JPS63267877A - Condensing evaporator - Google Patents

Condensing evaporator

Info

Publication number
JPS63267877A
JPS63267877A JP32904987A JP32904987A JPS63267877A JP S63267877 A JPS63267877 A JP S63267877A JP 32904987 A JP32904987 A JP 32904987A JP 32904987 A JP32904987 A JP 32904987A JP S63267877 A JPS63267877 A JP S63267877A
Authority
JP
Japan
Prior art keywords
liquid
oxygen
chamber
flow path
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32904987A
Other languages
Japanese (ja)
Other versions
JPH0668434B2 (en
Inventor
土屋 宏夫
金子 輝二
登美男 倉
藤田 幾男
隆 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP32904987A priority Critical patent/JPH0668434B2/en
Publication of JPS63267877A publication Critical patent/JPS63267877A/en
Publication of JPH0668434B2 publication Critical patent/JPH0668434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/10Boiler-condenser with superposed stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は第一流体室の液媒と第二流体室の流体とで熱交
換を行なう凝縮蒸発器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a condensing evaporator that exchanges heat between a liquid medium in a first fluid chamber and a fluid in a second fluid chamber.

〔従来の技術〕[Conventional technology]

従来、空気液化分離装置の複精留塔の上部塔等に用いら
れる凝縮蒸発器は、多数の垂直方向平行な仕切板により
仕切られ、第一流体室、(i!素室)と第二流体室(窒
素室)の二重を交互に隣接して積層され、いわゆるプレ
ートフィン式熱交換器と呼ばれているものが用いられて
おり、酸素室は上下端部で解放され、上部塔の底部空間
に溜まる液媒(液体酸素)中に浸漬されることにより液
体酸素で満たされる。そして、下部塔から窒素室に導入
される窒素ガスと熱交換を行ない、窒素ガスは凝縮して
液体窒素となり、液体酸素は蒸発して酸素ガスとなるよ
うに構成されている。
Conventionally, a condensing evaporator used in the upper column of a double rectification column of an air liquefaction separation device is partitioned by a number of vertically parallel partition plates, and is divided into a first fluid chamber, (i! elementary chamber) and a second fluid chamber. A so-called plate-fin heat exchanger is used, in which double chambers (nitrogen chambers) are stacked alternately adjacent to each other, and the oxygen chambers are open at the top and bottom ends, and the oxygen chambers are open at the bottom of the upper column. The space is filled with liquid oxygen by being immersed in the liquid medium (liquid oxygen) that accumulates there. Then, heat exchange is performed with the nitrogen gas introduced into the nitrogen chamber from the lower column, so that the nitrogen gas is condensed to become liquid nitrogen, and the liquid oxygen is evaporated to become oxygen gas.

(発明が解決しようとする問題点) しかしながら、従来の凝縮蒸発器の酸素室は、液体酸素
に浸漬されて用いるため、液深の液圧による液温や沸点
上昇(約1℃/m)を生じ、凝縮蒸発器の下部は上部よ
りも温度が高く、その分窒素の凝縮温度との温度差を縮
めている。
(Problems to be Solved by the Invention) However, since the oxygen chamber of a conventional condenser evaporator is immersed in liquid oxygen, the liquid temperature and boiling point rise (approximately 1°C/m) due to the liquid pressure at the depth of the liquid. The lower part of the condensing evaporator has a higher temperature than the upper part, which reduces the temperature difference with the condensing temperature of nitrogen.

凝縮蒸発器の窒素側と酸素側の温度差は通常1〜2℃と
なっているので、上記液体酸素の温度上昇は凝縮蒸発器
の性能上大きな問題となっている。
Since the temperature difference between the nitrogen side and the oxygen side of the condensing evaporator is usually 1 to 2°C, the temperature rise of the liquid oxygen is a major problem in terms of the performance of the condensing evaporator.

即ち、下部塔を5幻f/1−jGで運転するためには、
凝縮蒸発器高さを約2m迄にしないと適正な能力を発揮
できず、能力を上げるために凝縮蒸発器高さを高くとる
と、液体酸糸の液深を増加して液温が上昇するので下部
塔運転圧力を高めなければならないから、塔の径を太く
して配置基数を増さねばならず、塔の製作を面倒にして
いた。
That is, in order to operate the lower tower at 5 phantom f/1-jG,
Appropriate performance cannot be achieved unless the height of the condenser evaporator is set to approximately 2m.If the height of the condenser evaporator is increased to increase the capacity, the depth of the liquid acid thread will increase and the temperature of the liquid will rise. Therefore, the operating pressure of the lower column had to be increased, and the diameter of the column had to be increased to increase the number of bases, which made the manufacture of the column complicated.

また液体酸素の液深による温度上昇は、下部塔運転圧力
に影響を与えている。即ち下部塔運転圧力は、下部塔頂
部の飽和窒素ガスの凝縮温度を決定しており、この凝縮
温度を下げるために゛は、液体酸素の温度を下げる必要
がある。
In addition, the temperature increase due to the depth of liquid oxygen affects the operating pressure of the lower column. That is, the operating pressure of the lower column determines the condensation temperature of the saturated nitrogen gas at the top of the lower column, and in order to lower this condensation temperature, it is necessary to lower the temperature of liquid oxygen.

