JP2787591B2 - Evaporator - Google Patents

Evaporator

Info

Publication number
JP2787591B2
JP2787591B2 JP1128568A JP12856889A JP2787591B2 JP 2787591 B2 JP2787591 B2 JP 2787591B2 JP 1128568 A JP1128568 A JP 1128568A JP 12856889 A JP12856889 A JP 12856889A JP 2787591 B2 JP2787591 B2 JP 2787591B2
Authority
JP
Japan
Prior art keywords
liquid
flow path
evaporator
oxygen
liquefied oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1128568A
Other languages
Japanese (ja)
Other versions
JPH02309175A (en
Inventor
石井  博
幾雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sanso Corp
Original Assignee
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sanso Corp filed Critical Nippon Sanso Corp
Priority to JP1128568A priority Critical patent/JP2787591B2/en
Priority to US07/465,246 priority patent/US5222549A/en
Priority to PCT/JP1989/000668 priority patent/WO1990000243A1/en
Priority to EP89907818A priority patent/EP0386248B1/en
Priority to DE1989604186 priority patent/DE68904186T2/en
Publication of JPH02309175A publication Critical patent/JPH02309175A/en
Application granted granted Critical
Publication of JP2787591B2 publication Critical patent/JP2787591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0015Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/221Composite plate evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、第一流体室の液媒と第二流体室の流体とで
熱交換を行ない、第一流体室の液媒を蒸発させる蒸発器
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to evaporation that exchanges heat between a liquid medium in a first fluid chamber and a fluid in a second fluid chamber to evaporate the liquid medium in the first fluid chamber. About the vessel.

〔従来の技術〕[Conventional technology]

従来の蒸発器の一例として、第二流体室の流体が、凝
縮する窒素ガスである空気液化分離装置の複精留塔の上
部塔と下部塔間に連設されて用いられる凝縮蒸発器を挙
げて説明する。当該凝縮蒸発器は、多数の垂直方向平行
な仕切板により仕切られ、第一流体室(酸素室)と第二
流体室(窒素室)の二室を交互に隣接して積層した、い
わゆるプレートフィン式熱交換器と呼ばれているものが
多く用いられている。
As an example of a conventional evaporator, a condensing evaporator is used which is connected between an upper column and a lower column of a double rectification column of an air liquefaction separator in which the fluid in the second fluid chamber is a condensing nitrogen gas. Will be explained. The condensing evaporator is divided by a number of vertically parallel partition plates, and a so-called plate fin in which two chambers of a first fluid chamber (oxygen chamber) and a second fluid chamber (nitrogen chamber) are alternately stacked adjacently. A so-called heat exchanger is often used.

このようなプレートフィン式凝縮蒸発器の酸素室は、
内部に垂直方向に伝熱板を配設して上下方向の蒸発流路
を多数形成するとともに、該蒸発流路の上下両端部を開
口させて下端部を液化酸素の導入口とし、上端部を酸素
ガスと液化酸素の混合流の導出口としている。この酸素
室は、凝縮蒸発器全体が上部塔の底部空間に溜まる液媒
(液化酸素)中に浸漬されることにより、液化酸素で満
たされており、酸素室内の液化酸素は、隣接する窒素室
に下部塔から導入される窒素ガスと熱交換を行ない、そ
の一部が蒸発して酸素ガスの気泡となり、蒸発流路を上
昇する。液化酸素は、蒸発酸素ガス及び未蒸発液化酸素
の気液混合相と酸素室外の液化酸素との密度差により酸
素室内を上昇し、凝縮蒸発器の内外に循環流を形成して
いる。
The oxygen chamber of such a plate fin type condensing evaporator is
A number of vertical evaporation channels are formed by disposing a heat transfer plate in the vertical direction inside, and the upper and lower ends of the evaporation channel are opened, the lower end is used as a liquefied oxygen inlet, and the upper end is formed. The outlet for the mixed flow of oxygen gas and liquefied oxygen. The oxygen chamber is filled with liquefied oxygen by immersing the entire condensing evaporator in a liquid medium (liquefied oxygen) that accumulates in the bottom space of the upper tower. Heat exchange with nitrogen gas introduced from the lower tower, and a part thereof evaporates to become bubbles of oxygen gas, and ascends the evaporation flow path. The liquefied oxygen rises in the oxygen chamber due to the density difference between the gas-liquid mixed phase of the evaporated oxygen gas and the non-evaporated liquefied oxygen and the liquefied oxygen outside the oxygen chamber, and forms a circulating flow inside and outside the condensing evaporator.

一方、窒素室は、四周が密閉された室内に、酸素室と
同様に垂直方向の伝熱板を配設して上下方向の凝縮流路
を多数形成しており、該凝縮流路の上下に設けられたヘ
ッダーを介して下部塔に接続されている。そして、上部
のヘッダーから下部塔上部の窒素ガスを前記凝縮流路に
下向流として導入し、該凝縮流路で前記液化酸素と熱交
換を行って凝縮した液化窒素を下部のヘッダーから導出
している。
On the other hand, in the nitrogen chamber, a vertical heat transfer plate is arranged in the same manner as in the oxygen chamber, and a large number of vertical condensation flow paths are formed in a closed chamber. It is connected to the lower tower via the provided header. Then, nitrogen gas in the upper part of the lower tower is introduced from the upper header into the condensation flow path as a downward flow, and liquefied nitrogen condensed by performing heat exchange with the liquefied oxygen in the condensation flow path is derived from the lower header. ing.

しかしながら、このような従来の凝縮蒸発器は、その
全体を上部塔底部空間の液化酸素内に浸漬して使用する
ために、該空間に多量の液化酸素を貯液保有させなけれ
ば、凝縮蒸発器を十分に機能させることができなかっ
た。そのために、装置の起動時間が長くかかったり、停
止時に放出する液化酸素量が多くなり、動力費の損失と
なっていた。さらに大量の液化酸素を保有することで、
万一の場合に備えるための保安上の問題も大きい。
However, such a conventional condensing evaporator is entirely immersed in liquefied oxygen in the upper column bottom space, and is used unless a large amount of liquefied oxygen is stored in the space. Could not function well. For this reason, the start-up time of the apparatus is long, or the amount of liquefied oxygen released at the time of stoppage is increased, resulting in a loss of power cost. By holding more liquefied oxygen,
There are also major security issues in preparing for emergencies.

また、凝縮蒸発器全体を液化酸素中に浸漬して用いて
いるので、液化酸素の液深により凝縮蒸発器の下部の液
化酸素の圧力が上昇し、沸点上昇を生じるため、酸素室
の下部から蒸発流路に流入する液化酸素が過冷状態とな
る。そのため、酸素室の下部では蒸発流路を上昇する液
化酸素を沸騰開始温度まで伝熱効率の低い対流伝熱によ
り加温しなければならず、該流路の伝熱効率を低下させ
るとともに、沸点上昇により酸素室と窒素室との間の温
度差を保持するように下部塔圧を上昇させて、窒素室の
凝縮温度を高めねばならないため原料空気の圧縮に要す
る動力を増加させていた。特に、上部塔底部に貯液する
液化酸素の必要量は、大型装置程大量となり、起動に長
時間を要する原因となっていた。
In addition, since the entire condensing evaporator is immersed in liquefied oxygen, the pressure of liquefied oxygen at the lower part of the condensing evaporator rises due to the liquid depth of the liquefied oxygen, and a boiling point rises. The liquefied oxygen flowing into the evaporation flow path is in a supercooled state. Therefore, in the lower part of the oxygen chamber, liquefied oxygen rising in the evaporation passage must be heated to the boiling start temperature by convective heat transfer having a low heat transfer efficiency, and the heat transfer efficiency of the passage is reduced, and the boiling point is increased. In order to maintain the temperature difference between the oxygen chamber and the nitrogen chamber, the lower tower pressure must be increased to increase the condensation temperature of the nitrogen chamber, so that the power required for compressing the raw material air has been increased. In particular, the required amount of liquefied oxygen stored at the bottom of the upper tower becomes larger as the size of the apparatus becomes larger, and it takes a long time to start.

