JPS63143486A - Condensation evaporator - Google Patents

Condensation evaporator

Info

Publication number
JPS63143486A
JPS63143486A JP61291190A JP29119086A JPS63143486A JP S63143486 A JPS63143486 A JP S63143486A JP 61291190 A JP61291190 A JP 61291190A JP 29119086 A JP29119086 A JP 29119086A JP S63143486 A JPS63143486 A JP S63143486A
Authority
JP
Japan
Prior art keywords
liquid
oxygen
gas
condensing evaporator
liquid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61291190A
Other languages
Japanese (ja)
Other versions
JPH0788924B2 (en
Inventor
Ikuo Fujita
幾雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP61291190A priority Critical patent/JPH0788924B2/en
Publication of JPS63143486A publication Critical patent/JPS63143486A/en
Publication of JPH0788924B2 publication Critical patent/JPH0788924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0033Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cryogenic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To decrease a liquid pressure caused by a liquid depth of a liquid medium on an evaporation side, eliminate an increase of temperature and perform an efficient heat exchange operation by a method wherein some thermal transmitting plates are arranged at upper and lower multi-stages in a first fluid passage, liquid receiving ports are arranged alternately at upper and lower stages at one end of the thermal transmitting plates to form a reversing passage and the liquid medium is made to flow down to the reversing flow passage. CONSTITUTION:Liquid oxygen LO guided to a liquid accumulator box 25 through a feeding pipe 38 and made to flow from an inlet port 29 into an oxygen chamber 23 flows in a horizontal passage 33 formed by thermal transmitting plates 28, and during this flow, the liquid oxygen is subjected to heat exchange with nitrogen gas GN flowing in an adjacent nitrogen chamber 24 through a thermal transmitting plate 28 and a partition plate 22, to be partly evaporated and becomes bubbles of oxygen gas GO. Bubbles of oxygen gas GO are separated from the liquid oxygen LO at the end of the thermal transmitting plates 28, lifted up in an inclined direction along a gas discharging passage 36, reached to a gas collecting passage 39, passed through a gas outlet 40 and discharged out of a condensation evaporator 20. The liquid oxygen LO may reverse a flow direction by means of a reflecting plate 34 of liquid receiving port 35, flow downwardly to a lower stage flow passage 33 while being subjected to heat exchange and then flowed out from the exit port for the excessive liquid oxygen LO not evaporated. It is possible to utilize the thermal transmitting area as much as possible, to improve an efficiency of the condensation evaporator 20 and consequently increase of liquid temperature caused by a liquid pressure at a liquid depth is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は凝縮蒸発器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a condenser evaporator.

〔従来の技術〕[Conventional technology]

第11図は、空気分離用の複式精溜塔に用いられた従来
の凝縮蒸発器を示すもので、凝縮蒸発器1は、隔壁2に
よって仕切られた上部塔3の底部空間4の液体酸素LO
中に浸漬されている。
FIG. 11 shows a conventional condensing evaporator used in a double rectification column for air separation.
immersed in it.

この凝縮蒸発器1は多数の垂直方向平行な仕切板により
仕切られ、酸素室と窒素室の二重を交互に隣接して積層
されているもので、酸素室は凝縮蒸発器1の上下端部で
解放され、上部塔3の上方より流下する液体酸素LOで
満たされている。
This condensing evaporator 1 is partitioned by a large number of vertically parallel partition plates, and has double oxygen chambers and nitrogen chambers stacked alternately adjacent to each other. The upper column 3 is filled with liquid oxygen LO which is released and flows down from above the upper column 3.

窒素室と液体酸素LOとは気密に隔てられており、下部
塔5の頂部から連接管6を通って窒素室へ導入された窒
素ガスGNは、隣室の液体酸素L○と熱交換して液体酸
素LOを蒸発させると同時に窒素ガスGNは凝縮液化し
て液体窒素しNとなり、凝縮蒸発器1の底部へと流下し
、連接管7を通って下部塔5の液溜8に至り、管9から
導出され、一部は下部塔5の環流液りとなる。
The nitrogen chamber and liquid oxygen LO are airtightly separated, and the nitrogen gas GN introduced into the nitrogen chamber from the top of the lower column 5 through the connecting pipe 6 exchanges heat with the liquid oxygen L○ in the adjacent chamber and becomes liquid. At the same time as the oxygen LO is evaporated, the nitrogen gas GN is condensed and liquefied into liquid nitrogen to become N, flows down to the bottom of the condensing evaporator 1, passes through the connecting pipe 7, reaches the liquid reservoir 8 of the lower column 5, and then passes through the pipe 9. A part of it becomes the reflux liquid in the lower column 5.

蒸発した酸素ガスGoは、一部製量として配管10より
塔外へ導出され、その他のガスは上部塔3の上昇ガスと
なる。
A portion of the evaporated oxygen gas Go is led out of the tower via piping 10, and the remaining gas becomes gas rising in the upper tower 3.

この空気弁1llli装置の動力は、原料空気を圧縮し
て前記下部塔5の圧力を昇圧することにほとんど消費さ
れており、下部塔5をより低圧で運転するほど動力費が
削減されろ。下部塔5の圧力は飽和窒素ガスGNtfi
凝縮蒸発器1で凝縮する温度を決定しおり、下部塔5の
運転圧力を下げるためには窒素ガスGNの凝縮温度を下
げねばならず、この凝縮温度を下げるためには液体酸素
LOの温度を下げる必要がある。
The power of this air valve 1lli device is mostly consumed in compressing the raw air and increasing the pressure of the lower column 5, and the lower the pressure of the lower column 5 is operated, the lower the power cost will be. The pressure in the lower column 5 is saturated nitrogen gas GNtfi
The condensation temperature in the condensing evaporator 1 is determined, and in order to lower the operating pressure of the lower column 5, the condensation temperature of nitrogen gas GN must be lowered, and in order to lower this condensation temperature, the temperature of liquid oxygen LO must be lowered. There is a need.

〔発明が解決しようとする問題点〕 しかしながら、上述の凝縮蒸発器は、液体酸素に浸漬さ
れているため、液体酸素の液深による温度差(約1℃/
m)を便じ、凝縮蒸発器の下部は上部よりも温度が高く
、その分窒素凝縮温度との温度差を縮めている。
[Problems to be solved by the invention] However, since the above-mentioned condensing evaporator is immersed in liquid oxygen, there is a temperature difference (approximately 1°C/
Considering m), the lower part of the condensing evaporator has a higher temperature than the upper part, which reduces the temperature difference with the nitrogen condensing temperature.

凝縮蒸発器の窒素側と酸素側との温度差は通常1〜2℃
で計画されているので、上記液体酸素の温度上昇は、凝
縮蒸発器の性能上大きな問題となっている。即ち、下部
塔を5Kgf/ctiGで運転するためには、凝縮蒸発
器高さを約2m迄にしないと適正な凝縮蒸発器能力を発
揮できず、伝熱面積を増して能力を上げるために凝縮蒸
発器高さを高くとると、液体′fli索の液深を増加さ
せて下部塔運転圧力を更に高めないとならない。
The temperature difference between the nitrogen side and oxygen side of the condenser evaporator is usually 1 to 2 degrees Celsius.
Therefore, the temperature rise of the liquid oxygen is a major problem in terms of the performance of the condenser evaporator. In other words, in order to operate the lower column at 5 Kgf/ctiG, the condenser evaporator height must be increased to approximately 2 m to achieve proper condenser evaporator capacity. If the height of the evaporator is increased, the depth of the liquid layer must be increased to further increase the operating pressure in the lower column.