一方空気分離装置の動力は原料空気の圧縮、即ち下81
I塔圧力までの昇圧にほとんど消費されているので下部
塔をより低圧で運転することが出来れば動力費が削減で
きる。しかし、凝縮蒸発器を液体酸素中に浸漬する従来
の構造では、必ず液ヘッドによる液体酸素の温度上昇効
果弁は下部塔圧力の低下が制限されてしまうと言う欠点
がある。
On the other hand, the power of the air separation device is the compression of the raw air, that is, the
Most of the energy is consumed in raising the pressure to the I column pressure, so if the lower column can be operated at a lower pressure, power costs can be reduced. However, in the conventional structure in which the condensing evaporator is immersed in liquid oxygen, there is a drawback in that the valve that increases the temperature of liquid oxygen by the liquid head always limits the reduction in the pressure of the lower column.

さらに、凝縮蒸発器を設置している上部塔底部の空間に
液体酸素を溜めなければ凝縮蒸発器の能力を十分に発揮
できないため、凝縮蒸発器が液体酸素中に浸漬するまで
は下部塔還流液となる液体窒素の凝縮液も、また液体酸
素の蒸発による上部塔上昇ガスも発生しないから精留作
用が開始されず、無駄な持ち時間(起動時間)となり、
この間は動力費の損失となる。
Furthermore, the capacity of the condenser-evaporator cannot be fully demonstrated unless liquid oxygen is stored in the space at the bottom of the upper column where the condenser-evaporator is installed. Since neither the condensate of liquid nitrogen nor the gas rising in the upper column due to evaporation of liquid oxygen is generated, the rectification action does not start, resulting in wasted time (start-up time).
During this time, there will be a loss in power costs.

本発明は、高さ方向の形状的制限を無くして大型空気分
離装置用精留塔の上下部基の一体構造化を可能とし、液
体酸素中に浸漬せずに熱交換でき、液深による液圧を減
少して液温や沸点の上昇を無くし、原料空気圧縮圧を低
下させて動力費を削減し、かつ起動時間を短縮できる凝
縮蒸発器を提供することを目的とする。
The present invention eliminates geometrical restrictions in the height direction and enables the upper and lower bases of a rectification column for large-scale air separation equipment to be integrated into an integrated structure. It is an object of the present invention to provide a condensing evaporator that can reduce pressure to eliminate increases in liquid temperature and boiling point, reduce raw material air compression pressure to reduce power costs, and shorten start-up time.

〔問題点を解決するための手段〕[Means for solving problems]

上記した目的を達成するために本発明は、多数の垂直な
仕切板により第一流体室と第二流体室とを交互に形成し
、前記第一流体室の液媒と、前記第二流体室の流体とで
熱交換を行なう凝縮蒸発器において、前記第一流体室に
上下多段に複数の伝熱板を配置して液媒の流路を形成し
、該流路の一端は開放とし、他端側に該流路と連通し、
上部を開放した複数の液溜を上下多段に設けるとともに
、液媒を各段の液溜に供給させながら前記流路に導入し
て熱交換させるように構成したことを特徴としている。
In order to achieve the above object, the present invention alternately forms a first fluid chamber and a second fluid chamber by a large number of vertical partition plates, and the liquid medium in the first fluid chamber and the second fluid chamber are In a condensing evaporator that exchanges heat with a fluid, a plurality of heat transfer plates are arranged in upper and lower stages in the first fluid chamber to form a flow path for the liquid medium, one end of the flow path is open, and the other end is open. communicating with the flow path on the end side,
It is characterized in that a plurality of liquid reservoirs with open tops are provided in upper and lower stages, and a liquid medium is introduced into the flow path while being supplied to the liquid reservoirs in each stage for heat exchange.

〔作 用〕[For production]

従って液深による液温や沸点上昇を大幅に低減し得、ま
た凝縮蒸発器の高さを高くして伝熱面積の増加を図れる
ため、高さ方向の形状的−制限が無くなり、さらに起動
時間も短縮できる。
Therefore, it is possible to significantly reduce the rise in liquid temperature and boiling point due to liquid depth, and the height of the condenser evaporator can be increased to increase the heat transfer area, eliminating geometrical restrictions in the height direction and further increasing the startup time. can also be shortened.

〔実施例) 以下、本発明を、蒸発する液媒を酸素、凝縮する流体を
窒素とした胸につき、第1図乃至第7図に基づいて説明
する。
[Example] Hereinafter, the present invention will be explained based on FIGS. 1 to 7 using oxygen as the liquid medium to be evaporated and nitrogen as the fluid to be condensed.

まず、第1図は本発明の凝縮蒸発器の全体斜視図であり
、一部切欠いて第一流体室である酸素室の内部構造を図
示しである。第2図は酸素室を示す断面図であり、液の
流れ方向を実線矢印、ガスの流れ方向を破線矢印で示す
First, FIG. 1 is an overall perspective view of the condensing evaporator of the present invention, with a portion cut away to illustrate the internal structure of an oxygen chamber, which is a first fluid chamber. FIG. 2 is a sectional view showing the oxygen chamber, where the direction of flow of liquid is shown by solid arrows and the direction of gas flow is shown by dashed arrows.