そこで、上記液化酸素の液圧の影響と貯液量を低減す
るために、第5図に示すような凝縮蒸発器が特開昭63−
267877号公報に示されている。尚、第5図の複精留塔に
組込まれた凝縮蒸発器において、図の左半分は酸素室部
分の断面を示し、図の右側半分は窒素室部分の断面を示
している。
In order to reduce the influence of the liquid pressure of the liquefied oxygen and the amount of liquid storage, a condensing evaporator as shown in FIG.
No. 267877. In the condensing evaporator incorporated in the double rectification column in FIG. 5, the left half of the figure shows a cross section of the oxygen chamber, and the right half of the figure shows a cross section of the nitrogen chamber.

凝縮蒸発器1は、酸素室2内の上下方向を多数の伝熱
板3,3,…で区分毎に仕切って出口4a側に向かう登り勾配
を有する液媒流路4,4,…を上下多段に形成するととも
に、該液媒流路4の入口4b側に液化酸素LOを溜める液溜
5,5,…を上下多段に配設し、該液溜5,5,…に液分配手段
6から液化酸素LOを供給して、該液溜5,5,…から各液媒
流路4,4,…内に液化酸素LOを導入するように構成してい
る。
The condensing evaporator 1 divides the vertical direction in the oxygen chamber 2 by a number of heat transfer plates 3, 3,... For each section, and moves the liquid medium flow paths 4, 4,. A liquid reservoir that is formed in multiple stages and stores liquefied oxygen LO on the inlet 4b side of the liquid medium flow path 4.
Are arranged in upper and lower tiers, and liquefied oxygen LO is supplied from the liquid distribution means 6 to the liquid reservoirs 5, 5,. , 4,..., Liquefied oxygen LO is introduced.

上記液媒流路4内に導入された液化酸素LOは、隣接す
る窒素室7を流下する窒素ガスGNと熱交換を行い、その
一部が蒸発して酸素ガスGOの気泡となる。この酸素ガス
GOは、液化酸素LOを同伴して液媒流路4を上昇し、出口
4a端で液化酸素LOと分離して破線矢印で示すように上方
に向って上昇する。一方蒸発しなかった液化酸素LOは、
液媒流路4の出口4aから凝縮蒸発器1の下方に実線矢印
で示すように流下して液化酸素ポンプ8あるいはサーモ
サイフォンリボイラー等によって凝縮蒸発器1の上方に
まで揚上され、再び前記液分配手段6を経て前記液溜5
に循環する。この時の液化酸素LOの液深は、液溜5内の
深さに相当するので、前記液化酸素中に浸漬して用いる
凝縮蒸発器に比べて液圧の影響を低減させることができ
る。
The liquefied oxygen LO introduced into the liquid medium flow path 4 performs heat exchange with the nitrogen gas GN flowing down the adjacent nitrogen chamber 7, and a part of the liquefied oxygen LO evaporates into oxygen gas GO bubbles. This oxygen gas
GO moves up the liquid medium flow path 4 with the liquefied oxygen LO and exits
At the 4a end, it separates from the liquefied oxygen LO and rises upward as indicated by the dashed arrow. On the other hand, liquefied oxygen LO that did not evaporate
The liquid flows down from the outlet 4a of the liquid medium flow path 4 below the condensing evaporator 1 as shown by a solid line arrow, and is lifted to a position above the condensing evaporator 1 by a liquefied oxygen pump 8 or a thermosiphon reboiler. Through the distributing means 6, the liquid reservoir 5
Circulates. Since the liquid depth of the liquefied oxygen LO at this time corresponds to the depth in the liquid reservoir 5, the effect of the liquid pressure can be reduced as compared with a condensing evaporator used by being immersed in the liquefied oxygen.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記凝縮蒸発器1では、液化酸素LOが
酸素室2内で完全に蒸発して液媒流路4にアセチレン等
の炭化水素が濃縮、析出しないように、例えば蒸発量の
6倍以上の過剰の液化酸素LOを各液媒流路4に導入する
必要がある。従って、各液媒流路4から流下する液化酸
素量が多く、これに相当する大容量の液化酸素ポンプ8
あるいはサーモサイフォンリボイラー等を設置して液化
酸素LOを循環させなければならなかった。そのため、こ
れらの設備費や液化酸素ポンプ8等の動力費がコストア
ップの要因となっていた。また、伝熱板3と液溜5との
接続部は、構造強度上の問題があった。
However, in the above-mentioned condensing evaporator 1, for example, the liquefied oxygen LO is completely evaporated in the oxygen chamber 2 and the hydrocarbon such as acetylene is not concentrated and precipitated in the liquid medium flow path 4, for example, the evaporation amount is 6 times or more the evaporation amount. Excess liquefied oxygen LO needs to be introduced into each liquid medium flow path 4. Therefore, the amount of liquefied oxygen flowing down from each liquid medium flow path 4 is large, and a large-capacity liquefied oxygen pump 8
Alternatively, a liquefied oxygen LO had to be circulated by installing a thermosiphon reboiler or the like. For this reason, these equipment costs and the power cost of the liquefied oxygen pump 8 and the like have caused a cost increase. In addition, the connecting portion between the heat transfer plate 3 and the liquid reservoir 5 has a problem in structural strength.

そこで本発明は、上記液循環式の凝縮蒸発器の長所を
生かし、さらに設備費や運転費等のコストを低減させる
ことのできる蒸発器を提供することを目的としている。
Therefore, an object of the present invention is to provide an evaporator that can make use of the advantages of the liquid circulation type condensing evaporator and can further reduce costs such as equipment costs and operation costs.

〔課題を解決するための手段〕 上記した目的を達成するために、本発明の蒸発器は、
多数の垂直な仕切板により第一流体室と第二流体室とを
交互に形成し、第一流体室の液媒と第二流体室の流体と
で熱交換を行う蒸発器において、前記第一流体室に上下
多段に伝熱板を配置して、蒸発器の一側から他側に向か
って登り勾配を有する第一流路と、蒸発器の他側から一
側に向かって前記第一流路の勾配と逆方向の登り勾配を
有する第二流路とを形成し、前記第一流路及び第二流路
のそれぞれの下端側に、各流路に連通し、かつ上部が開
放された複数の液溜を上下多段に設けるとともに、両流
路の上端側に、各流路に連通し、上部が開放した複数の
液受を上下多段に設け、一方の流路端から前記液受に導
出した液媒を他方の流路の液溜に供給するようにしたこ
とを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the evaporator of the present invention comprises:
The first fluid chamber and the second fluid chamber are alternately formed by a large number of vertical partition plates, and the evaporator performs heat exchange between the liquid medium in the first fluid chamber and the fluid in the second fluid chamber. Heat transfer plates are arranged in the upper and lower stages in the fluid chamber, a first flow path having an ascending gradient from one side of the evaporator to the other side, and a first flow path of the first flow path from the other side of the evaporator to one side. Forming a second flow path having an ascending gradient in a direction opposite to the gradient, a plurality of liquids communicating with each flow path at the lower end sides of the first flow path and the second flow path, and having an upper part opened; A plurality of reservoirs are provided in upper and lower stages, and a plurality of liquid receivers communicating with the respective channels and having an open upper portion are provided in upper and lower stages on the upper end sides of the two flow paths, and the liquid led out to the liquid receiver from one of the flow path ends is provided. It is characterized in that the medium is supplied to the liquid reservoir in the other flow path.