さらに、凝縮蒸発器を設置している上部塔底部には凝縮
蒸発器どの間に大きな空間が有り、この空間にも液体酸
素を溜めなければ凝縮蒸発器の能力を十分に発揮できな
い。
Furthermore, there is a large space between the condensing evaporators at the bottom of the upper column where the condensing evaporator is installed, and unless liquid oxygen is stored in this space, the condensing evaporator cannot fully demonstrate its capacity.

そのために、凝縮蒸発器が液体酸素中に浸漬するまでは
下部塔還流液となる凝縮液も、また液体酸素の蒸発によ
る上部塔上背ガスも発生しないから精留作用が開始され
ない。即ち、液体酸素が凝縮蒸発器を浸漬するに要する
時間は精留作用開始までの無駄な持ち時間(起動時間)
となり、この間は原料空気圧縮機の動ノ〕費の損失とな
る。
Therefore, until the condensing evaporator is immersed in liquid oxygen, neither the condensate that becomes the reflux liquid in the lower column nor the back gas in the upper column due to the evaporation of liquid oxygen is generated, so that the rectification action does not start. In other words, the time required for liquid oxygen to immerse the condensing evaporator is wasted time until the rectification process starts (start-up time).
During this period, there will be a loss in operating costs for the raw air compressor.

本発明は、蒸発側の液媒の液深による液圧を減少して液
温上昇をなくし、効率良く熱交換のできる凝縮蒸発器を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a condensing evaporator that can efficiently exchange heat by reducing the liquid pressure due to the depth of the liquid medium on the evaporation side, thereby eliminating a rise in liquid temperature.

〔問題点を解決するための手段〕[Means for solving problems]

上記した目的を達成するために本発明は多数の垂直な仕
切板により第一流体通路と第二流体通路とを交互に形成
し、該第一流体通路の液媒と、前記第二流体通路の流体
とで熱交換を行なう凝縮蒸発器において、前記第一流体
通路に上下多段に伝熱板を配置して、該伝熱板の一端に
上下段交互に液受口を設けて反転流路を形成し、該反転
流路に液媒を流下させたことを特徴としている。
In order to achieve the above object, the present invention alternately forms a first fluid passage and a second fluid passage by a plurality of vertical partition plates, and the liquid medium in the first fluid passage and the liquid medium in the second fluid passage are In a condensing evaporator that exchanges heat with a fluid, heat transfer plates are arranged in multiple stages above and below in the first fluid passage, and liquid sockets are provided alternately in the upper and lower stages at one end of the heat transfer plates to form a reversal flow path. The invention is characterized in that the liquid medium is caused to flow down into the reverse flow path.

〔作 用〕[For production]

前記反転流路に液媒を流下させるので液深による液温上
昇がなく、また反転流路により十分な伝熱面積が得られ
て凝縮蒸発器の効率の向上を図れる。
Since the liquid medium is caused to flow down the reverse flow path, there is no increase in liquid temperature due to the depth of the liquid, and the reverse flow path provides a sufficient heat transfer area, thereby improving the efficiency of the condenser-evaporator.

〔実施例〕〔Example〕

以下、本発明を、蒸発する液媒を酸素、凝縮する流体を
窒素とした例につき、第1図乃至第10図に基づいて説
明する。
The present invention will be described below with reference to FIGS. 1 to 10, using an example in which the liquid medium to be evaporated is oxygen and the fluid to be condensed is nitrogen.

第1図は本発明の凝縮蒸発器の全体斜視図であり、第−
流8体通路である酸素室と第二流体通路である窒素室の
内部構造を一部切欠いて図示しである。第2図は酸素室
の、第3図は窒素室の各断面図、第4図は酸素室の伝熱
板の要部を示す斜視図であり、液の流れ方向を実線矢印
、ガスの流れ方向を破線矢印で示す。
FIG. 1 is an overall perspective view of the condensing evaporator of the present invention, and FIG.
The internal structures of the oxygen chamber, which is a fluid passageway, and the nitrogen chamber, which is a second fluid passageway, are partially cut away and illustrated. Figure 2 is a cross-sectional view of the oxygen chamber, Figure 3 is a cross-sectional view of the nitrogen chamber, and Figure 4 is a perspective view showing the main parts of the heat exchanger plate in the oxygen chamber. Directions are indicated by dashed arrows.

凝縮蒸発Z20は、両側部をサイドパー21により接合
された垂直方向平行な仕切板22を多数設けて酸素室(
第一流体通路)23と窒素室(第二流体通路)24とを
交互に多数積層して形成されており、酸素室23に上方
から液体酸素L○を流下して、窒素室24を流れる窒素
ガスGNと熱交換を行なうものであり、上部には液溜箱
25が配設されている。
The condensation evaporator Z20 is constructed by providing a large number of vertically parallel partition plates 22 whose both sides are joined by side pars 21 to form an oxygen chamber (
It is formed by alternately stacking a large number of first fluid passages) 23 and nitrogen chambers (second fluid passages) 24, and liquid oxygen L○ flows down into the oxygen chamber 23 from above, and nitrogen flows through the nitrogen chamber 24. It exchanges heat with gas GN, and a liquid storage box 25 is disposed at the top.

酸素室23は、仕切板22とその両側のサイドパ−21
及び上下端部に配置したサイドパー26゜27とにより
形成され、その内部に伝熱板28を上下多段に水平に配
置しているもので、上部の1少イドバー26には前記液
溜箱25と連通ずる流入口29が設けられており、下部
のサイドパー27には流出口30が設けられている。
The oxygen chamber 23 consists of a partition plate 22 and side panels 21 on both sides thereof.
and side pars 26 and 27 arranged at the upper and lower ends, and heat transfer plates 28 are arranged horizontally in multiple stages in the upper and lower parts. A communicating inlet 29 is provided, and an outlet 30 is provided in the lower side par 27.

伝熱板28は、波形伝熱フィンの折り曲げ線31を水平
方向にして垂直に配置しているもので、この水平面32
間を液媒の流路33とし、水平面32の一端を上下交互
に延出して、この延出郡全体又は一部を斜め上方へ折り
曲げて反転板34を形成して液受口35とし、前記流路
33を各上下段で流れ方向を反転させている。さらに上
下の反転板34間の空間を酸素ガスGoのガス放出路3
6として構成し、垂直面37をろう付専により仕切板2
2に接合される。
The heat transfer plate 28 is arranged vertically with the bending line 31 of the wave-shaped heat transfer fins in the horizontal direction, and the horizontal plane 32
A channel 33 for the liquid medium is formed between the two, one end of the horizontal surface 32 is extended vertically alternately, and the whole or a part of this extension group is bent obliquely upward to form an inversion plate 34 to form a liquid receiving port 35. The flow direction of the flow path 33 is reversed in each upper and lower stage. Furthermore, the space between the upper and lower inversion plates 34 is used as a gas discharge path 3 for oxygen gas Go.
6, and the vertical surface 37 is soldered to the partition plate 2.
2.

液溜箱25へ導入管38を通して導かれ、流入口29か
ら酸素室23に流入した液体酸素LOは、伝熱板28に
よって形成された水平な流路33を流れながら、伝熱板
28及び仕切板22を介して隣室の窒素室24を流れる
窒素ガスGNと熱交換してその一部が蒸発し、酸素ガス
GOの気泡となる。
Liquid oxygen LO is introduced into the liquid storage box 25 through the introduction pipe 38 and flows into the oxygen chamber 23 from the inlet port 29. The liquid oxygen LO flows through the horizontal channel 33 formed by the heat exchanger plate 28 and passes through the heat exchanger plate 28 and the partition. It exchanges heat with the nitrogen gas GN flowing through the nitrogen chamber 24 in the adjacent room via the plate 22, and a part of it evaporates, becoming bubbles of oxygen gas GO.