凝縮蒸発器1は、上下あるいは両側のサイドパー2.3
により接合された多数の垂直方向平行な仕切板4により
第一流体室5(以下酸素室という)と第二流体室6(以
下窒素室という)とを交互に多数Ia層して形成されて
おり、酸素室5の液媒(以下液体酸素LOという)と窒
素室6を流れる流体(以下窒素ガスGNという)とで熱
交換を行なうものであり、−側部には複数の液?1f7
が上下多段に配設されている。
The condenser evaporator 1 has upper and lower or both side pars 2.3
A first fluid chamber 5 (hereinafter referred to as an oxygen chamber) and a second fluid chamber 6 (hereinafter referred to as a nitrogen chamber) are formed by alternating a large number of Ia layers by a large number of vertically parallel partition plates 4 joined by. , heat exchange is performed between the liquid medium in the oxygen chamber 5 (hereinafter referred to as liquid oxygen LO) and the fluid flowing in the nitrogen chamber 6 (hereinafter referred to as nitrogen gas GN), and there are multiple liquids on the - side. 1f7
are arranged in multiple levels above and below.

窒素室6は、従来の装置と略同様に構成されるもので、
仕切板4.4と仕切板両側のサイドパー3.3とによっ
て構成され、上部には窒素ガスGNを導入するための入
口ヘッダ−8と入口配管9を設け、下部には凝縮した液
体窒素LNを集合するための出口ヘッダ−10と出口配
管11、及び窒素ガスGN中に含まれるヘリウムガス等
の不凝縮ガスGXの排出管12を設けている。
The nitrogen chamber 6 is configured almost in the same way as a conventional device.
It is composed of a partition plate 4.4 and side pars 3.3 on both sides of the partition plate, and an inlet header 8 and an inlet pipe 9 for introducing nitrogen gas GN are provided in the upper part, and condensed liquid nitrogen LN is provided in the lower part. An outlet header 10 and an outlet pipe 11 for collecting the nitrogen gas GN, and a discharge pipe 12 for a non-condensable gas GX such as helium gas contained in the nitrogen gas GN are provided.

入口ヘッダ−8から各窒素室6に分配された窒素ガスG
Nは、窒素室6内に垂直に配設された有孔波形伝熱フィ
ンからなる伝熱板13内を、隣接する酸素室5の液体酸
素[0と熱交換しながら凝縮液化して流下し、出口ヘッ
ダ−10に集合する。
Nitrogen gas G distributed from the inlet header 8 to each nitrogen chamber 6
N is condensed and liquefied while exchanging heat with the liquid oxygen [0] in the adjacent oxygen chamber 5 and flows down inside the heat transfer plate 13 consisting of perforated wave-shaped heat transfer fins arranged vertically in the nitrogen chamber 6. , gather at the exit header-10.

一方、窒素室6と気密に仕切られる酸素室5は、仕切板
4.4と上下のサイドパー2.2とにより形成され、そ
の内部に流路14を形成する複数の伝熱板15を上下多
段に配置しているもので、流路14の一端は前記液溜7
と連通しており、他端14aを開放して酸素ガスGoの
ガス出口としている。
On the other hand, the oxygen chamber 5, which is airtightly partitioned from the nitrogen chamber 6, is formed by a partition plate 4.4 and upper and lower side pars 2.2. One end of the flow path 14 is connected to the liquid reservoir 7.
The other end 14a is opened to serve as a gas outlet for oxygen gas Go.

上記伝熱板15は、前記仕切板4.4の間を区切るもの
で、各段につき1枚づつ用いても良いが通常は波形伝熱
フィンを用いる。本実施例ではこの伝熱板15は波形伝
熱フィンを用い、その折り曲げ線を液溜7側から流路1
4の他端14aに向けて病り勾配を有するように傾斜さ
せて垂直方向に多段に配置し、上下の伝熱板15の傾斜
面間を液体酸素LO及び酸素ガスGOの流路14として
おり、一つの液1fif7に対し上下複数の流路14が
連通している。
The heat transfer plate 15 separates the partition plates 4.4, and although one plate may be used for each stage, corrugated heat transfer fins are usually used. In this embodiment, the heat transfer plate 15 uses corrugated heat transfer fins, and the bending line extends from the liquid reservoir 7 side to the flow path 1.
The heat transfer plates 15 are arranged vertically in multiple stages so as to have a slope toward the other end 14a of the heat exchanger plates 15, and a flow path 14 for liquid oxygen LO and oxygen gas GO is provided between the inclined surfaces of the upper and lower heat exchanger plates 15. , a plurality of upper and lower channels 14 communicate with one liquid 1fif7.

上下多段に配設された液17は、上部を開放した箱状に
形成されており、その−側を酸素室5側に開放して前記
流路14と連通させ、最下段の液ff1f!7aを除い
てオーバーフロー管16を設けて液体酸IILOを順次
下段の液M7に流下させているもので、上下の隣接する
液溜7間は間隔17を開けて配設される。
The liquids 17 arranged in multiple stages above and below are formed in a box shape with an open top, and the - side thereof is opened to the oxygen chamber 5 side to communicate with the flow path 14, and the liquid ff1f! of the lowest stage is formed. An overflow pipe 16 is provided except for 7a to allow the liquid acid IILO to flow down sequentially to the lower liquid M7, and the upper and lower adjacent liquid reservoirs 7 are disposed with an interval 17 between them.