さらに、本発明の蒸発器は、前記第一流路と第二流路
を第一流路群と第二流路群とに纏めて配置したこと、前
記第一流体室に配置された伝熱板の所定間隔毎に、該伝
熱板と平行に複数の仕切棒を配設して、該仕切棒により
前記流路を上下複数の流路からなる流路ブロックに区画
するとともに、前記各流路群の該流路ブロック毎にそれ
ぞれ液溜及び液受を設け、該液溜及び液受の底板と前記
仕切棒の端部とを接続したこと、前記上下多段に配設さ
れた液溜又は液受の少なくといずれか一方に沿って液供
給管を配設し、該液供給管と各液溜又は液受とを該液溜
又は液受の側壁に設けた液媒供給孔で連通させたことを
特徴としている。
Further, the evaporator of the present invention is that the first flow path and the second flow path are collectively arranged in a first flow path group and a second flow path group, and the heat transfer plate disposed in the first fluid chamber. At predetermined intervals, a plurality of partitioning rods are arranged in parallel with the heat transfer plate, and the partitioning rods are used to divide the flow path into a flow path block including a plurality of upper and lower flow paths, and each of the flow path groups A liquid reservoir and a liquid receiver are provided for each of the flow path blocks, and a bottom plate of the liquid reservoir and the liquid receiver is connected to an end of the partition bar; A liquid supply pipe is disposed along at least one of the liquid supply pipes, and the liquid supply pipe and each liquid reservoir or liquid receiver are communicated with each other by a liquid medium supply hole provided on a side wall of the liquid reservoir or liquid receiver. It is characterized by.

〔作 用〕(Operation)

上記のごとく構成することにより、第一流路内で蒸発
せずに出口端部から導出して流下する液媒を、該流路の
出口端部に設けた液受で受けて第二流路の液溜に供給す
ることができ、従来蒸発器を導出して下方に流下してい
た液媒を第二流路に導入して再び蒸発に供することがで
きる。また、第二流路で蒸発しなかった液媒は、該第二
流路の液受から第一流路の液溜に供給されるので、液媒
を第一及び第二流路を循環させながら蒸発させることが
でき、蒸発器を導出して下方に流下する液媒量を低減さ
せることができる。
With the configuration as described above, the liquid medium that is derived from the outlet end and flows down without evaporating in the first flow path is received by the liquid receiver provided at the outlet end of the flow path, and The liquid medium can be supplied to the liquid reservoir, and the liquid medium, which has conventionally been drawn out from the evaporator and flowed downward, can be introduced into the second flow path and used again for evaporation. Also, the liquid medium that has not evaporated in the second flow path is supplied from the liquid receiver in the second flow path to the liquid reservoir in the first flow path, so that the liquid medium is circulated through the first and second flow paths. It is possible to evaporate, and it is possible to reduce the amount of the liquid medium flowing down by leading out the evaporator.

また、第一流路と第二流路をそれぞれの群に分けて纏
めて形成することにより、各流路の形成,液溜や液受の
形成及び組立てを容易に行うことができる。さらに、仕
切棒と液溜及び液受の底辺とを接続することにより、構
造強度を向上させることができるとともに、液溜や液受
を確実に取付けることができ、底部からの液漏れを低減
することができる。
In addition, by forming the first flow path and the second flow path in each group and forming them collectively, the formation of each flow path, the formation of a liquid reservoir and the liquid receiver, and the assembly can be easily performed. Further, by connecting the partition bar to the bottom of the liquid reservoir and the liquid receiver, the structural strength can be improved, and the liquid reservoir and the liquid receiver can be securely attached, and the liquid leakage from the bottom is reduced. be able to.

そして、液溜又は液受に沿って液供給管を設け、液溜
又は液受の側壁に設けた液媒供給孔で両者を連通させる
ことにより、各液溜又は液受への液媒供給を容易にする
とともに、製作を容易にすることができる。
Then, a liquid supply pipe is provided along the liquid reservoir or the liquid receiver, and the liquid medium supply holes provided on the side walls of the liquid reservoir or the liquid receiver are connected to each other to supply the liquid medium to each liquid reservoir or the liquid receiver. In addition to facilitating the production, the production can be facilitated.

〔実施例〕〔Example〕

本発明は、第二流体室の流体を、凝縮する窒素ガスに
限定するものではないが、以下、本発明を、第二流体室
で蒸発する液媒を液化酸素、第二流体室で凝縮する流体
を窒素ガスとして例につき、第1図乃至第4図に基づい
てさらに詳細に説明する。尚、液の流れ方向を実線矢
印、ガスの流れ方向を破線矢印で示す。
Although the present invention does not limit the fluid in the second fluid chamber to the condensed nitrogen gas, the present invention will hereinafter be described by condensing the liquid medium evaporating in the second fluid chamber with liquefied oxygen and the second fluid chamber. An example in which the fluid is nitrogen gas will be described in more detail with reference to FIGS. The liquid flow direction is indicated by a solid arrow, and the gas flow direction is indicated by a dashed arrow.

第1図乃至第4図において、蒸発器の1種である凝縮
蒸発器10は、垂直方向平行に設けられた多数の仕切板1
1,11,…により多数の第一流体室(酸素室)12,12,…
と、第二流体室(窒素室)13,13,…とを交互に積層して
形成されている。
1 to 4, a condensing evaporator 10, which is a kind of evaporator, has a large number of partition plates 1 provided in parallel in a vertical direction.
The number of first fluid chambers (oxygen chambers) 12,12,…
And second fluid chambers (nitrogen chambers) 13, 13,... Are alternately stacked.

上記酸素室12には、上下多段に伝熱板14,14…が配置
されており、上下方向に多数の液媒流路15a,15bが形成
されている。この液媒流路15a,15bは、凝縮蒸発器10の
一側から他側に向かって登り勾配を有する第一流路15a
と、凝縮蒸発器10の他側から一側に向かって前記第一流
路15aの勾配と逆方向の登り勾配を有する第二流路15bと
で構成されており、凝縮蒸発器10の厚さ方向(第2図に
おいて上下方向)の一側(第2図において下半分)に、
第1図において右上がり登り勾配となる第一流路15aが
纏めて配置され、他側(第2図において上半分)に、第
1図において左上がり登り勾配となる第二流路15bが纏
めて配置されている。これらの液媒流路15a,15bは、通
常は波形伝熱フィンを傾斜させて配置することにより形
成されるもので、液媒流路15a,15bの一部には、適当間
隔毎に、伝熱板14より僅かに板厚の厚い仕切棒16,16,…
が配設されている。
In the oxygen chamber 12, heat transfer plates 14, 14,... Are arranged in upper and lower stages, and a large number of liquid medium flow paths 15a, 15b are formed in the vertical direction. The liquid medium flow paths 15a and 15b are formed by a first flow path 15a having a gradient that goes up from one side to the other side of the condensing evaporator 10.
And a second flow path 15b having an ascending gradient in a direction opposite to the gradient of the first flow path 15a from the other side of the condensation evaporator 10 to one side, and the thickness direction of the condensation evaporator 10 On one side (vertical direction in FIG. 2) (lower half in FIG. 2),
In FIG. 1, the first flow paths 15a having an upward slope in FIG. 1 are collectively arranged. On the other side (the upper half in FIG. 2), the second flow paths 15b having an upward slope in FIG. Are located. These liquid medium passages 15a and 15b are usually formed by arranging the corrugated heat transfer fins at an angle, and a part of the liquid medium passages 15a and 15b is transferred at appropriate intervals. Partition bars 16,16, ... slightly thicker than the hot plate 14.
Are arranged.

