとに加熱されて
いると、短時間に蒸発して蒸気を発生し、この蒸気は再
び前記開孔よシ噴出される。液膜22が厚い場合には、
蒸気は気泡18となって液膜22を横切って液膜表面に
達するが、逆に液膜22が薄い場合には、気泡形状とな
らずに液膜22!排除して蒸気の離脱が行われる。この
場合、熱交換板9と液膜流22の媒体液との温度差がI
C以下の場合でも活発に蒸気を発生するので、多孔伝熱
面の熱伝達率は通常の平滑面の熱伝達率の約10倍とな
る。
That is, by the ejection of steam from any aperture 13, liquid enters the cavity 1.2 from other apertures 13 in order to supplement the steam mass escaping from that cavity 12. When the wall surface of the cavity 12 is heated with a slight temperature difference, this infiltrated liquid evaporates in a short time to generate steam, which is again jetted out through the opening. When the liquid film 22 is thick,
The vapor crosses the liquid film 22 in the form of bubbles 18 and reaches the surface of the liquid film, but if the liquid film 22 is thin, the liquid film 22 does not form a bubble shape. Evacuation of steam takes place. In this case, the temperature difference between the heat exchange plate 9 and the medium liquid of the liquid film flow 22 is I
Since steam is actively generated even when the temperature is below C, the heat transfer coefficient of the porous heat transfer surface is about 10 times that of a normal smooth surface.

上記熱交換板9からの蒸気発生が活発であると、液膜流
22の乱れが大きくなシ、液膜が伝熱面から剥離する恐
れがある。この剥離を防止するため、第7図に示すよう
に熱交換板9に設けた上向き傾斜部9aの傾斜角をβと
すると、このβは次の条件を満足するように設定される
If steam generation from the heat exchange plate 9 is active, the turbulence of the liquid film flow 22 will be large, and there is a risk that the liquid film will peel off from the heat transfer surface. In order to prevent this peeling, let β be the inclination angle of the upwardly inclined portion 9a provided on the heat exchange plate 9 as shown in FIG. 7, and this β is set so as to satisfy the following condition.

β>5in−’ (”  ’h ) gρvhfg 4は熱流束(W/cn1” )、gは重力加速度(Cr
n/S2)、ρは蒸気密度(g/crr1”)、ht、
は蒸発潜熱(J/g )、f、は発泡頻度(S−1)で
、フレオン系媒体(R−11)を蒸発させ、q;IW/
cIr1!の場合にはβ、;:5.4@ となる。
β>5in-'(''h) gρvhfg 4 is heat flux (W/cn1''), g is gravitational acceleration (Cr
n/S2), ρ is the vapor density (g/crr1”), ht,
is the latent heat of vaporization (J/g), f is the foaming frequency (S-1), Freon medium (R-11) is evaporated, q; IW/
cIr1! In the case of , β, ;:5.4@.

また下向き傾斜面9bの壽14は毛細管力によシ液膜流
22を重力に対して保持するために設けたもので、この
1s14の幅Wmは下記のように設定される。
Further, the width Wm of the downwardly inclined surface 9b is provided to hold the liquid film flow 22 against gravity by capillary force, and the width Wm of this 1s14 is set as follows.

3 W=(4σ/p、II) σは流体の表面張力(’yne/cm )、Pz は密
度(g/cW1”)で、フレオン系媒体(R,−11)
の場合はVV−0,4cn4となる。
3 W = (4σ/p, II) σ is the surface tension of the fluid ('yne/cm), Pz is the density (g/cW1''), and Freon medium (R, -11)
In this case, it becomes VV-0,4cn4.

媒体液の流量が多量で、例えばフレオン媒体(R−11
)の液膜厚さが4mを超える場合には、上記の?うな方
法では液膜の保持が困難である。
The flow rate of the medium liquid is large, for example, Freon medium (R-11
) If the liquid film thickness exceeds 4 m, the above ? With this method, it is difficult to maintain a liquid film.