この液溜7ft!flの間隔17により、液体酸素LO
は各液溜7で酸素室5の気体側に圧力を開放されて液体
酸素LOの雰囲気圧力は全段同一となり、液深が小さく
なって液圧による波瀾の上昇がほとんど無くなり、凝縮
蒸発器1を高くすることが可能となる。
This liquid reservoir is 7ft! The fl spacing 17 allows liquid oxygen LO
The pressure is released to the gas side of the oxygen chamber 5 in each liquid reservoir 7, so that the atmospheric pressure of liquid oxygen LO becomes the same in all stages, the liquid depth becomes small, there is almost no rise in ripples due to liquid pressure, and the condensing evaporator 1 It becomes possible to increase the

最上部の液溜7に導入された液体酸素10の一部は、前
記流路14に流入し、伝熱板15及び仕切板4を介して
隣室の窒素室6を流れる窒素ガスGNと熱交換し、その
一部が蒸発して酸素ガスGOの気泡となり、液体酸素1
0と共に流路14を上界後、端部14aで液体酸素LO
と分離して上昇し、蒸発しなかった液体酸素LOは下方
に流下する。
A part of the liquid oxygen 10 introduced into the uppermost liquid reservoir 7 flows into the flow path 14 and exchanges heat with the nitrogen gas GN flowing through the nitrogen chamber 6 in the adjacent room via the heat transfer plate 15 and the partition plate 4. Then, a part of it evaporates and becomes bubbles of oxygen gas GO, and liquid oxygen 1
After ascending the flow path 14 with 0, liquid oxygen LO at the end 14a
The liquid oxygen LO that is not evaporated flows downward.

また、残部の液体酸素LOは、オーバーフロー管16に
より順次下段の液溜7に流下して各流路14に流入し、
各流路14に流入する以上の液体酸素LOは最下段の液
溜7aの側壁からオーバーフローして流下する。
In addition, the remaining liquid oxygen LO sequentially flows down to the lower liquid reservoir 7 through the overflow pipe 16 and flows into each flow path 14.
The liquid oxygen LO in excess of the amount flowing into each channel 14 overflows from the side wall of the lowermost liquid reservoir 7a and flows down.

各流路14の傾斜角度は接続する液溜7の深さや流路1
4の長さ等により選定される。流路14は水平に設ける
ことも可能であるが、水平よりも昇り勾配に設けた方が
蒸発生成した酸素ガスG。
The inclination angle of each channel 14 is determined by the depth of the connected liquid reservoir 7 and the channel 1.
4. Selection is made based on the length, etc. Although it is possible to provide the flow path 14 horizontally, it is better to provide the flow path 14 on an upward slope rather than horizontally so that the evaporated oxygen gas G is produced.

の気泡がその浮上刃で流路14から流出し易いとともに
、液体酸素LOの流動を促進し、熱伝達率を高める。
The floating blades make it easy for the bubbles to flow out of the channel 14, promoting the flow of liquid oxygen LO and increasing the heat transfer coefficient.

上記実施例では流路14を昇り勾配に形成したので、蒸
発した酸素ガスGoの気泡がその浮上刃で液体酸素LO
の流動を促進して他端14a側から流出する。そのため
、液体酸素10の蒸発が効果的に行われ無駄に流下する
のを防止でき、蒸発した酸素ガスGoの滞留も生じない
ので凝縮蒸発器1の効率を向上させる。
In the above embodiment, the flow path 14 is formed to have an upward slope, so that the bubbles of the evaporated oxygen gas Go flow into the liquid oxygen LO with the floating blades.
flows out from the other end 14a side. Therefore, the liquid oxygen 10 can be effectively evaporated and can be prevented from flowing down in vain, and the evaporated oxygen gas Go will not remain, thereby improving the efficiency of the condenser evaporator 1.

液体酸素LOの各流路14への流入量は、液溜7の液深
を調節すること、あるいは流路14の流路長や傾斜ある
いは開口断面積を調節することにより行う。
The amount of liquid oxygen LO flowing into each channel 14 is controlled by adjusting the liquid depth of the liquid reservoir 7, or by adjusting the channel length, inclination, or opening cross-sectional area of the channel 14.

尚、最上部の流路14b及び最下部の流路14Cは一端
が閉じているのでこの部分の伝熱板15としては流路1
4間が連通している有孔板等を用いて酸素ガスGOの滞
留を防止することが好ましい。
Note that the uppermost channel 14b and the lowermost channel 14C are closed at one end, so the heat exchanger plate 15 in this part is the channel 1.
It is preferable to use a perforated plate or the like in which the four spaces are in communication to prevent the oxygen gas GO from stagnation.

第3図及び第4図(第4図は第3図のrV−IV矢視図
である)に示す酸素室18は、前記の最上部の流路14
b及び最下部の流路14cを閉じるスラントバー19を
配置して窒素室6と連通させ、酸素ガスGOの滞留部を
無くす例を示している。
The oxygen chamber 18 shown in FIGS. 3 and 4 (FIG. 4 is a view taken along the rV-IV arrow in FIG. 3) is located at the uppermost channel 14.
An example is shown in which a slant bar 19 is arranged to close the flow path 14c at the lowermost portion of the flow path 14b and communicate with the nitrogen chamber 6, thereby eliminating a stagnation portion of the oxygen gas GO.