このように形成された酸素室12の端部には、前記液媒
流路15a,15bと連通する複数の液溜17,17,…と液受18,1
8,…が上下多段に設られている。この液溜17は、一側の
開口が前記液媒流路15a,15bの勾配の下端に連通し、各
液溜17に供給される液化酸素LOを各液媒流路15a,15bに
供給するもので、上部を開口させて圧力を開放し、各液
溜17内の液深を小さくして液化酸素LOの液圧の影響を低
減している。
A plurality of liquid reservoirs 17, 17,... Communicating with the liquid medium flow paths 15a, 15b and liquid receivers 18, 1, are provided at the end of the oxygen chamber 12 thus formed.
8, ... are provided in upper and lower tiers. The liquid reservoir 17 has an opening on one side communicating with the lower end of the gradient of the liquid medium flow paths 15a and 15b, and supplies the liquefied oxygen LO supplied to each liquid reservoir 17 to each liquid medium flow path 15a and 15b. The upper part is opened to release the pressure, and the liquid depth in each liquid reservoir 17 is reduced to reduce the influence of the liquid pressure of the liquefied oxygen LO.

一方の液受18は、一側の開口が前記液媒流路15a,15b
の勾配の上端に連通し、各液媒流路15a,15bの端部から
導出する液化酸素LOを受けるもので、該液受18の上部の
開口からは、液媒流路15a,15b内で蒸発した酸素ガスGO
が液化酸素LOと分離して凝縮蒸発器10の上方に上昇す
る。
One of the liquid receivers 18 has an opening on one side, the liquid medium flow paths 15a, 15b.
The upper end of each liquid medium flow path 15a, 15b communicates with the upper end of the gradient, and receives liquefied oxygen LO derived from the end of each liquid medium flow path 15a, 15b. Evaporated oxygen gas GO
Is separated from the liquefied oxygen LO and rises above the condensing evaporator 10.

この液溜17と液受18は、第3図及び第4図に示すよう
に、上下複数の液媒流路15a,15bを一つの流路ブロック
として設けられるもので、それぞれの所定の位置に配置
されるように屈曲形成された1枚の底板19と、該底板19
の3方を囲繞するように設けられた壁板20とで形成され
ている。この液溜17と液受18とは、底板19の上面で連通
しており、底板19の液受18の部分を液溜17の部分より高
く配置することにより、液受18内に流下した液化酸素LO
を同一段の液溜17に流下させるように形成している。
As shown in FIGS. 3 and 4, the liquid reservoir 17 and the liquid receiver 18 are provided with a plurality of upper and lower liquid medium flow paths 15a and 15b as one flow path block. One bottom plate 19 bent and formed to be disposed;
And a wall plate 20 provided so as to surround the three sides. The liquid reservoir 17 and the liquid receiver 18 communicate with each other on the upper surface of the bottom plate 19. By arranging the liquid receiver 18 of the bottom plate 19 higher than the liquid reservoir 17, the liquefied liquid flowing down into the liquid receiver 18 is formed. Oxygen LO
Are made to flow down to the liquid reservoir 17 in the same stage.

また、上記流路ブロックは、前記仕切棒16により区画
されており、液溜17と液受18の底板19をそれぞれの仕切
棒16の端部に接続している。このように、仕切棒16によ
り上下複数の流路からなる流路ブロックに区画し、液溜
17と液受18の底板19を伝熱板14より厚手の仕切棒16に接
続することにより、構造強度を向上することができると
ともに、流路端部と底板端部との密着性を向上でき、接
続部からの液漏れを低減することができる。
The flow path block is defined by the partition rods 16, and connects the liquid reservoir 17 and the bottom plate 19 of the liquid receiver 18 to the ends of the respective partition rods 16. As described above, the partition bar 16 is used to partition the liquid into a flow path block including a plurality of upper and lower flow paths.
By connecting the bottom plate 19 of the liquid receiver 18 to the partition bar 16 thicker than the heat transfer plate 14, the structural strength can be improved, and the adhesion between the flow path end and the bottom plate end can be improved. In addition, it is possible to reduce liquid leakage from the connection portion.

さらに、本実施例では、前記仕切板11と平行に凝縮蒸
発器本体部の両側に配置されたサイドプレート21,21の
両側縁を延出して、上記液溜17と液受18の両側の壁板と
している。
Further, in the present embodiment, both side edges of the side plates 21, 21 arranged on both sides of the condensing evaporator main body in parallel with the partition plate 11 are extended, and the walls on both sides of the liquid reservoir 17 and the liquid receiver 18 are provided. It is a plate.

そして、各液溜17に液化酸素LOを供給する液供給管22
が、第一流路15a側に設けた液溜17の一側に沿って設け
られるとともに、各液溜17内の液化酸素LO量を均等にす
るため、及び酸素室12内でのアセチレン等の炭化水素の
濃縮を防止するために、所定量の液化酸素LOを下方に流
下させる堰23が液受18の上部に切欠形成されている。上
記液供給管22と液溜17とは、液溜17の液供給管22側の壁
板に穿設された液供給孔24により連通しており、液供給
管22を流下する液化酸素LOは、液溜17の液供給孔24から
液溜17内に供給される。また、前記液供給孔24は、液溜
17の上下の位置により所定の径で形成されており、各液
溜17に所定量の液化酸素LOを供給するように形成されて
いる。尚、液供給管22を液受18側に設置し、液供給孔24
から液受18に液化酸素LOを補給し、さらに液溜17へと供
給することができる。
A liquid supply pipe 22 for supplying liquefied oxygen LO to each liquid reservoir 17
Are provided along one side of the liquid reservoirs 17 provided on the first flow path 15a side, to equalize the amount of liquefied oxygen LO in each of the liquid reservoirs 17, and to carbonize acetylene or the like in the oxygen chamber 12. In order to prevent the concentration of hydrogen, a weir 23 for causing a predetermined amount of liquefied oxygen LO to flow downward is cut out above the liquid receiver 18. The liquid supply pipe 22 and the liquid reservoir 17 communicate with each other by a liquid supply hole 24 formed in a wall plate of the liquid reservoir 17 on the liquid supply pipe 22 side, and the liquefied oxygen LO flowing down the liquid supply pipe 22 is The liquid is supplied into the liquid reservoir 17 from the liquid supply hole 24 of the liquid reservoir 17. Further, the liquid supply hole 24 is provided with a liquid reservoir.
Each of the liquid reservoirs 17 is formed so as to supply a predetermined amount of liquefied oxygen LO. In addition, the liquid supply pipe 22 is installed on the liquid receiver 18 side, and the liquid supply hole 24 is provided.
, The liquefied oxygen LO can be supplied to the liquid receiver 18 and further supplied to the liquid reservoir 17.