この難点を解消するために、第8図に示すように媒体液
流路11倉形成する相対向する熱交換板9゜9間に、ガ
イド(半円管)25を熱交換板9の下向き傾斜部9bに
対向するように設置し、その下向き傾斜部9bとガイド
25との間に媒体液膜流流路26を形成すればよい。前
記下層き傾斜部・・9bにも上向き傾斜面9aと同様に
多孔面、すなわち開孔13に連通する空洞12を設けれ
ばよ)一層有効である。
In order to solve this problem, as shown in FIG. The medium liquid film flow path 26 may be formed between the downwardly inclined portion 9b and the guide 25 by installing the guide 25 so as to face the portion 9b. It would be even more effective if the lower sloped portion .

以上説明したように本発明によれば、単位容積当シの伝
熱面積を増大させ、しかも発生した蒸気の流動に対する
抵抗を小さくすることができる。
As explained above, according to the present invention, it is possible to increase the heat transfer area per unit volume and to reduce the resistance to the flow of generated steam.

また作動媒体液流路内を流下する液膜の厚さに関係なく
高熱伝達率を維持することができるので、液流量の変動
による熱交換性能の低下を防止することができる。さら
に加熱流体流路の伝熱面の熱伝達率を向上させることに
よシ、容積が小さく、しかも加熱流体の温度と媒体の温
度との差が小さい場合でも多量の蒸気を発生させること
が可能である。
Furthermore, since a high heat transfer coefficient can be maintained regardless of the thickness of the liquid film flowing down the working medium liquid flow path, it is possible to prevent a decrease in heat exchange performance due to fluctuations in the liquid flow rate. Furthermore, by improving the heat transfer coefficient of the heat transfer surface of the heating fluid flow path, it is possible to generate a large amount of steam even when the volume is small and the difference between the temperature of the heating fluid and the temperature of the medium is small. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の蒸発器の斜視図、第2図は従来の他の蒸
発器における管群の断面図、第3図は従来のさらに他の
蒸発器における熱交換管の斜視図、第4図は本発明に係
わる蒸発器の一実施例を示す斜視図、第5図は第4図の
媒体液流路における縦断面図、第6図は第4図に示す実
施例の要部(第5図における最下部近傍)断面斜視図、
第7図は同実施例の熱交換板の要部の断面斜視図、第8
図は本発明に係わる他の実施例の熱交換板の要部の断面
斜視図である。 2・・・媒体液ヘッダ、3・・・媒体蒸気ヘッダ、9・
・・熱交換板、9a・・・上向き傾斜部、9b・・・下
向き傾斜部、11−・・媒体液流路、12・・・空洞、
14・・・溝、25・・・ガイド、26・・・液膜流流
路。 FJ  4  目 ↑ 67′I 65図 ↑ 7i ¥rg   図 1!; 万 7  図
FIG. 1 is a perspective view of a conventional evaporator, FIG. 2 is a sectional view of a tube group in another conventional evaporator, FIG. 3 is a perspective view of heat exchange tubes in yet another conventional evaporator, and FIG. The figure is a perspective view showing one embodiment of the evaporator according to the present invention, FIG. 5 is a vertical cross-sectional view of the medium liquid flow path in FIG. 4, and FIG. Near the bottom in Figure 5) cross-sectional perspective view,
FIG. 7 is a cross-sectional perspective view of the main part of the heat exchange plate of the same example, and FIG.
The figure is a cross-sectional perspective view of a main part of a heat exchange plate according to another embodiment of the present invention. 2... Medium liquid header, 3... Medium vapor header, 9...
...Heat exchange plate, 9a...Upward inclined part, 9b...Downward inclined part, 11-...Medium liquid channel, 12...Cavity,
14...Groove, 25...Guide, 26...Liquid film flow channel. FJ 4th ↑ 67'I 65 Figure ↑ 7i ¥rg Figure 1! ; 7,000 figures

Claims (1)