酸素ガスGoの気泡は液体酸素LOの流れによって同方
向へ流れた後、伝熱板28の端部で液体酸素L○と分離
し、前記ガス放出路36を斜上方に上昇してガス集合路
39に至り、各段で蒸発した酸素ガスと集合され上昇し
、ガス出口40を通って凝縮蒸発器20を出る。
After the bubbles of oxygen gas Go flow in the same direction as the flow of liquid oxygen LO, they are separated from the liquid oxygen L○ at the end of the heat exchanger plate 28, rise obliquely upward in the gas discharge path 36, and enter the gas collection path. 39, it collects with the oxygen gas vaporized at each stage, rises, and exits the condensing evaporator 20 through the gas outlet 40.

液体酸素LOは液受口35の反転板34によって流れ方
向を反転し、順次下段の流路33へと熱交換しながら流
れ、蒸発しない過剰な液体酸素し0は流出口30より流
出する。
The flow direction of the liquid oxygen LO is reversed by the reversing plate 34 of the liquid receiving port 35, and it sequentially flows to the lower channel 33 while exchanging heat, and the excess liquid oxygen that does not evaporate flows out from the outlet 30.

このように、各上下段で液の流れ方向を反転させ、液の
流れを水平方向多段としたので、垂直方向に流した場合
のように重力で急速に流下することはなく、伝熱面積を
最大限に活用でき、凝縮蒸発器20の効率を向上させる
In this way, the flow direction of the liquid is reversed in each upper and lower stage, and the flow of the liquid is made horizontal in multiple stages, so it does not flow down rapidly due to gravity as it would when flowing vertically, and the heat transfer area is reduced. The efficiency of the condenser evaporator 20 can be improved.

また、流下する液体酸素LOは、各伝熱板28の流路3
3端で酸素室23の気体側に圧力を開放されるので、従
来の液深の液圧による液温の上昇が無い。
In addition, the flowing liquid oxygen LO flows through the flow path 3 of each heat exchanger plate 28.
Since the pressure is released to the gas side of the oxygen chamber 23 at the third end, there is no increase in liquid temperature due to the liquid pressure at the liquid depth, which is the case in the prior art.

さらに、反転板34により各流路33の端部に酸素ガス
Goのガス放出路36を形成したので、蒸発した酸素ガ
スGoの気泡を液体酸素LOから速やかに分離し、浮上
させることができるため液体酸素しOの流れを妨げるこ
とが無い。
Furthermore, since the gas discharge path 36 of the oxygen gas Go is formed at the end of each flow path 33 by the reversing plate 34, the bubbles of the evaporated oxygen gas Go can be quickly separated from the liquid oxygen LO and floated. Liquid oxygen does not obstruct the flow of O.

第2図左側に示されるガス集合路−39には、前記反転
板34からオーバーフローした過剰な液体酸素LOがほ
とんど熱交換することなく流下するのを防止するため、
ガス集合路39を通って液体酸素LOが流下した場合に
も熱交換できるように有孔板41を配設している。この
有孔板41は左右のガス集合路39の両方に配設しても
よい。
In order to prevent the excess liquid oxygen LO that overflowed from the reversing plate 34 from flowing down without almost any heat exchange, the gas collecting path 39 shown on the left side of FIG.
A perforated plate 41 is provided so that heat can be exchanged even when liquid oxygen LO flows down through the gas collection path 39. This perforated plate 41 may be provided on both the left and right gas collection paths 39.

凝縮蒸発器20への液体酸素LOの流入mは、液溜箱2
5に設けた堰42の取付は高さで液溜箱25内の液深を
調節すること、あるいは流入口29の開口断面積を調節
することにより行い、液溜箱25の流入口29から凝縮
蒸発器20に流入ず゛る以上の余分な液体酸素LOは液
溜箱25の堰42からオーバーフローする。
The inflow m of liquid oxygen LO into the condensing evaporator 20 is the liquid oxygen LO flowing into the liquid storage box 2
The weir 42 provided at 5 is installed by adjusting the depth of the liquid in the liquid storage box 25 by adjusting the height or by adjusting the opening cross-sectional area of the inlet 29. Excess liquid oxygen LO that exceeds the amount that does not flow into the evaporator 20 overflows from the weir 42 of the liquid storage box 25.

一方、酸素室23と気密に仕切られている窒素室24は
、従来の装置と略同様に構成されるもので、仕切板22
と仕切板22両側のサイドパー21及び仕切板22の上
下端部のサイドパー43゜44とによって構成され、上
部側面には窒素ガスGNを導入するための入口ヘッダ−
45と入口配管46を設けている。また下部側面には凝
縮した液体窒素LNを集合するための出口ヘッダ−47
と出口配管48を設けている。
On the other hand, the nitrogen chamber 24, which is airtightly partitioned from the oxygen chamber 23, is constructed in substantially the same manner as the conventional device, with a partition plate 22
and side pars 21 on both sides of the partition plate 22, and side pars 43 and 44 at the upper and lower ends of the partition plate 22, and an inlet header for introducing nitrogen gas GN on the upper side surface.
45 and an inlet pipe 46 are provided. Also, on the lower side, there is an outlet header 47 for collecting condensed liquid nitrogen LN.
and an outlet pipe 48 are provided.

入口ヘッダ−45からサイドパー21の切欠部49を通
って各窒素室24に分配された窒素ガスGNは、分配板
50によって窒素室内に垂直に配置した伝熱板51へ均
一に分配され、隣接する酸素室23の液体酸素LOと熱
交換して凝縮液化しながら流下し、下部の分配板52か
らサイドパー21の切欠部53を通って出口ヘッダ−4
7に集合される。
Nitrogen gas GN distributed from the inlet header 45 to each nitrogen chamber 24 through the notch 49 of the side par 21 is uniformly distributed by the distribution plate 50 to the heat transfer plate 51 disposed vertically within the nitrogen chamber, and the adjacent It exchanges heat with the liquid oxygen LO in the oxygen chamber 23 and flows down while condensing and liquefying, and flows from the lower distribution plate 52 through the notch 53 of the side par 21 to the outlet header 4.
It will be gathered on 7th.

各ヘッダー45.47部分の分配板50.52は窒素室
24内へ窒素ガスGNを均一に分配し、かつ凝縮した液
体窒素L Nが均一に集合する構造としている。
The distribution plates 50, 52 of each header 45, 47 are structured to uniformly distribute the nitrogen gas GN into the nitrogen chamber 24, and to uniformly collect the condensed liquid nitrogen LN.

また、窒素ガスGN中に含まれるヘリウムガス等の不凝
縮ガスは、出口ヘッダ−47に付設されている配管54
から導出される。この配管54は出口ヘッダ−47にの
み取付(プられるとは限らず、入口ヘッダ−45に取付
Cプることもでき、入口と出口の各ヘッダー45.47
両方に取付けることもできる。
In addition, non-condensable gas such as helium gas contained in the nitrogen gas GN is removed from the pipe 54 attached to the outlet header 47.
It is derived from This piping 54 is attached only to the outlet header 47 (not necessarily attached), but can also be attached to the inlet header 45, and each of the inlet and outlet headers 45, 47
It can also be installed on both.