また第3図及び第4図に示す液溜20は、上部に111
21を有する側壁20aを斜辺と七だ逆台形状に形成さ
れ、該層21から順次下段の液溜20に液体酸素LOを
流下させるもので、斜辺部の側壁20aで流下する液体
酸素し0を受けるとともに気体側に圧力を開放し、前述
のオーバーフロー管16と同一のi能を有する。尚、第
3図に示すように酸素室にスラントバー19を配置した
場合、液溜20のオーバーフロ一手段を堰21に限定す
るものではなく他の方法によっても良い。
In addition, the liquid reservoir 20 shown in FIGS. 3 and 4 has a 111
The side wall 20a having 21 is formed in the shape of an inverted trapezoid with 7 vertices, and the liquid oxygen LO flows down from the layer 21 to the lower liquid reservoir 20 in order. It receives pressure and releases pressure to the gas side, and has the same function as the overflow pipe 16 described above. In addition, when the slant bar 19 is arranged in the oxygen chamber as shown in FIG. 3, the means for overflowing the liquid reservoir 20 is not limited to the weir 21, and other methods may be used.

第5図に示す酸素室22は、液溜への液体酸素しOの供
給方法の他の実施例を示している。酸素室22の液体酸
素LOの入口側端部に前述の液溜と同様に気体側に圧力
を開放された液″1llff23を上下多段に設けてい
る。更に液溜23の各々は連通管25を介してマニホー
ルド管24と連結されており、マニホールド管24の上
端には液受け26を設けている。6液123に供給する
液体酸素LOを、液受け26に供給することにより、マ
ニホールド管24.31通管25を介して全ての液溜2
3に配分供給することができる。マニホールド管24内
の液ヘッドによって、各液溜23への供給量が異なるの
を防止し、均等邑を配分供給するために、連通管25の
流路断面積を液ヘッドの高低相当分だけ増減させている
。上記手段によって液ヘッドによる沸点上昇の少ない液
体酸素LOを酸素室22に均等に供給することができる
The oxygen chamber 22 shown in FIG. 5 shows another embodiment of the method of supplying liquid oxygen and O to the liquid reservoir. At the inlet side end of the liquid oxygen LO of the oxygen chamber 22, a liquid "1llff23" whose pressure is released to the gas side, similar to the aforementioned liquid reservoir, is provided in upper and lower stages in multiple stages. A liquid receiver 26 is provided at the upper end of the manifold pipe 24. By supplying the liquid oxygen LO to be supplied to the 6 liquid 123 to the liquid receiver 26, the manifold pipe 24. 31 to all liquid reservoirs 2 via the pipe 25
It can be distributed and supplied to 3. In order to prevent the amount of liquid supplied to each reservoir 23 from differing depending on the liquid head in the manifold pipe 24 and to distribute the amount evenly, the flow passage cross-sectional area of the communication pipe 25 is increased or decreased by the height of the liquid head. I'm letting you do it. By the above means, liquid oxygen LO whose boiling point does not increase due to the liquid head can be uniformly supplied to the oxygen chamber 22.

勿論、液溜23への液媒供給手段を、液溜23のオーバ
ーフローと連通管25とを組合せて構成してもよい。
Of course, the liquid medium supply means to the liquid reservoir 23 may be configured by combining the overflow of the liquid reservoir 23 and the communication pipe 25.

第6図及び第7図は、前記の凝縮蒸発器1を複精留塔に
設置した例を示すもので、第6図左側の凝縮蒸発器は酸
素室部分を、右側は窒素室部分を示しており、第7図は
第6図のVl −vt断面を示している。  ・ 凝縮蒸発器1は、複精留塔30の上部塔31と下部塔3
2を仕切る隔板33上の窒素ガス主管34を中心とした
円周上に4基並列に収納!iQ置されており、酸素室5
及び液溜7は上部塔31の気体空間35に開放されてい
る。
Figures 6 and 7 show an example in which the aforementioned condenser evaporator 1 is installed in a double rectification column. The condenser evaporator on the left side of Figure 6 shows the oxygen chamber part, and the right side shows the nitrogen chamber part. 7 shows the Vl-vt cross section of FIG. 6. - The condensing evaporator 1 includes an upper column 31 and a lower column 3 of a double rectification column 30.
4 units are housed in parallel on the circumference centered on the nitrogen gas main pipe 34 on the partition plate 33 that partitions the two! iQ is located, oxygen chamber 5
The liquid reservoir 7 is open to the gas space 35 of the upper column 31.

各凝縮蒸発器1と窒素ガス主管340間には各段一体に
連通する液溜7.7が配設され、最上部の液溜7には液
体酸素の導入管36が挿入されている。
A liquid reservoir 7.7 is provided between each condenser evaporator 1 and the nitrogen gas main pipe 340 and communicates with each stage, and a liquid oxygen introduction pipe 36 is inserted into the uppermost liquid reservoir 7.

窒素ガスGNは下部塔32頂部から窒素ガス主管34を
玉貸して各入口ヘッダ−8から窒素室6に導入され、酸
素室5の液体酸素LOと熱交換して凝縮液化し、出口ヘ
ッダ−10に集められて下部配管37から導出される。
Nitrogen gas GN is introduced into the nitrogen chamber 6 from each inlet header 8 through the nitrogen gas main pipe 34 from the top of the lower column 32, and is condensed and liquefied by exchanging heat with the liquid oxygen LO in the oxygen chamber 5, and then transferred to the outlet header 10. is collected and led out from the lower piping 37.