【特許請求の範囲】[Claims] 1、作動媒体液のヘッダと作動媒体蒸気のヘッダとの間
に、鉛直方向に一定ピッチの波形を有するように形成し
た熱交換板を鉛直に、かつ並列に設置して媒体液流路と
加熱流体流路を交互に形成し、前記熱交換板は、その上
向き傾斜部の媒体液流路側表面に多数の空洞とこれら空
洞と媒体液流路とを連通する多数の開孔とを設けその下
向暑傾斜部の媒体液流路側表面に多数の溝を設けたこと
を特徴とする蒸発器。・2、媒体液流路内に熱交換板の
下向き傾斜部と適宜間隔を保ってガイドを設け、このガ
イドと前記下向き傾斜部との間に媒体液膜流を保持する
流路を形成したことを特徴とする特許請求の範囲第1項
記載の蒸発器。
1. Between the working medium liquid header and the working medium vapor header, a heat exchange plate formed to have a waveform with a constant pitch in the vertical direction is installed vertically and in parallel to connect the medium liquid flow path and heating. Fluid channels are formed alternately, and the heat exchange plate has a large number of cavities on the surface of the upwardly inclined portion facing the medium liquid channel, and a large number of openings that communicate these cavities with the medium liquid channel, and a plurality of holes below the holes. An evaporator characterized in that a large number of grooves are provided on the surface of the heat-protecting slope on the medium liquid flow path side.・2. A guide is provided in the medium liquid flow path at an appropriate distance from the downwardly inclined part of the heat exchange plate, and a flow path for retaining the medium liquid film flow is formed between this guide and the downwardly inclined part. An evaporator according to claim 1, characterized in that:
JP11504781A 1981-07-24 1981-07-24 Evaporator Granted JPS5818095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11504781A JPS5818095A (en) 1981-07-24 1981-07-24 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11504781A JPS5818095A (en) 1981-07-24 1981-07-24 Evaporator

Publications (2)

Publication Number Publication Date
JPS5818095A true JPS5818095A (en) 1983-02-02
JPH0128316B2 JPH0128316B2 (en) 1989-06-01

Family

ID=14652863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11504781A Granted JPS5818095A (en) 1981-07-24 1981-07-24 Evaporator

Country Status (1)

Country Link
JP (1) JPS5818095A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180884A (en) * 1985-02-05 1986-08-13 Toshiba Corp Outside horizontal tube flowing down liquid membrane type evaporator and ebullition promoting heat transfer tube
JP2014185779A (en) * 2013-03-21 2014-10-02 Toyota Central R&D Labs Inc Heat exchanger and absorption heat pump
JP2014211290A (en) * 2013-04-19 2014-11-13 株式会社豊田中央研究所 Heat exchanger and adsorption heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180884A (en) * 1985-02-05 1986-08-13 Toshiba Corp Outside horizontal tube flowing down liquid membrane type evaporator and ebullition promoting heat transfer tube
JPH0346758B2 (en) * 1985-02-05 1991-07-17 Tokyo Shibaura Electric Co
JP2014185779A (en) * 2013-03-21 2014-10-02 Toyota Central R&D Labs Inc Heat exchanger and absorption heat pump
JP2014211290A (en) * 2013-04-19 2014-11-13 株式会社豊田中央研究所 Heat exchanger and adsorption heat pump

Also Published As

Publication number Publication date
JPH0128316B2 (en) 1989-06-01

Similar Documents

Publication Publication Date Title
US4745965A (en) Separate type heat exchanger
JPS5993181A (en) Liquid film vaporization type heat exchanger
JPS58205084A (en) Thin film evaporating type heat exchanger
HU180147B (en) Heat exchanger
TW434395B (en) Heat exchanger
JPH0454879B2 (en)
JP2000179989A (en) Sprinkler of absorption water cooler/heater
EP0647823B1 (en) Heat pipe and gas-liquid contacting apparatus capable of heat exchange using the heat pipes and heat exchanger of gas-liquid contacting plate type
JPS5818095A (en) Evaporator
US4372126A (en) Closed cycle system for generating usable energy from waste heat sources
US20210394080A1 (en) Evaporators, condensers and systems for separation
JPS5818094A (en) Evaporator
CN210741197U (en) Heat exchanger based on heat superconducting heat exchange plate
SU1035398A1 (en) Plate-type heat exchanger
JPS63267877A (en) Condensing evaporator
JP2845566B2 (en) Heat exchanger
CN111278255A (en) Phase change heat storage device based on condensation heat transfer and key parameter determination method thereof
JPS63143486A (en) Condensation evaporator
CN218545333U (en) Condenser
JPS6215653Y2 (en)
JPH03213998A (en) Apparatus for heat transfer
SU1740948A1 (en) Heat exchanger
RU2071020C1 (en) Heat exchanger
RU2037121C1 (en) Heat exchanger
JPH0539351Y2 (en)