分配板50.52及び伝熱板51としては、一般に有孔
板が使用されているがこれに限るものではなく、また下
部分配板52の構造を中央部に集合するように形成して
、凝縮蒸発器20の下部中央部に出口ヘッダ−47を設
けてもよい。
As the distribution plates 50, 52 and the heat transfer plate 51, perforated plates are generally used, but the present invention is not limited to this, and the structure of the lower distribution plate 52 is formed so as to gather in the center to prevent condensation. An outlet header 47 may be provided at the lower center of the evaporator 20.

ここで、酸素室23と窒素室24との熱交換は、液体酸
素L○が接触している伝熱板28の水平面32と垂直面
37及び仕切板22とを介して行われるが、前述のごと
く上部より液体酸素LOを順次下段へ向けて蒸発させな
がら流下させた場合には、下方の段はど流路33を流れ
る流量が減少してくる。従って、酸素室23を上下のピ
ッチの同じ伝熱板28で構成すると、下方の段の流路3
3上の液高さが減少し、上部はガス相、下部は液相に分
離した状態となり、伝熱板28の垂直面37と仕切板2
2との接触面積がガス相の部分だけ減少して、液相の有
効伝熱接触面積が減少する。
Here, heat exchange between the oxygen chamber 23 and the nitrogen chamber 24 is performed via the horizontal surface 32 and vertical surface 37 of the heat exchanger plate 28 with which the liquid oxygen L○ is in contact, and the partition plate 22. When the liquid oxygen LO is sequentially flowed down from the upper part toward the lower stage while being evaporated, the flow rate flowing through the flow path 33 in the lower stage decreases. Therefore, if the oxygen chamber 23 is composed of upper and lower heat exchanger plates 28 with the same pitch, the flow path 3 of the lower stage
The height of the liquid above 3 decreases, and the upper part becomes a gas phase and the lower part a liquid phase, and the vertical surface 37 of the heat transfer plate 28 and the partition plate 2
The contact area with 2 is reduced by the gas phase portion, and the effective heat transfer contact area of the liquid phase is reduced.

そのため、伝熱板28のピッチを同一としないで、下方
の伝熱板28のピッチを上方のピッチより細かくして、
流路33が液で満たされるように伝熱板28を構成する
こともできる。またピッチを細かくして、有効伝熱接触
面積の減少を防止する方法の他に、第5図に示すように
、伝熱板28の水平面32の幅方向の両縁に流下口とな
るスリット55を設けて、このスリット55から伝熱板
28の垂直面37及び仕切板22に流路33を流れる液
体酸素t−0の一部を膜状に流下させ、熱交換伝熱面積
を増加させることもできる。
Therefore, instead of making the pitch of the heat exchanger plates 28 the same, the pitch of the lower heat exchanger plates 28 is made finer than the upper pitch,
The heat exchanger plate 28 can also be configured so that the flow path 33 is filled with liquid. In addition to the method of reducing the pitch to prevent a decrease in the effective heat transfer contact area, as shown in FIG. A part of the liquid oxygen t-0 flowing through the channel 33 flows down from the slit 55 to the vertical surface 37 of the heat transfer plate 28 and the partition plate 22 in a film form, thereby increasing the heat exchange heat transfer area. You can also do it.

スリット以外に、狭幅な長方形開口や円形開口等各種形
状の開口が同目的のために使用可能であるが、これらの
開口部からは液のみが流下し、蒸発したガスが上昇しな
いように開口面積を設定する。また上記開口を設は過ぎ
ると仕切板22からの伝熱面積が減少し、伝熱板の水平
面での伝熱量が減少して逆効果となるので、ある間隔お
きに過当数設ける必要がある。
In addition to slits, various shapes of openings such as narrow rectangular openings and circular openings can be used for the same purpose, but these openings are designed so that only the liquid flows down and evaporated gas does not rise up. Set area. Further, if the number of openings is too large, the heat transfer area from the partition plate 22 will decrease, and the amount of heat transferred on the horizontal plane of the heat transfer plate will decrease, resulting in an adverse effect, so it is necessary to provide an excess number at certain intervals.

第6図は、凝縮蒸発器20の上下方向の中間部側面に液
体酸素LOの中間流入口56を設けたものであって、導
入管57を通って側面の液溜ff158に導かれだ液体
酸素L○はサイドパー21に設けられた流入口59から
内部の伝熱板28上に流入する。また、この部分のサイ
ドパー21には蒸発したガスを導出する排気口60 h
<設けられており、熱交換後の蒸発した酸素ガスGoが
排出される。尚、液溜箱58での過剰な液体酸素は堰6
1から流下する。
FIG. 6 shows a configuration in which an intermediate inlet 56 for liquid oxygen LO is provided on the side surface of the intermediate portion in the vertical direction of the condensing evaporator 20, and the liquid oxygen LO is guided through the introduction pipe 57 to the liquid reservoir ff158 on the side surface. L◯ flows from an inlet 59 provided in the side par 21 onto the heat exchanger plate 28 inside. In addition, the side par 21 in this part is equipped with an exhaust port 60 h for discharging the evaporated gas.
The evaporated oxygen gas Go is discharged after heat exchange. In addition, excess liquid oxygen in the liquid storage box 58 is removed from the weir 6.
Flows down from 1.

このような中間流入口56を上下に適当数設けて、伝熱
板28を流下する液体酸素L○の最を補充して熱交換を
効果的に行うことができる。
By providing an appropriate number of intermediate inlets 56 above and below, the liquid oxygen L◯ flowing down the heat transfer plate 28 can be replenished to effectively perform heat exchange.

第7図は前記の凝縮蒸発器20を複式精留塔に設置した
例を示すものであって、凝縮蒸発器20は上部塔70の
底部空間71に収納設置され、酸素室23は上部塔70
の空間に開放されている。
FIG. 7 shows an example in which the above-mentioned condensing evaporator 20 is installed in a double rectification column.
It is open to the space of

上部塔70と下部塔72とは隔板73で仕切られており
、下部塔72頂部と凝縮蒸発器20の窒素室24とは入
口配管46で連接され、窒素ガスGNが凝縮蒸発器20
の窒素室24に入口ヘッダ−45から導入される。窒素
ガスGNは酸素室23の液体酸素LOと熱交換して凝縮
液化し、窒素室24を流下して凝縮蒸発器20の下部か
ら配管48を通って、下部塔72の液溜74に至り、下
部塔72の環流液LNとなるとともに一部は)ツ品液体
窒素LNとして配管75から導出される。また、窒素室
24の不凝縮ガスは配管54から導出される。
The upper column 70 and the lower column 72 are separated by a partition plate 73, and the top of the lower column 72 and the nitrogen chamber 24 of the condensing evaporator 20 are connected through an inlet pipe 46, so that nitrogen gas GN is supplied to the condensing evaporator 20.
The nitrogen gas is introduced into the nitrogen chamber 24 from the inlet header 45. The nitrogen gas GN exchanges heat with the liquid oxygen LO in the oxygen chamber 23 to condense and liquefy, flows down the nitrogen chamber 24, passes through the pipe 48 from the lower part of the condensing evaporator 20, and reaches the liquid reservoir 74 in the lower column 72. It becomes the reflux liquid LN of the lower column 72, and a part of it is led out from the pipe 75 as liquid nitrogen LN. Further, the non-condensable gas in the nitrogen chamber 24 is led out from a pipe 54.