このように形成された酸素室12に導入される液化酸素
LOは、液供給管22から液供給孔24を介して第一流路15a
側の液溜17に供給されて第一流路15a内に流入する。各
第一流路15a内の液化酸素LOは、伝熱板14及び仕切板11
を介して隣接する窒素室13を流れる窒素ガスGNと熱交換
を行い、その一部が蒸発して酸素ガスGOの気泡となる。
この酸素ガスGOの気泡は、第一流路15a内の液化酸素LO
と共に第一流路15aを上昇後、出口端で液化酸素LOと分
離して上下の液受18,18間の隙間から凝縮蒸発器10の上
方に向かって上昇する。
Liquefied oxygen introduced into the oxygen chamber 12 thus formed
LO is supplied from the liquid supply pipe 22 to the first flow path 15a through the liquid supply hole 24.
Is supplied to the liquid reservoir 17 on the side, and flows into the first flow path 15a. The liquefied oxygen LO in each first flow path 15a is divided into a heat transfer plate 14 and a partition plate 11
The heat exchange is performed with the nitrogen gas GN flowing in the adjacent nitrogen chamber 13 through the gas chamber, and a part of the gas is evaporated to become bubbles of the oxygen gas GO.
The bubbles of the oxygen gas GO form the liquefied oxygen LO in the first flow path 15a.
At the same time, after rising in the first flow path 15a, it separates from the liquefied oxygen LO at the outlet end and rises upward from the condensing evaporator 10 through the gap between the upper and lower liquid receivers 18,18.

一方第一流路15a内で蒸発しなかった液化酸素LOは、
前記酸素ガスGOに同伴されて第一流路15aの出口端から
流出し、第一流路15aの端部に設けられた液受18に流下
する。この第一流路15aの液受18に流下した液化酸素LO
は、底板19上を流れて隣接する第二流路15bの液溜17内
に流下し、該液溜17から第二流路15bに導入される。こ
の時、一部の液化酸素LOは、堰23からオーバーフローし
て下段の液溜17,液受18あるいは凝縮蒸発器10の下方に
流下する。
On the other hand, the liquefied oxygen LO that did not evaporate in the first flow path 15a is:
The gas flows out of the outlet end of the first flow path 15a together with the oxygen gas GO, and flows down to the liquid receiver 18 provided at the end of the first flow path 15a. The liquefied oxygen LO flowing down to the liquid receiver 18 of the first flow path 15a
Flows on the bottom plate 19, flows down into the liquid reservoir 17 of the adjacent second channel 15b, and is introduced from the liquid reservoir 17 into the second channel 15b. At this time, a part of the liquefied oxygen LO overflows from the weir 23 and flows down below the lower liquid reservoir 17, the liquid receiver 18, or the condensing evaporator 10.

即ち、液供給管22から液溜17に供給された液化酸素LO
は、該液溜17から第一流路15aに導入されて一部が蒸発
しながら液受18に至り、該液受18から第二流路15bの液
溜17に流下して第二流路15bに導入され、該第二流路15b
の液受18から元の液溜17に戻る経路で循環し、各流路15
a,15bで蒸発した量、及び堰23からオーバーフローする
量に見合う量の液化酸素LOが液供給管22から液溜17に補
給される。
That is, the liquefied oxygen LO supplied from the liquid supply pipe 22 to the liquid reservoir 17
Is introduced into the first flow path 15a from the liquid reservoir 17 and reaches a liquid receiver 18 while a part thereof evaporates, flows down from the liquid receiver 18 to the liquid reservoir 17 of the second flow path 15b, and flows into the second flow path 15b. And the second flow path 15b
Circulates in a path from the liquid receiver 18 of the
Liquefied oxygen LO is supplied to the liquid reservoir 17 from the liquid supply pipe 22 in an amount corresponding to the amount evaporated in the a and 15b and the amount overflowing from the weir 23.

このように、液化酸素LOは、各液媒流路15a,15b内
で、その一部が蒸発しながら液受18,液溜17を介して同
じ段の液媒流路15a,15bを循環するため、凝縮蒸発器10
の下方に流下する液化酸素量を大幅に低減させることが
できる。即ち、酸素室12から凝縮蒸発器10の下方に流下
する液化酸素量は、酸素室12内の液化酸素LO中にアセチ
レン等の炭化水素が濃縮されるのを防止できる程度とす
ればよいため、凝縮蒸発器10内で蒸発する液化酸素量よ
りも僅かに多くするだけで十分であり、液媒流路15a,15
bに供給する液化酸素量を従来と同程度に保持してアセ
チレン等の炭化水素の濃縮や析出を防止しながら、しか
も凝縮蒸発器10の下方に流下する液化酸素量を低減する
ことができる。これにより、液化酸素ポンプあるいはサ
ーモサイフォンリボイラー等によって揚上すべき液化酸
素量を大幅に低減できるから、これらの装置を小型化で
き、設備費に加えてその動力費等も低減することができ
る。また、流下した液化酸素を循環させることなく、系
外に導出して液化酸素及び/又は酸素ガスとして回収す
ることもできる。尚、上記揚上手段により揚液される液
化酸素は、途中の吸着器(図示せず)によってアセチレ
ン等の炭化水素を除去することができる。
As described above, the liquefied oxygen LO circulates in the liquid medium flow paths 15a and 15b of the same stage via the liquid receiver 18 and the liquid reservoir 17 while a part of the liquid medium flow path 15a and 15b evaporates. For the condensation evaporator 10
The amount of liquefied oxygen flowing down the space can be greatly reduced. That is, the amount of liquefied oxygen flowing down from the oxygen chamber 12 below the condensing evaporator 10 may be an amount that can prevent hydrocarbons such as acetylene from being concentrated in the liquefied oxygen LO in the oxygen chamber 12; It is sufficient to make the amount slightly larger than the amount of liquefied oxygen evaporated in the condensing evaporator 10, and the liquid medium flow paths 15a, 15
The amount of liquefied oxygen supplied to b can be maintained at about the same level as before, preventing the concentration and precipitation of hydrocarbons such as acetylene, and reducing the amount of liquefied oxygen flowing down the condensing evaporator 10. As a result, the amount of liquefied oxygen to be lifted by a liquefied oxygen pump, a thermosiphon reboiler, or the like can be greatly reduced, so that these devices can be downsized, and the power cost thereof can be reduced in addition to equipment costs. Further, the liquefied oxygen that has flowed down can be led out of the system without being circulated and recovered as liquefied oxygen and / or oxygen gas. The liquefied oxygen pumped by the lifting means can remove hydrocarbons such as acetylene by an adsorber (not shown) on the way.