一方、上部塔31の精留板38最下段から導入管36を
通って、凝縮蒸発器1の最上段の液溜7に流入した液体
酸素LOは、前述のごとく一部が酸素室5の流路14に
流入し、窒素室6の窒素ガスGNと熱交換して蒸発し、
酸素ガスGOとなり流路14を流れて端部14aから流
出し、上部塔31の上昇ガスとなるとともに、一部は製
品酸素ガスGoとして配管38から採取される。
On the other hand, as described above, part of the liquid oxygen LO that has flowed from the bottom of the rectifying plate 38 of the upper column 31 through the introduction pipe 36 into the liquid reservoir 7 at the top of the condensing evaporator 1 flows into the oxygen chamber 5. It flows into the passage 14, exchanges heat with the nitrogen gas GN in the nitrogen chamber 6, and evaporates.
The oxygen gas GO becomes oxygen gas GO, flows through the channel 14, flows out from the end 14a, becomes the ascending gas in the upper column 31, and a portion is collected from the pipe 38 as the product oxygen gas Go.

蒸発しない過剰の液体酸素LOは流路14の端部14a
から流下し、隔板33上に溜まり配管39から導出され
、その一部は製品として採取され、他は液体酸素ポンプ
、あるいはサーモサイフオンリボイラー等によって揚上
され、上部の配管40から再び液M7に循環される。
Excess liquid oxygen LO that does not evaporate is stored at the end 14a of the flow path 14.
It flows down from the pipe 39 and accumulates on the partition plate 33, and is led out from the pipe 39. A part of it is collected as a product, and the other part is lifted up by a liquid oxygen pump or a thermosiphon-only boiler, and is returned to the liquid M7 from the pipe 40 at the top. is circulated.

前述のごとく液体酸素LOは各液溜7から各流路14に
流入して熱交換を行ない、それ以上の液体酸素LOがオ
ーバーフロー管16により順次下段の液溜7に流下する
もので、最下段の液溜7aからは隔板33上に流下する
As mentioned above, liquid oxygen LO flows into each flow path 14 from each liquid reservoir 7 and undergoes heat exchange, and further liquid oxygen LO flows down to the lower liquid reservoir 7 through the overflow pipe 16, The liquid flows down onto the partition plate 33 from the liquid reservoir 7a.

また、液体酸素LOが酸素室5内で完全に蒸発して、流
路14にアチセレンが析出しないように、過剰な液体酸
素LOを流して常時流路14を液体酸素LOで洗うこと
が好ましく、過剰の液体酸素LOが流下していることを
知るために、隔板33上に溜まっている液体酸素10の
量を液面計41により計測する。
Further, in order to prevent liquid oxygen LO from completely evaporating in the oxygen chamber 5 and atyselene from precipitating in the flow path 14, it is preferable to constantly wash the flow path 14 with liquid oxygen LO by flowing an excess of liquid oxygen LO. In order to know that excess liquid oxygen LO is flowing down, the amount of liquid oxygen 10 accumulated on the partition plate 33 is measured by the liquid level gauge 41.

このように、液体酸素を流下させるので、液圧による液
温上昇がなく、窒素ガスの凝縮温度を低下させて下部塔
の運転圧力を低減でき、原料空気圧縮機の動力費を低減
する。
In this way, since the liquid oxygen is allowed to flow down, there is no rise in liquid temperature due to liquid pressure, and the condensation temperature of nitrogen gas can be lowered to reduce the operating pressure of the lower column, reducing the power cost of the raw air compressor.

また凝縮蒸発器の高さを高くし、伝熱面積を大ぎくでき
るので、より能力の高いものを精留塔の径内に納めるこ
とができ、複精留塔の製作を容易にする。
Furthermore, since the height of the condensing evaporator can be increased and the heat transfer area can be increased, a device with higher capacity can be accommodated within the diameter of the rectifying column, making it easier to manufacture a double rectifying column.

さらにまた起動時上部塔を流下してきた液化ガスを流入
させると同時に凝縮と蒸発を生じるので、起動時間が大
幅に短縮され、この間の動力費を削減できる。
Furthermore, since condensation and evaporation occur at the same time as the liquefied gas that has flowed down the upper column is introduced at the time of startup, startup time is significantly shortened and power costs during this time can be reduced.

尚、空気液化分離における液体酸素と窒素ガスとの熱交
換による蒸発と凝縮以外の、他の液媒と流体を用いた場
合も同様の作用効果を得られるものである。
Note that similar effects can be obtained when using other liquid media and fluids than evaporation and condensation through heat exchange between liquid oxygen and nitrogen gas in air liquefaction separation.