一方、上部塔70の最下段から導入管38を通って、凝
縮蒸発器2o上部の液溜箱25に流入しだ液体酸素LO
は、凝縮蒸発器20の酸素室23を前述のごとく、横方
向に左右交互に反転して流れながら、窒素室24の窒素
ガスGNと熱交換して蒸発し酸素ガスGOとなり、ガス
出口40から流出し、上部塔70の上昇ガスとなると共
に一部は製品酸素ガスGOとして配管76から採取され
る。蒸発しない過剰の液体酸素LOは流出口30から流
出し、隔板73上に溜まり配管77から導出される。
On the other hand, liquid oxygen LO begins to flow from the lowest stage of the upper column 70 through the introduction pipe 38 into the liquid storage box 25 above the condensing evaporator 2o.
As described above, while flowing through the oxygen chamber 23 of the condensing evaporator 20 in an alternating left and right direction in the lateral direction, it exchanges heat with the nitrogen gas GN in the nitrogen chamber 24 and evaporates to become oxygen gas GO, which is then released from the gas outlet 40. The gas flows out and becomes the rising gas in the upper column 70, and a portion is collected from the pipe 76 as product oxygen gas GO. Excess liquid oxygen LO that has not evaporated flows out from the outlet 30, accumulates on the partition plate 73, and is led out from the pipe 77.

導出された液体酸素LOの一部は製品となり、II!!
は液体酸素ポンプ、またはサーモサイフオンリボイラー
によって揚上され、上部の配芒78から再び液溜箱25
に循環される。
A part of the derived liquid oxygen LO becomes a product, and II! !
is lifted up by a liquid oxygen pump or a thermosiphon-only boiler, and is returned to the liquid storage box 25 from the upper distribution 78.
is circulated.

また、液体酸素LOが酸素室23内で完全に蒸発して、
流路33にアチセレンが析出しないように、過剰な液体
酸素LOを流して常時流路33を液体酸素LOで洗うこ
とが好ましく、過剰の液体酸素LOが流下していること
を知るために、隔板73上に溜まっている液体酸素LO
の液面を計測したり、あるいは配管77に流m計を設け
る。
Moreover, the liquid oxygen LO is completely evaporated within the oxygen chamber 23,
In order to prevent aticelene from precipitating in the flow path 33, it is preferable to constantly wash the flow path 33 with liquid oxygen LO by flowing excess liquid oxygen LO. Liquid oxygen LO accumulated on plate 73
or a flowmeter is installed in the piping 77.

第8図は、酸素室を密閉構造とした例を示す断面図であ
って、この酸素室80は酸素ガスGoの出口81及び液
体酸素LOの流入口82と流出口83が密閉された耐圧
構造どなっているもので、内部構造は前記第2図の酸素
室23と同様としている。
FIG. 8 is a sectional view showing an example of an oxygen chamber having a sealed structure, and this oxygen chamber 80 has a pressure-resistant structure in which an outlet 81 for oxygen gas Go and an inlet 82 and an outlet 83 for liquid oxygen LO are sealed. The internal structure is similar to the oxygen chamber 23 shown in FIG. 2 above.

酸素室80の液体酸素LOの流入口82は、液体酸素1
0を溜める空間84を有する上部液溜ヘッダー85に連
通しており、該ヘッダー85には、液体酸素LOを導入
するための導入管86とヘッダー85内で蒸発した酸素
ガスGOを導出するための配管87とが設けられている
The liquid oxygen LO inlet 82 of the oxygen chamber 80 is connected to the liquid oxygen 1
The header 85 is connected to an upper liquid storage header 85 having a space 84 for storing liquid oxygen LO. Piping 87 is provided.

酸素ガス出口81には、ガス出口ヘッダ−88が設けら
れ、酸素室80から蒸発し流出してくる酸素ガスGOを
集合し、配管8つから導出する。
A gas outlet header 88 is provided at the oxygen gas outlet 81 to collect the oxygen gas GO evaporated and flowing out from the oxygen chamber 80 and lead it out from eight pipes.

酸素室80の液体酸素LOの流出口83は、液体酸素L
Oを溜める空間90を有する下部液溜ヘッダー91に連
通しており、該ヘッダー91には液体酸素LOを導出す
るための配管92が設けられている。この下部液溜ヘッ
ダー91は、酸素室80下部の液流出口83に夫々設け
ることもできる。
The liquid oxygen LO outflow port 83 of the oxygen chamber 80 is
It communicates with a lower liquid reservoir header 91 having a space 90 for storing O, and the header 91 is provided with a pipe 92 for extracting liquid oxygen LO. The lower liquid reservoir header 91 can also be provided at each of the liquid outlet ports 83 at the lower part of the oxygen chamber 80.

また第2図と同様にガス集合路39に有孔板41をN設
してもよく、伝熱板28のピッチ舌に関しても前述の酸
素室23と同様である。
Further, as in FIG. 2, a perforated plate 41 may be provided in the gas collecting path 39, and the pitch tongue of the heat exchanger plate 28 is also the same as that of the oxygen chamber 23 described above.

酸素室を密閉構造とした場合でも隣り合う窒素室の構造
は前記第4図に示したものと同様でよい。
Even when the oxygen chamber has a sealed structure, the structure of the adjacent nitrogen chamber may be the same as that shown in FIG. 4 above.

第9図は、上記の密閉構造とした酸素室80を有する凝
縮蒸発器の設置例である。
FIG. 9 shows an installation example of a condensing evaporator having the oxygen chamber 80 having the above-mentioned sealed structure.

凝縮蒸発器100は下部塔101の上部に設置されてa
3す、下部塔101の頂部と凝縮蒸発器100の窒素室
とは配管102で連接され、窒素ガスGNを凝縮蒸発器
100のヘッダー103から窒素室に導入する。
The condensing evaporator 100 is installed in the upper part of the lower column 101.
3. The top of the lower column 101 and the nitrogen chamber of the condenser-evaporator 100 are connected by a pipe 102, and nitrogen gas GN is introduced into the nitrogen chamber from the header 103 of the condenser-evaporator 100.

窒素ガスGNは窒素室内で凝縮液化して凝縮蒸発器10
0下部のヘッダー104から配管105を通って下部塔
101の液W1106に至り配管107から導出される
。また不凝縮ガスは室内に蓄積して凝縮能力を低下させ
るのを防止するため配管108から導出される。
Nitrogen gas GN is condensed and liquefied in the nitrogen chamber and sent to the condensing evaporator 10.
The liquid W1106 in the lower column 101 is reached through the pipe 105 from the header 104 in the lower part of 0, and is led out from the pipe 107. In addition, non-condensable gas is led out from piping 108 to prevent it from accumulating in the room and reducing the condensing capacity.

上部塔で発生した液体酸素LOは配管86から上部液溜
ヘッダー85内に流入し、ヘッダー85内に溜まる。該
ヘッダー85内の液深は一定となるように液面計(図示
せず)で流入量を調節する。
Liquid oxygen LO generated in the upper column flows into the upper liquid reservoir header 85 from the pipe 86 and is accumulated in the header 85. The inflow amount is adjusted using a liquid level gauge (not shown) so that the liquid depth within the header 85 is constant.

該ヘッダー85内の液体酸素LOは、凝縮蒸発器100
内へ導入されて酸素室80内を横方向に左右交互に反転
して流れながら、窒素室の窒素ガスGNと熱交換するこ
とによりその一部が蒸発して酸素ガスGoとなる。残部
の未蒸発の液体酸素LOは下部液溜ヘッダー91に溜ま
り配管92から導出され、一部は上部液溜ヘッダー85
に循環される。この際配管86の代りに循環液の導入用
配管を別途上部液溜ヘッダー85に設けてもよい。
The liquid oxygen LO in the header 85 is transferred to the condenser evaporator 100
While being introduced into the oxygen chamber 80 and flowing in the oxygen chamber 80 while alternating left and right in the lateral direction, it exchanges heat with the nitrogen gas GN in the nitrogen chamber, and a part of it evaporates to become oxygen gas Go. The remaining unevaporated liquid oxygen LO accumulates in the lower liquid reservoir header 91 and is led out from the piping 92, and a portion is transferred to the upper liquid reservoir header 85.
is circulated. At this time, instead of the piping 86, a piping for introducing the circulating fluid may be separately provided in the upper liquid reservoir header 85.