尚、上記各液媒流路15a,15bの傾斜角度は、接続する
液溜17の深さや液媒流路15a,15bの長さ等により適宜に
選定されるもので、液媒流路15a,15bを水平に設けるこ
とも可能であるが、水平よりも昇り勾配に設けた方が蒸
発生成した酸素ガスGOの気泡がその浮上力で液媒流路15
a,15bから一方向に流出し易いとともに、液化酸素LOを
酸素ガスGOの気泡間に挟んで同伴するので、流動を促進
して熱伝達率を高めることができる。即ち、上記実施例
のように、液媒流路15a,15bを昇り勾配に形成すること
により、蒸発した酸素ガスGOの気泡がその浮上力で液化
酸素LOの流動を促進して液媒流路15a,15bの出口端から
流出、循環させるため、液化酸素LOの蒸発が効果的に行
われ、蒸発した酸素ガスGOの滞留も生じないので凝縮蒸
発器10の熱交換効率を向上させることができる。
The inclination angles of the liquid medium flow paths 15a and 15b are appropriately selected depending on the depth of the liquid reservoir 17 to be connected, the length of the liquid medium flow paths 15a and 15b, and the like. Although it is possible to provide the horizontal line 15b, it is more preferable to provide the liquid with a higher gradient than the horizontal line because the bubbles of the oxygen gas GO generated by evaporation will have a floating force.
Since the liquefied oxygen LO is easily sandwiched between the bubbles of the oxygen gas GO and is entrained, the flow can be promoted and the heat transfer coefficient can be increased. That is, as in the above-described embodiment, the liquid medium flow paths 15a and 15b are formed to have an ascending gradient, so that the bubbles of the evaporated oxygen gas GO promote the flow of the liquefied oxygen LO by the buoyancy thereof, and the liquid medium flow paths Since the liquefied oxygen LO flows out and circulates from the outlet ends of 15a and 15b, the liquefied oxygen LO is effectively evaporated, and there is no stagnation of the evaporated oxygen gas GO, so that the heat exchange efficiency of the condensation evaporator 10 can be improved. .

また、各液媒流路15a,15bを構成する伝熱板14の上下
のピッチは、酸素ガスGOが液化酸素LOを同伴するのに適
したピッチに設定されるもので、このピッチが大き過ぎ
ると酸素ガスGOがすり抜けてしまい、酸素ガスGOの気泡
で液化酸素LOを同伴させることが困難になり、液化酸素
LOの循環が低下し、炭化水素類の濃縮の一因となる。
In addition, the upper and lower pitches of the heat transfer plates 14 forming the liquid medium flow paths 15a and 15b are set to a pitch suitable for the oxygen gas GO to accompany the liquefied oxygen LO, and this pitch is too large. Oxygen gas GO slips through, and it becomes difficult to entrain liquefied oxygen LO with bubbles of oxygen gas GO.
LO circulation is reduced, contributing to the concentration of hydrocarbons.

さらに、本実施例では、上下の各液溜17と液受18を同
じ大きさとして隣接する液溜17と液受18とを底板19上で
連通させているが、各液溜17と液受18の大きさを上下方
向で変えたり、液溜17と液受18をそれぞれ独立した箱状
に形成して、両者を液供給用の連通路となる樋あるいは
管により接続しても良い。
Further, in the present embodiment, the upper and lower liquid reservoirs 17 and the liquid receivers 18 have the same size, and the adjacent liquid reservoirs 17 and the liquid receivers 18 communicate with each other on the bottom plate 19. The size of 18 may be changed in the vertical direction, or the liquid reservoir 17 and the liquid receiver 18 may be formed in independent boxes, and both may be connected by a gutter or a pipe serving as a communication passage for liquid supply.

また、各液溜17への液化酸素LOの供給は、全ての液溜
17に液供給管22を接続してもよいが、液供給管22を設け
ずに最上段の液溜17のみに液化酸素LOを供給し、上段の
液溜17あるいは液受18からオーバーフロー管あるいはオ
ーバーフロー堰で下段の液溜17あるいは液受18に順次液
化酸素LOを流下させる構造とすることもでき、液供給管
22を別に配置して、該液供給管22と液溜17あるいは液受
18とを樋や管等により接続しても良い。また各液溜17へ
の液化酸素LOの供給量の調節は、流量調節機構を設けた
り、液供給孔24の径や、堰23の位置,大きさ、あるいは
オーバーフロー管の口径,取付位置等を調整することに
より行うことができる。
In addition, the supply of liquefied oxygen LO to each
The liquid supply pipe 22 may be connected to the liquid supply pipe 17, but the liquefied oxygen LO is supplied only to the uppermost liquid reservoir 17 without providing the liquid supply pipe 22, and an overflow pipe or liquid is supplied from the upper liquid reservoir 17 or the liquid receiver 18. It is also possible to adopt a structure in which the liquefied oxygen LO flows down sequentially to the liquid reservoir 17 or the liquid receiver 18 at the lower stage by the overflow weir.
The liquid supply pipe 22 and the liquid reservoir 17 or the liquid
18 may be connected by a gutter or a pipe. Adjustment of the supply amount of the liquefied oxygen LO to each liquid reservoir 17 is performed by providing a flow rate adjusting mechanism, or by adjusting the diameter of the liquid supply hole 24, the position and size of the weir 23, or the diameter and mounting position of the overflow pipe. It can be done by adjusting.

一方、この酸素室12と対応する窒素室13は、従来から
この種のプレートフィン型の凝縮蒸発器に採用されてい
るものと同様に形成することができ、本発明の範疇では
ない。例えば、窒素室13内に垂直方向に伝熱板25を配置
して上下方向の流路を形成するとともに、窒素室13の上
下にヘッダー(図示せず)を連設し、上部のヘッダーか
ら窒素ガスを導入して、凝縮した液化窒素を下部のヘッ
ダーから導出することができる。
On the other hand, the nitrogen chamber 13 corresponding to the oxygen chamber 12 can be formed in the same manner as that conventionally used in this type of plate-fin type condensing evaporator, and is not within the scope of the present invention. For example, the heat transfer plate 25 is disposed vertically in the nitrogen chamber 13 to form a vertical flow path, and headers (not shown) are connected to the upper and lower sides of the nitrogen chamber 13 so that nitrogen can be transferred from the upper header. Gas can be introduced to draw condensed liquefied nitrogen from the lower header.

このように、本発明の蒸発器を、空気液化分離装置の
凝縮蒸発器における液化酸素と窒素ガスとの熱交換に用
いることにより、各液溜,液受の部分で圧力が開放され
るので液化酸素中に浸漬して用いる凝縮蒸発器に比べ
て、液化酸素の液深による圧力上昇が少なくなり、液化
酸素の液深による影響を低減させることができ、その分
酸素室と窒素室との温度差を極小までに低減することが
でき、温度差0.3℃でも熱交換が可能であり、従来の蒸
発器の温度差1〜2℃と比較して大幅に縮小された。従
って、液化酸素と窒素ガスとを効率良く熱交換させるこ
とができ、凝縮蒸発器の熱交換効率が向上するととも
に、第二流体室の流体が、凝縮する窒素ガスの場合に
は、凝縮温度を低下させて下部精留塔の運転圧力を低減
させることもできるので、装置全体の動力費も削減でき
る。
As described above, by using the evaporator of the present invention for heat exchange between liquefied oxygen and nitrogen gas in the condensing evaporator of the air liquefaction / separation apparatus, the pressure is released in each of the liquid reservoirs and liquid receivers, so that liquefaction is performed. Compared to a condensing evaporator that is immersed in oxygen, the pressure rise due to the liquefied oxygen liquid depth is reduced, and the influence of the liquefied oxygen liquid depth can be reduced. The difference can be reduced to a minimum, and heat exchange is possible even at a temperature difference of 0.3 ° C., which is significantly reduced as compared with a temperature difference of a conventional evaporator of 1 to 2 ° C. Therefore, the liquefied oxygen and the nitrogen gas can be efficiently heat-exchanged, the heat exchange efficiency of the condensation evaporator is improved, and when the fluid in the second fluid chamber is the condensed nitrogen gas, the condensation temperature is reduced. Since the operating pressure of the lower rectification column can be reduced by lowering the power, the power cost of the entire apparatus can be reduced.