〔充用の効果〕[Effect of appropriation]

本発明は以上説明したように第一流体室の液媒と第二流
体室の流体とで熱交換を行なう凝縮蒸発器の第一流体室
に、上下多段に流路を設け、該流路の一端側に前記流路
と連通する液溜を上下多段に設けるとともに、液媒を各
段の液溜に供給させながら前記流路に導入して熱交換さ
せるので、液媒の液深が僅少となり液圧による温度上昇
がなくなり、凝縮蒸発器の効率を向上させ、第二流体室
側の流体の凝縮温度を低下させて運転圧力を低減するこ
とにより、動力費を削減できる。
As explained above, the present invention provides a first fluid chamber of a condensing evaporator in which heat exchange is performed between a liquid medium in a first fluid chamber and a fluid in a second fluid chamber, and a flow path is provided in upper and lower stages in multiple stages. At one end side, liquid reservoirs communicating with the flow path are provided in multiple stages above and below, and the liquid medium is introduced into the flow path and heat exchanged while being supplied to the liquid reservoirs at each stage, so that the liquid depth of the liquid medium is small. There is no temperature rise due to liquid pressure, the efficiency of the condensing evaporator is improved, the condensing temperature of the fluid in the second fluid chamber is lowered, and the operating pressure is reduced, thereby reducing power costs.

また凝縮蒸発器の高さ方向の形状的制限が無くなり長尺
にすることで処理能力増加が可能になつた。その結果凝
縮蒸発器を収納する容器径を精留塔と同一とすることが
可能となり大型空気分離装置用精留塔でも上下部塔を上
下一体構造で製作することが可能となった。
In addition, there are no restrictions on the shape of the condenser-evaporator in the height direction, making it possible to increase the throughput by making it longer. As a result, it became possible to make the diameter of the container housing the condensing evaporator the same as that of the rectification column, and even in the case of a rectification column for large-scale air separation equipment, it became possible to manufacture the upper and lower columns in an integrated structure.

さらに、液媒中に浸漬する必要がないため、起動時間を
短縮できる。
Furthermore, since there is no need to immerse the device in a liquid medium, startup time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実滴例を示すもので、第
1図は凝縮蒸発器の一部を切欠いて示す斜視図、第2図
は第一流体室である酸素室の断面図、第3図及び第4図
は本発明の他の実施例を示すもので、第3図は酸素室の
断面図、第4図は第3図の■−IV矢視図、第5図は本
発明の更に他の実施例を示す酸素室の断面図、第6図及
び第7図は本発明の凝縮蒸発器を複精留塔に用いた例を
示すもので、第6図は精留塔の要部断面図、第7図は第
6図のVl −Vl断面図である。 1・・・凝縮蒸発器  4・・・仕切板  5・・・酸
素室(第一流体室)  6・・・窒素室(第二流体室)
7・・・液溜   14・・・流路  15・・・伝熱
板16・・・オーバーフロー管  24・・・マニホー
ルド管  GN・・・窒素ガス  Go・・・酸素ガス
LN・・・液体窒素  LO・・・液体酸素特 許 出
 願 人 日本酸素株式会社溌1園 第6区 憩 秀7因 並
Figures 1 and 2 show an example of an actual droplet of the present invention. Figure 1 is a partially cutaway perspective view of the condenser evaporator, and Figure 2 is a perspective view of the oxygen chamber, which is the first fluid chamber. 3 and 4 show other embodiments of the present invention, in which FIG. 3 is a sectional view of the oxygen chamber, FIG. The figure is a sectional view of an oxygen chamber showing still another embodiment of the present invention, and Figures 6 and 7 are examples of using the condensing evaporator of the present invention in a double rectification column. FIG. 7 is a sectional view of the main part of the rectification column, and is a sectional view taken along the line Vl--Vl in FIG. 6. 1... Condensing evaporator 4... Partition plate 5... Oxygen chamber (first fluid chamber) 6... Nitrogen chamber (second fluid chamber)
7...Liquid reservoir 14...Flow path 15...Heat exchange plate 16...Overflow tube 24...Manifold tube GN...Nitrogen gas Go...Oxygen gas LN...Liquid nitrogen LO ...Liquid oxygen patent applicant Nihon Sanso Co., Ltd.

Claims (1)

【特許請求の範囲】 1、多数の垂直な仕切板により第一流体室と第二流体室
とを交互に形成し、前記第一流体室の液媒と、前記第二
流体室の流体とで熱交換を行なう凝縮蒸発器において、
前記第一流体室に上下多段に複数の伝熱板を配置して液
媒の流路を形成し、該流路の一端は開放とし、他端側に
該流路と連通し、上部を開放した複数の液溜を上下多段
に設けるとともに、液媒を各段の液溜に供給させながら
前記流路に導入して熱交換させるように構成したことを
特徴とする凝縮蒸発器。 2、前記液媒の流路は、液溜側の一端から他端先端に向
って昇り勾配を有していることを特徴とする特許請求の
範囲第1項記載の凝縮蒸発器。
[Claims] 1. First fluid chambers and second fluid chambers are formed alternately by a large number of vertical partition plates, and the liquid medium in the first fluid chamber and the fluid in the second fluid chamber are formed alternately. In a condensing evaporator that performs heat exchange,
A plurality of heat transfer plates are arranged in upper and lower stages in the first fluid chamber to form a flow path for the liquid medium, one end of the flow path is open, the other end communicates with the flow path, and the upper part is open. A condensing evaporator characterized in that a plurality of liquid reservoirs are provided in upper and lower stages, and a liquid medium is introduced into the flow path while being supplied to the liquid reservoirs in each stage for heat exchange. 2. The condensing evaporator according to claim 1, wherein the liquid medium flow path has an upward slope from one end on the liquid reservoir side to the tip of the other end.
JP32904987A 1986-12-26 1987-12-24 Evaporator Expired - Lifetime JPH0668434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32904987A JPH0668434B2 (en) 1986-12-26 1987-12-24 Evaporator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31478186 1986-12-26
JP61-314781 1986-12-26
JP32904987A JPH0668434B2 (en) 1986-12-26 1987-12-24 Evaporator