前記第7図の説明で述べたと同様に、過剰液体酸素を3
1測するために、液面計や流量計(図示せず)が設けら
れている。
In the same way as described in the explanation of FIG. 7 above, excess liquid oxygen was
A liquid level gauge and a flow meter (not shown) are provided for one measurement.

酸素室80内で蒸発した酸素ガスGoは、凝縮蒸発器1
00上部に設けたガス出口ヘッダ−88で集合され配管
89から、また液溜ヘッダー85で自然蒸発した酸素ガ
スは配管87から、共に配管109によって導出され、
一部を製品として採取され、池は上部塔底部へと戻され
て上部塔の上昇ガスとなる。この配管86と配管87と
は図のJ:うに連接されてもよいし、別々な配管のまま
としてもJ:い。
The oxygen gas Go evaporated in the oxygen chamber 80 is transferred to the condensing evaporator 1
Oxygen gas collected at the gas outlet header 88 provided on the upper part of the 00 is led out from the piping 89, and oxygen gas naturally evaporated at the liquid reservoir header 85 is led out from the piping 87 through the piping 109.
A portion is extracted as a product and the pond is returned to the bottom of the upper column to become the rising gas of the upper column. The piping 86 and the piping 87 may be connected as shown in the figure, or they may remain separate piping.

第10図は、酸素室の他の実施例を示す断面図である。FIG. 10 is a sectional view showing another embodiment of the oxygen chamber.

酸素室110は、伝熱板111の一方の端部をサイドパ
ー112の内面に上下段交互に密着、または接合させる
ことにより、反転流路113を形成しているもので、蒸
発した酸素ガスGoは、各流路113毎に設けられたガ
ス出口114より導出される。
The oxygen chamber 110 forms a reversal flow path 113 by closely contacting or joining one end of the heat exchanger plate 111 to the inner surface of the side par 112 alternately in upper and lower stages, and the evaporated oxygen gas Go is , is led out from a gas outlet 114 provided for each flow path 113.

ガス出口114は酸素室110の左右両側に配置されて
いるサイドパー112を切欠くか、または穿孔する等に
よって形成されている5、また、本実施例においては、
伝熱板111の流路113に液の流れ方向に向って下り
勾配を形成しているので、流路1″13で蒸発した酸素
ガスGOは、流路内で浮上して上段の伝熱板111の下
面に到達する。この上段の流路の小面は、液流れ方向に
向って上り勾配どなるために、気泡を逆流させることな
く液と同一方向に流動させ、液の流動を妨げることなく
、速かにガス出口114より導出できる。
The gas outlet 114 is formed by notching or perforating the side pars 112 arranged on both the left and right sides of the oxygen chamber 110.
Since the flow path 113 of the heat exchanger plate 111 has a downward slope in the direction of liquid flow, the oxygen gas GO evaporated in the flow path 1''13 floats up within the flow path and reaches the upper heat exchanger plate. It reaches the lower surface of 111.The small surface of this upper flow path slopes upward in the direction of liquid flow, allowing the bubbles to flow in the same direction as the liquid without causing them to flow backwards. , can be quickly led out from the gas outlet 114.

上記の酸素室110の伝熱板として、前述の流路が水平
である伝熱板を使用することもできる。
As the heat exchanger plate of the oxygen chamber 110, a heat exchanger plate whose flow path is horizontal can also be used.

また、上記の勾配付の伝熱板は、前記各実施例に示ず酸
素室の伝熱板としても使用可能である。
Moreover, the above-mentioned sloped heat exchanger plate can also be used as a heat exchanger plate for an oxygen chamber, which is not shown in each of the above embodiments.

前記各実施例では、酸素市内の1云熱板を一列に配置し
ているが、流路の流動抵抗が大きく、液の流下が妨げら
れる場合には、流路長を短縮して流動抵抗を減少させる
ために、伝熱板を長さ方向に分割して複数列並列に配置
することもできる。
In each of the above embodiments, one hot plate is arranged in a row within the oxygen chamber, but if the flow resistance of the flow path is large and the flow of the liquid is obstructed, the length of the flow path may be shortened to reduce the flow resistance. In order to reduce the heat exchanger plate, the heat exchanger plate can be divided in the length direction and arranged in multiple rows in parallel.

本発明の凝縮蒸発器は、液体酸素を溜めることなく流下
させるため、液圧による液温上背がなく、窒素ガスの凝
縮温度を低下させて下部塔の運転圧力を低減でき、原料
空気圧縮機の動力費を削減する。
Since the condensing evaporator of the present invention allows liquid oxygen to flow down without accumulating it, there is no increase in liquid temperature due to liquid pressure, and the condensing temperature of nitrogen gas can be lowered to reduce the operating pressure of the lower column. reduce power costs.

さらに、凝縮蒸発器上部より液体酸素を流入させると同
時に凝縮と蒸発を生じるので、従来のように凝縮蒸発器
を液体酸素中に浸漬させるために要する時間、即ち起動
時間が大幅に短縮され、この間の動力費も削減できる。
Furthermore, since liquid oxygen is introduced from the top of the condenser-evaporator and condensation and evaporation occur at the same time, the time required to immerse the condenser-evaporator in liquid oxygen, that is, the start-up time, is significantly shortened. power costs can also be reduced.

尚、第7図、第9図の設置例は凝縮蒸発器を単独に設置
しているが、公知のように下部塔頂部の中心に窒素ガス
上昇管を設け、この上昇管を中心として同心円状に複数
基の凝縮蒸発器を配列して、処理歴の大きな凝縮蒸発器
を構成する等の場合においても本発明の凝縮蒸発器を使
用することが可能である。
In the installation examples shown in Figures 7 and 9, a condenser evaporator is installed independently, but as is well known, a nitrogen gas riser pipe is provided at the center of the top of the lower column, and a concentric circle is formed around this riser pipe. The condensing evaporator of the present invention can also be used in cases such as arranging a plurality of condensing evaporators in order to configure a condensing evaporator with a large processing history.

以上、空気液化分離における液体酸素と窒素ガスとの熱
交換による蒸発と凝縮について説明したが、他の液媒と
流体についても同様の作用効果を得られるものである。
Although evaporation and condensation through heat exchange between liquid oxygen and nitrogen gas in air liquefaction separation has been described above, similar effects can be obtained with other liquid media and fluids.