また、液圧の影響が無いので蒸発器の高さ方向の形状
的制限が無くなり、高さを増すことにより処理能力を大
幅に増加させることが可能になり、蒸発器の設置面積が
制限されるような場合、蒸発器の高さを増して設置面積
を減らせるので、大型空気分離装置用精留塔に組込むこ
とが容易にでき、精留塔を上下一体構造で製作すること
が可能となる。さらに液媒中に浸漬する必要がないた
め、少ない液媒量で運転することができ、起動時間を短
縮できるとともに、保安上の問題も少なくなる。
In addition, since there is no influence of the liquid pressure, there is no limitation on the shape of the evaporator in the height direction. By increasing the height, the processing capacity can be greatly increased, and the installation area of the evaporator is limited. In such a case, since the height of the evaporator can be increased and the installation area can be reduced, the evaporator can be easily incorporated into a rectification tower for a large air separation device, and the rectification tower can be manufactured in a vertically integrated structure. . Further, since it is not necessary to immerse the liquid medium in the liquid medium, the operation can be performed with a small amount of the liquid medium, the start-up time can be shortened, and the security problem is reduced.

尚、本発明の蒸発器は、空気液化分離における液化酸
素と窒素ガスとの熱交換による蒸発と凝縮以外の、他の
液媒の蒸発と流体(凝縮する流体に制限されない)との
熱交換に用いた場合にも同様の作用効果を得ることがで
き、空気分離装置以外の他のプロセスにおける小温度差
蒸発器にも省エネルギー蒸発器として応用可能であるこ
とは言うまでもない。
In addition, the evaporator of the present invention is not limited to evaporation and condensation by heat exchange between liquefied oxygen and nitrogen gas in air liquefaction separation, but also to evaporation of other liquid medium and heat exchange with a fluid (not limited to condensed fluid). It is needless to say that the same operation and effect can be obtained when used, and that it can be applied as an energy-saving evaporator to a small temperature difference evaporator in a process other than the air separation device.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の凝縮蒸発器は、液媒を
蒸発させる第一流体室に、互いに逆方向の登り勾配を有
する一対の液媒流路を形成し、勾配の下端側の液溜から
第二流体室に液媒を供給して第二流体室の流体と熱交換
させて一部を蒸発させるとともに、一方の液媒流路で蒸
発しなかった液媒を該流路上端側の液受で受けて、他方
の液媒流路の液溜に供給するように構成したから、従
来、液媒流路出口端から蒸発器の下方に流下して他の揚
上手段により循環させていた液媒を蒸発器内で自己循環
させることができる。これにより、凝縮蒸発器の下方に
流下する液媒量を減少させることができ、揚上手段等を
小型化することができ、設備費や運転動力費を大幅に削
減することができる。また、各液溜,液受の部分で圧力
が開放されるので、液媒の液深による影響が低減し、両
流体室の温度差を極小とすることができるので、蒸発さ
せる液媒と流体とを効率良く熱交換させることができ、
蒸発器の熱交換効率が向上するとともに、液圧の影響が
無いので、蒸発器の高さ方向の形状的制限が無くなり、
処理能力を大幅に増加させることが可能になる。さらに
液媒中に浸漬する必要がないため、少ない液媒量で運転
することができ、起動時間を短縮させることができる。
As described above, the condensing evaporator of the present invention forms a pair of liquid medium flow paths having an ascending gradient in mutually opposite directions in the first fluid chamber for evaporating the liquid medium, and forms a liquid reservoir on the lower end side of the gradient. A liquid medium is supplied to the second fluid chamber from the second fluid chamber, and heat exchange is performed with the fluid in the second fluid chamber to partially evaporate the liquid medium. Since it is configured to receive the liquid in the liquid receiver and supply it to the liquid reservoir in the other liquid medium flow path, conventionally, it flows down from the liquid medium flow path outlet end to below the evaporator and is circulated by other lifting means. The liquid medium can be circulated by itself in the evaporator. As a result, the amount of the liquid medium flowing down the condensing evaporator can be reduced, the size of the lifting means and the like can be reduced, and the equipment cost and the operating power cost can be significantly reduced. In addition, since the pressure is released at each of the liquid reservoir and the liquid receiving portion, the influence of the liquid depth of the liquid medium is reduced, and the temperature difference between the two fluid chambers can be minimized. Can efficiently exchange heat with
Since the heat exchange efficiency of the evaporator is improved and there is no influence of the liquid pressure, there is no limit on the shape of the evaporator in the height direction,
Processing capacity can be greatly increased. Furthermore, since it is not necessary to immerse the liquid medium in the liquid medium, the operation can be performed with a small amount of the liquid medium, and the start-up time can be reduced.

また、第一流路と第二流路をそれぞれの群に分けて纏
めて形成することにより、各流路の形成に加えて液溜や
液受の形成及び組立てを容易に行うことができ、製造コ
ストを低減させることができる。
In addition, by forming the first flow path and the second flow path in each group and forming them collectively, in addition to the formation of each flow path, the formation and assembly of a liquid reservoir and a liquid receiver can be easily performed, and Cost can be reduced.

さらに、第一流体室内に配設した仕切棒の端部と液溜
及び液受の底辺とを接続することにより、構造上の強度
を向上させることができるとともに、液溜や液受を確実
に取付けることができ、該接続部からの液漏れを防止で
き、蒸発器の下方に流下する液媒量をさらに低減するこ
とができる。
Furthermore, by connecting the end of the partition bar provided in the first fluid chamber to the bottom of the liquid reservoir and the liquid receiver, the structural strength can be improved, and the liquid reservoir and the liquid receiver can be securely connected. The evaporator can be attached, so that liquid leakage from the connection part can be prevented, and the amount of liquid medium flowing down the evaporator can be further reduced.

また、液溜又は液受に沿って液供給管を設け、液溜又
は液受の側壁に設けた液媒供給孔で液供給管とを連通さ
せることにより、各液溜への液媒供給を容易にするとと
もに、別に液供給部を離間して設けたものに比べて蒸発
器の製作を容易にすることができ、さらに、空気分離装
置の精留塔用凝縮蒸発器として使用する場合には、その
組付け作業性も向上させることができる。
In addition, a liquid supply pipe is provided along the liquid reservoir or the liquid receiver, and a liquid medium supply hole provided in a side wall of the liquid reservoir or the liquid receiver communicates with the liquid supply pipe to supply the liquid medium to each liquid reservoir. In addition to making it easier, the evaporator can be easily manufactured as compared with the case in which the liquid supply unit is separately provided. The workability of assembling can also be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図乃至第4図は本発明の蒸発器の一実施例を示すも
ので、第1図は、上半分が第二液媒流路である第2図の
I−I断面、下半部が第一液媒流路である第2図のII−
II断面を示す酸素室部分の断面正面図、第2図は断面平
面図、第3図は一部切欠左側面図、第4図は一部切欠右
側面図、第5図は複精留塔に組込まれた従来の凝縮蒸発
器を示す断面図である。 10……凝縮蒸発器、11……仕切板、12…第一流体室(酸
素室)、13……第二流体室(窒素室)、14……伝熱板、
15a,15b……液媒流路、16……仕切棒、17……液溜、18
……液受、22……液供給管、24……液供給孔、GO……酸
素ガス、LO……液化酸素
1 to 4 show an embodiment of the evaporator according to the present invention. FIG. 1 is a sectional view taken along line II of FIG. Is the first liquid medium flow path II- in FIG.
Fig. 2 is a sectional plan view, Fig. 3 is a partially cut left side view, Fig. 4 is a partially cut right side view, and Fig. 5 is a double rectification column. FIG. 4 is a cross-sectional view showing a conventional condensing evaporator incorporated in the conventional evaporator. 10 ... condensing evaporator, 11 ... partition plate, 12 ... first fluid chamber (oxygen chamber), 13 ... second fluid chamber (nitrogen chamber), 14 ... heat transfer plate,
15a, 15b: Liquid medium flow path, 16: Partition rod, 17: Liquid reservoir, 18
... Liquid receiver, 22 ... Liquid supply pipe, 24 ... Liquid supply hole, GO ... Oxygen gas, LO ... Liquefied oxygen