Publications (2)

Publication Number Publication Date
JPS63267877A true JPS63267877A (en) 1988-11-04
JPH0668434B2 JPH0668434B2 (en) 1994-08-31

Family

ID=26568072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32904987A Expired - Lifetime JPH0668434B2 (en) 1986-12-26 1987-12-24 Evaporator

Country Status (1)

Country Link
JP (1) JPH0668434B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000243A1 (en) * 1988-07-04 1990-01-11 Japan Oxygen Co., Ltd. Condenser/evaporator
EP0607006B1 (en) * 1993-01-11 1996-12-11 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Plate fin heat exchanger built-in type multi-stage thermosiphon
JP2003535301A (en) * 2000-05-31 2003-11-25 リンデ アクチエンゲゼルシヤフト Multi-stage condenser
CN104390428A (en) * 2014-12-01 2015-03-04 杭州福斯达实业集团有限公司 Large efficient condensation evaporator
WO2020045662A1 (en) * 2018-08-30 2020-03-05 国立大学法人佐賀大学 Heat exchanger
WO2021125224A1 (en) * 2019-12-17 2021-06-24 大陽日酸株式会社 Multi-level liquid reservoir-type condensation evaporator, and air separation device equipped with multi-level liquid reservoir-type condensation evaporator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08182714A (en) * 1994-12-28 1996-07-16 Mutsumi Tekunika:Kk Coffin for burying small animal

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990000243A1 (en) * 1988-07-04 1990-01-11 Japan Oxygen Co., Ltd. Condenser/evaporator
US5222549A (en) * 1988-07-04 1993-06-29 Japan Oxygen Co., Ltd. Condenser/evaporator
EP0607006B1 (en) * 1993-01-11 1996-12-11 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Plate fin heat exchanger built-in type multi-stage thermosiphon
JP2003535301A (en) * 2000-05-31 2003-11-25 リンデ アクチエンゲゼルシヤフト Multi-stage condenser
CN104390428A (en) * 2014-12-01 2015-03-04 杭州福斯达实业集团有限公司 Large efficient condensation evaporator
WO2020045662A1 (en) * 2018-08-30 2020-03-05 国立大学法人佐賀大学 Heat exchanger
JP2020034234A (en) * 2018-08-30 2020-03-05 国立大学法人佐賀大学 Heat exchanger
WO2021125224A1 (en) * 2019-12-17 2021-06-24 大陽日酸株式会社 Multi-level liquid reservoir-type condensation evaporator, and air separation device equipped with multi-level liquid reservoir-type condensation evaporator
JP2021096028A (en) * 2019-12-17 2021-06-24 大陽日酸株式会社 Multistage liquid reservoir type condensation evaporator, and air separation device with the multistage liquid reservoir type condensation evaporator
CN114787570A (en) * 2019-12-17 2022-07-22 大阳日酸株式会社 Multi-stage liquid storage type condensation evaporator and air separation device with same
CN114787570B (en) * 2019-12-17 2024-05-24 大阳日酸株式会社 Multistage liquid storage type condensation evaporator and air separation device with same

Also Published As

Publication number Publication date
JPH0668434B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US5222549A (en) Condenser/evaporator
US6748763B2 (en) Multistoreyed bath condenser
DK1479985T3 (en) SUBMITTED EVAPORATOR INCLUDING A PLATE HEAT EXCHANGE AND A CYLINDRICAL HOUSE WHERE THE PLATE HEAT EXCHANGE IS LOCATED
JPS60253782A (en) Condenser for large-sized air separator
US7028762B2 (en) Condenser for refrigerating machine
JP6087326B2 (en) Multistage condensing evaporator
JPS63267877A (en) Condensing evaporator
WO2000020812A1 (en) Downflow liquid film type condensation evaporator
US20220082325A1 (en) Multistage liquid storage-type condenser-evaporator and nitrogen production device using the same
JPH0534082A (en) Condensor/evaporator
JP2787593B2 (en) Evaporator
JPH0788924B2 (en) Condensing evaporator
JP2787594B2 (en) Evaporator
JP2787591B2 (en) Evaporator
JP2000111244A (en) Flowing-down liquid film type condensation evaporator
JPH0730997B2 (en) Condensing evaporator
JP4174109B2 (en) Falling liquid film type condensation evaporator and method of using the same
WO2021125224A1 (en) Multi-level liquid reservoir-type condensation evaporator, and air separation device equipped with multi-level liquid reservoir-type condensation evaporator
SU1035398A1 (en) Plate-type heat exchanger
JPH0268475A (en) Condensation vaporizer and operation thereof
JPH0789010B2 (en) Condensation evaporator and its operating method
JPH02233985A (en) Condenser-evaporator
JPH0789008B2 (en) Condensing evaporator
JPH05280861A (en) Condensation vaporizer
JPS63141606A (en) Condensation evaporator