〔発明の効果〕〔Effect of the invention〕

第一流体通路の液媒と第二流体通路の流体とで熱交換を
行なう凝縮蒸発器において、竹記第一流体通路に上下多
段に伝熱板を配置し、該伝熱板の一端に上下段交互に液
受口を設けて反転流路を形成し、該反転流路に液媒を流
下させたので、液圧による液媒の温度上昇がなく、また
反転流路にJ:り十分な伝熱面積を得られるため、凝縮
蒸発器の効率が向上し、第二流体通路側の流体の凝縮温
度を低下させて、運転圧力を低減することにより、動力
費を削減できる。さらに、液媒中に浸漬する必要がない
ため、起動1間を短縮できる。
In a condensing evaporator that performs heat exchange between a liquid medium in a first fluid passage and a fluid in a second fluid passage, heat transfer plates are arranged in multiple stages above and below in the first fluid passage, and one end of the heat transfer plate is placed on one end of the heat transfer plate. Liquid sockets are provided alternately in the lower stages to form a reversing flow path, and the liquid medium is allowed to flow down into the reversing flow path, so there is no rise in temperature of the liquid medium due to liquid pressure, and there is sufficient flow in the reversing flow path. Since the heat transfer area can be obtained, the efficiency of the condensing evaporator is improved, and the condensing temperature of the fluid on the second fluid passage side is lowered, thereby reducing the operating pressure, thereby reducing power costs. Furthermore, since there is no need to immerse the device in a liquid medium, the time required for startup can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第10図は本発明の実施例を示す乙ので、第
1図は凝縮蒸発器の一部を切欠いて示す斜視図、第2図
は第一流体通路である酸素室の断面図、第3図は第二流
体通路である窒素室の断面図、第4図は伝熱板の要部を
示す斜視図、第5図は伝熱板の他の実施例を示す斜視図
、第6図は酸素室の第2実施例を示す断面図、第7図は
凝縮蒸発器の設置例を示す断面図、第8図は凝縮蒸発器
の他の実施例を示す断面図、第9図は第8図に示す凝縮
蒸発器の設置例を示す断面図、第10図は第一流体通路
の第3実施例を示す断面図、第11図は従来の凝縮蒸発
器の設置例を示す断面図である。 20・・・凝縮蒸発器   21・・・サイドパー22
・・・仕切板  23・・・酸素室(第一流体通路)2
4・・・窒素室〈第二流体通路)  25・・・液溜箱
26.27・・・上下サイドパー  28・・・伝熱板
33・・・流路  35・・・液受口  L○・・・液
体酸素Go・・・酸素ガス   LN・・・液体窒素 
 GN・・・窒素ガス 特 許 出 願 人 日本酸素株式会社筋4図 筋5因 岸6因
Figures 1 to 10 show embodiments of the present invention, so Figure 1 is a partially cutaway perspective view of the condenser-evaporator, and Figure 2 is a sectional view of the oxygen chamber, which is the first fluid passage. , FIG. 3 is a sectional view of the nitrogen chamber which is the second fluid passage, FIG. 4 is a perspective view showing the main parts of the heat transfer plate, FIG. 5 is a perspective view showing another embodiment of the heat transfer plate, and FIG. Fig. 6 is a sectional view showing a second embodiment of the oxygen chamber, Fig. 7 is a sectional view showing an installation example of a condensing evaporator, Fig. 8 is a sectional view showing another embodiment of the condensing evaporator, and Fig. 9. is a sectional view showing an installation example of the condensing evaporator shown in FIG. 8, FIG. 10 is a sectional view showing the third embodiment of the first fluid passage, and FIG. 11 is a sectional view showing an installation example of the conventional condensing evaporator. It is a diagram. 20... Condensing evaporator 21... Side par 22
... Partition plate 23 ... Oxygen chamber (first fluid passage) 2
4...Nitrogen chamber (second fluid passage) 25...Liquid storage box 26.27...Upper and lower side par 28...Heat transfer plate 33...Flow path 35...Liquid socket L○・...Liquid oxygen Go...Oxygen gas LN...Liquid nitrogen
GN...Nitrogen gas patent applicant Nippon Sanso Co., Ltd.

Claims (1)

【特許請求の範囲】 1、多数の垂直な仕切板により第一流体通路と第二流体
通路とを交互に形成し、該第一流体通路の液媒と、前記
第二流体通路の流体とで熱交換を行なう凝縮蒸発器にお
いて、前記第一流体通路に上下多段に伝熱板を配置して
、該伝熱板の一端に上下段交互に液受口を設けて反転流
路を形成し、該反転流路に液媒を流下させたことを特徴
とする凝縮蒸発器。 2、第一流体通路は、酸素室であることを特徴とする特
許請求の範囲第1項記載の凝縮蒸発器。 3、第二流体通路は、窒素室であることを特徴とする特
許請求の範囲第1項記載の凝縮蒸発器。 4、第一流体通路は、仕切板と、仕切板の両側端部を接
合するサイドバーとにより形成されていることを特徴と
する特許請求の範囲第1項記載の凝縮蒸発器。 5、第一流体通路は、仕切板と、仕切板の両側端部を接
合するサイドバーと、仕切板の上下端部を接合するサイ
ドバーとにより形成されていることを特徴とする特許請
求の範囲第1項記載の凝縮蒸発器。 6、第一流体通路は、液媒流入用のヘッダーと液媒流出
用のヘッダー及び蒸発ガス排出用のヘッダーが設けられ
ていることを特徴とする特許請求の範囲第1項記載の凝
縮蒸発器。 7、仕切板両側のサイドバーは、夫々上下端部に開口が
形成され、上部の開口を蒸発ガスの流出口とし、下部の
開口を未蒸発液媒の流出口としていることを特徴とする
特許請求の範囲第4項又は第5項記載の凝縮蒸発器。 8、上下のサイドバーは、夫々両側部に開口が形成され
、上部の開口を蒸発ガスの流出口とし、下部の開口を液
媒の流出口としていることを特徴とする特許請求の範囲
第5項記載の凝縮蒸発器。 9、上部のサイドバーは、長さ方向中間部に開口が形成
され、該開口を液媒の流入口としていることを特徴とす
る特許請求の範囲第4項又は第5項記載の凝縮蒸発器。 10、下部のサイドバーは、端部に開口が形成され、該
開口を液媒の流出口としていることを特徴とする特許請
求の範囲第4項又は第5項記載の凝縮蒸発器。 11、伝熱板は、波形伝熱フィンの折り曲げ線を水平方
向に配置して形成されていることを特徴とする特許請求
の範囲第1項記載の凝縮蒸発器。 12、伝熱板は、液の流れ方向に下り勾配が形成されて
いることを特徴とする特許請求の範囲第1項記載の凝縮
蒸発器。 13、伝熱板は、幅方向の縁部に流下口が形成されてい
ることを特徴とする特許請求の範囲第1項記載の凝縮蒸
発器。 14、伝熱板は、一端部を交互に前記サイドバーに接合
されるとともに、サイドバーには蒸発ガスの流出口が形
成されていることを特徴とする特許請求の範囲第4項又
は第5項記載の凝縮蒸発器。 15、液受口は、伝熱板を延出して形成されていること
を特徴とする特許請求の範囲第1項記載の凝縮蒸発器。 16、液受口は、前記伝熱板の延出部を上方に屈曲して
形成されていることを特徴とする特許請求の範囲第15
項記載の凝縮蒸発器。 17、伝熱板は、仕切板の幅より短く形成され、その先
端部側と前記サイドバーとの空間にガス流路が形成され
ていることを特徴とする特許請求の範囲第4項又は第5
項記載の凝縮蒸発器。 18、ガス流路には、有孔フィンが配設されていること
を特徴とする特許請求の範囲第17項記載の凝縮蒸発器
。 19、液媒は、前記第一流体通路の上部に設けられた液
媒溜から流下していることを特徴とする特許請求の範囲
第1項記載の凝縮蒸発器。 20、液媒は、前記第一流体通路の上部及び側面に設け
られた液媒溜から流下していることを特徴とする特許請
求の範囲第1項記載の凝縮蒸発器。
[Claims] 1. First fluid passages and second fluid passages are formed alternately by a large number of vertical partition plates, and the liquid medium in the first fluid passage and the fluid in the second fluid passage are formed alternately. In a condensing evaporator that performs heat exchange, heat transfer plates are arranged in multiple stages above and below in the first fluid passage, and liquid receivers are provided alternately in the upper and lower stages at one end of the heat transfer plate to form a reversal flow path, A condensing evaporator characterized in that a liquid medium is caused to flow down the reverse flow path. 2. The condensing evaporator according to claim 1, wherein the first fluid passage is an oxygen chamber. 3. The condensing evaporator according to claim 1, wherein the second fluid passage is a nitrogen chamber. 4. The condensing evaporator according to claim 1, wherein the first fluid passage is formed by a partition plate and side bars joining both ends of the partition plate. 5. The first fluid passage is formed by a partition plate, side bars joining both side ends of the partition plate, and side bars joining upper and lower ends of the partition plate. A condenser evaporator according to scope 1. 6. The condensing evaporator according to claim 1, wherein the first fluid passage is provided with a header for liquid medium inflow, a header for liquid medium outflow, and a header for evaporative gas discharge. . 7. A patent characterized in that the side bars on both sides of the partition plate have openings formed at the upper and lower ends, respectively, with the upper opening serving as an outlet for evaporated gas and the lower opening serving as an outlet for unevaporated liquid medium. A condensing evaporator according to claim 4 or 5. 8. The upper and lower side bars each have openings formed on both sides, with the upper opening serving as an outlet for evaporative gas and the lower opening serving as an outlet for liquid medium. Condenser evaporator as described in section. 9. The condensing evaporator according to claim 4 or 5, wherein the upper side bar has an opening formed in the middle part in the longitudinal direction, and the opening is used as an inlet for the liquid medium. . 10. The condensing evaporator according to claim 4 or 5, wherein the lower side bar has an opening formed at an end, and the opening serves as an outlet for the liquid medium. 11. The condensing evaporator according to claim 1, wherein the heat transfer plate is formed by arranging the bending lines of the wave-shaped heat transfer fins in a horizontal direction. 12. The condensing evaporator according to claim 1, wherein the heat transfer plate has a downward slope in the flow direction of the liquid. 13. The condensing evaporator according to claim 1, wherein the heat exchanger plate has a flow port formed at the edge in the width direction. 14. The heat exchanger plates are alternately joined to the side bars at one end, and the side bars are formed with outlet ports for evaporated gas, claim 4 or 5. Condenser evaporator as described in section. 15. The condensing evaporator according to claim 1, wherein the liquid socket is formed by extending a heat exchanger plate. 16. Claim 15, wherein the liquid socket is formed by bending the extending portion of the heat exchanger plate upward.
Condenser evaporator as described in section. 17. The heat exchanger plate is formed shorter than the width of the partition plate, and a gas flow path is formed in a space between the front end side of the heat exchanger plate and the side bar. 5
Condenser evaporator as described in section. 18. The condensing evaporator according to claim 17, wherein a perforated fin is provided in the gas flow path. 19. The condensing evaporator according to claim 1, wherein the liquid medium flows down from a liquid medium reservoir provided above the first fluid passage. 20. The condensing evaporator according to claim 1, wherein the liquid medium flows down from liquid medium reservoirs provided at the top and side surfaces of the first fluid passage.
JP61291190A 1986-12-05 1986-12-05 Condensing evaporator Expired - Lifetime JPH0788924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291190A JPH0788924B2 (en) 1986-12-05 1986-12-05 Condensing evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291190A JPH0788924B2 (en) 1986-12-05 1986-12-05 Condensing evaporator