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−17601(JP,A) 特開 昭60−253782(JP,A) 特開 昭63−267877(JP,A) 特開 平2−97885(JP,A) 特開 平2−233985(JP,A) (58)調査した分野(Int.Cl.6,DB名) F25J 5/00 F28D 9/00 - 9/04 F28F 3/00 311 F28F 3/08 311──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-60-17601 (JP, A) JP-A-60-253782 (JP, A) JP-A-63-267877 (JP, A) JP-A-2- 97885 (JP, A) JP-A-2-233985 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F25J 5/00 F28D 9/00-9/04 F28F 3/00 311 F28F 3/08 311

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多数の垂直な仕切板により第一流体室と第
二流体室とを交互に形成し、第一流体室の液媒と第二流
体室の流体とで熱交換を行う蒸発器において、前記第一
流体室に上下多段に伝熱板を配置して、蒸発器の一側か
ら他側に向かって登り勾配を有する第一流路と、蒸発器
の他側から一側に向かって前記第一流路の勾配と逆方向
の登り勾配を有する第二流路とを形成し、前記第一流路
及び第二流路のそれぞれの下端側に、各流路に連通し、
かつ上部が開放された複数の液溜を上下多段に設けると
ともに、両流路の上端側に、各流路が連通し、上部が開
放した複数の液受を上下多段に設け、一方の流路端から
前記液受に導出した液媒を他方の流路の液溜に供給する
ようにしたことを特徴とする蒸発器。
An evaporator in which a first fluid chamber and a second fluid chamber are alternately formed by a number of vertical partition plates, and heat exchange is performed between a liquid medium in the first fluid chamber and a fluid in the second fluid chamber. In the first fluid chamber, heat transfer plates are arranged in upper and lower stages, and a first flow path having an ascending gradient from one side of the evaporator to the other side, and from the other side of the evaporator toward one side. Form a second flow path having a gradient that is the reverse of the gradient of the first flow path, at the lower end of each of the first flow path and the second flow path, communicating with each flow path,
A plurality of liquid reservoirs having an open upper part are provided in upper and lower multi-stages, and a plurality of liquid receivers having an upper part opened are provided in upper and lower multi-stages at the upper ends of both flow paths. An evaporator characterized in that a liquid medium led out from one end to the liquid receiver is supplied to a liquid reservoir in the other flow path.
【請求項2】前記第一流路と第二流路を、第一流路群と
第二流路群とに纏めて配置したことを特徴とする請求項
1記載の蒸発器。
2. The evaporator according to claim 1, wherein the first flow path and the second flow path are collectively arranged in a first flow path group and a second flow path group.
【請求項3】前記第一流体室に配置された伝熱板の所定
間隔毎に、該伝熱板と平行に複数の仕切棒を配設して、
該仕切棒により前記流路を上下複数の流路からなる流路
ブロックに区画するとともに、前記各流路群の該流路ブ
ロック毎にそれぞれ液溜及び液受を設け、該液溜及び液
受の底板と前記仕切棒の端部とを接続したことを特徴と
する請求項2記載の蒸発器。
3. A plurality of partition rods are arranged in parallel with the heat transfer plate at predetermined intervals of the heat transfer plate arranged in the first fluid chamber,
The partition bar divides the flow path into a flow path block including a plurality of upper and lower flow paths, and a liquid reservoir and a liquid receiver are provided for each of the flow path blocks in each of the flow path groups. 3. The evaporator according to claim 2, wherein the bottom plate is connected to an end of the partition bar.
【請求項4】前記上下多段に配設された液溜又は液受の
少なくともいずれか一方に沿って液供給管を配設し、該
液供給管と各液溜又は液受とを該液溜又は液受の側壁に
設けた液媒供給孔で連通させたことを特徴とする請求項
1記載の蒸発器。
4. A liquid supply pipe is provided along at least one of the liquid reservoirs and the liquid receivers arranged in the upper and lower multi-stages, and the liquid supply pipe and each of the liquid reservoirs or the liquid receivers are connected to the liquid reservoirs. 2. The evaporator according to claim 1, wherein the evaporator communicates with a liquid medium supply hole provided in a side wall of the liquid receiver.
JP1128568A 1988-07-04 1989-05-22 Evaporator Expired - Lifetime JP2787591B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1128568A JP2787591B2 (en) 1989-05-22 1989-05-22 Evaporator
US07/465,246 US5222549A (en) 1988-07-04 1989-07-04 Condenser/evaporator
PCT/JP1989/000668 WO1990000243A1 (en) 1988-07-04 1989-07-04 Condenser/evaporator
EP89907818A EP0386248B1 (en) 1988-07-04 1989-07-04 Condenser/evaporator
DE1989604186 DE68904186T2 (en) 1988-07-04 1989-07-04 CONDENSER / EVAPORATOR.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1128568A JP2787591B2 (en) 1989-05-22 1989-05-22 Evaporator

Publications (2)

Publication Number Publication Date
JPH02309175A JPH02309175A (en) 1990-12-25
JP2787591B2 true JP2787591B2 (en) 1998-08-20

Family

ID=14987974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1128568A Expired - Lifetime JP2787591B2 (en) 1988-07-04 1989-05-22 Evaporator

Country Status (1)

Country Link
JP (1) JP2787591B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027139A1 (en) * 2000-05-31 2001-12-06 Linde Ag Multi-storey bathroom condenser

Also Published As

Publication number Publication date
JPH02309175A (en) 1990-12-25

Similar Documents

Publication Publication Date Title
EP0386248B1 (en) Condenser/evaporator
US4545862A (en) Desalination device and process
US4606745A (en) Condenser-evaporator for large air separation plant
US5316628A (en) Process and device for the simultaneous transfer of material and heat
US7028762B2 (en) Condenser for refrigerating machine
JP2003535301A (en) Multi-stage condenser
US10408535B2 (en) Multistage bath condenser-reboiler
US6338384B1 (en) Downflow liquid film type condensation evaporator
JP3527609B2 (en) Air separation method and apparatus
US5755279A (en) Heat exchanger
JP2787591B2 (en) Evaporator
JP2787593B2 (en) Evaporator
JPS63267877A (en) Condensing evaporator
JPH0534082A (en) Condensor/evaporator
JP2787594B2 (en) Evaporator
JPH0788924B2 (en) Condensing evaporator
JP4174109B2 (en) Falling liquid film type condensation evaporator and method of using the same
JPH02233985A (en) Condenser-evaporator
JP2000111244A (en) Flowing-down liquid film type condensation evaporator
JPH0789009B2 (en) Condensation evaporator and its operating method
JPH05280861A (en) Condensation vaporizer
JPH0268476A (en) Condensation vaporizer and operation thereof
JPH0730997B2 (en) Condensing evaporator
JPH10118401A (en) Falling film evaporator
JPH0789008B2 (en) Condensing evaporator