Publications (2)

Publication Number Publication Date
JPS63143486A true JPS63143486A (en) 1988-06-15
JPH0788924B2 JPH0788924B2 (en) 1995-09-27

Family

ID=17765624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291190A Expired - Lifetime JPH0788924B2 (en) 1986-12-05 1986-12-05 Condensing evaporator

Country Status (1)

Country Link
JP (1) JPH0788924B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685071A1 (en) * 1991-12-11 1993-06-18 Air Liquide INDIRECT HEAT EXCHANGER OF PLATE TYPE.
WO2000020812A1 (en) * 1998-10-05 2000-04-13 Nippon Sanso Corporation Downflow liquid film type condensation evaporator
CN104165535A (en) * 2014-08-29 2014-11-26 储敏健 Plate heat exchanger
CN105546935A (en) * 2016-02-05 2016-05-04 江苏建筑职业技术学院 Air separating membrane type main condensate liquid distributor
WO2017212872A1 (en) * 2016-06-08 2017-12-14 株式会社アーカイブワークス Plate-type heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685071A1 (en) * 1991-12-11 1993-06-18 Air Liquide INDIRECT HEAT EXCHANGER OF PLATE TYPE.
US5333683A (en) * 1991-12-11 1994-08-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Indirect heat exchanger
WO2000020812A1 (en) * 1998-10-05 2000-04-13 Nippon Sanso Corporation Downflow liquid film type condensation evaporator
US6338384B1 (en) 1998-10-05 2002-01-15 Nippon Sanso Corporation Downflow liquid film type condensation evaporator
CN104165535A (en) * 2014-08-29 2014-11-26 储敏健 Plate heat exchanger
CN104165535B (en) * 2014-08-29 2016-02-10 深圳绿色云图科技有限公司 Heat-exchangers of the plate type
CN105546935A (en) * 2016-02-05 2016-05-04 江苏建筑职业技术学院 Air separating membrane type main condensate liquid distributor
WO2017212872A1 (en) * 2016-06-08 2017-12-14 株式会社アーカイブワークス Plate-type heat exchanger
JP2017219252A (en) * 2016-06-08 2017-12-14 株式会社アーカイブワークス Plate type heat exchanger
CN107735639A (en) * 2016-06-08 2018-02-23 株式会社阿克沃斯 Plate type heat exchanger

Also Published As

Publication number Publication date
JPH0788924B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US7028762B2 (en) Condenser for refrigerating machine
DK1479985T3 (en) SUBMITTED EVAPORATOR INCLUDING A PLATE HEAT EXCHANGE AND A CYLINDRICAL HOUSE WHERE THE PLATE HEAT EXCHANGE IS LOCATED
US5222549A (en) Condenser/evaporator
US20180128525A1 (en) Ultra narrow channel ultra low refrigerant charge evaporative condenser
EP1867942A2 (en) Condenser
KR20130054316A (en) Multistage pressure condenser and steam turbine plant equipped with same
JPS63143486A (en) Condensation evaporator
JPS63267877A (en) Condensing evaporator
CN114763947B (en) Evaporator
JP4497527B2 (en) Refrigeration equipment
JPH0534082A (en) Condensor/evaporator
JP2787593B2 (en) Evaporator
JP2787594B2 (en) Evaporator
RU2623351C1 (en) Condenser-evaporator
SU1035398A1 (en) Plate-type heat exchanger
JP4174109B2 (en) Falling liquid film type condensation evaporator and method of using the same
JP2787591B2 (en) Evaporator
JPS5934956B2 (en) Evaporators used in hot water heat recovery systems, etc.
JPH0539351Y2 (en)
RU1774143C (en) Immersion-type evaporator
JPH0730997B2 (en) Condensing evaporator
CN117628741A (en) Condenser and absorption refrigerating unit comprising same
JP2022533630A (en) Plate heat exchangers, heat exchange plates and methods of processing feeds such as seawater
JPH02233985A (en) Condenser-evaporator
JPS63187085A (en) Plate fin type condenser