JPS5818094A - Evaporator - Google Patents

Evaporator

Info

Publication number
JPS5818094A
JPS5818094A JP11504681A JP11504681A JPS5818094A JP S5818094 A JPS5818094 A JP S5818094A JP 11504681 A JP11504681 A JP 11504681A JP 11504681 A JP11504681 A JP 11504681A JP S5818094 A JPS5818094 A JP S5818094A
Authority
JP
Japan
Prior art keywords
liquid
medium
flow path
passages
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11504681A
Other languages
Japanese (ja)
Inventor
Hisashi Nakayama
中山 恒
Takahiro Oguro
崇弘 大黒
Tadakatsu Nakajima
忠克 中島
Kenji Takahashi
研二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11504681A priority Critical patent/JPS5818094A/en
Publication of JPS5818094A publication Critical patent/JPS5818094A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To reduce the resistance to two-phase fluid flow of a medium to be evaporated, by forming medium fluid passages and heating fluid passages alternately between heat exchanger plates which are arranged vertically and in parallel with each other, and disposing a corrugated plate formed with hollows at its ridge portions in each of the medium fluid passages. CONSTITUTION:Liquid passages 10 for passing a medium liquid 6 therethrough and heating fluid passages 11 for passing a heating fluid 19 therethrough are formed alternately between heat exchanger plates 9 which are arranged vertically and in parallel with each other. Further, a corrugated plate 13 is disposed under a trough 12 provided in each of the liquid passages 10. Here, arrangement is such that ridge portions 13a of the corrugated plate 13 are located near to the wall 9a of the liquid passage 10 and a proper number of hollows 14 are formed at the ridge portions 13a along the width of the plate 13 with proper intervals from each other. Vapor passages 17 surrounded respectively by liquid film flows 6a, 6b are formed under the trough 12 and the corrugated plate 13.

Description

【発明の詳細な説明】 本発明は低沸点媒体を作動流体としたランキンサイクル
、冷凍機、電子機器および原子力発電プラントなどに使
用される蒸発器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporator used in Rankine cycles, refrigerators, electronic equipment, nuclear power plants, etc., using a low boiling point medium as a working fluid.

従来、最も広く用いられている、蒸発器は多数の円管を
円筒形胴内に収納したシェル・チューブ形式の熱交換器
である。近年は廃熱、地熱および海洋温度差などの低温
度エネルギーを有効に利用するために、低沸点媒体を作
動流体としたランキンサイクル発成プラントが注目され
ておシ、その熱交換器として従来のフェル−チューブ形
式のものよシ小形で高性能のものが要望されている。こ
の要望を満足させるために、第1図ないし第3図に示す
ような三種類の熱交換器が提案されている。
Conventionally, the most widely used evaporator is a shell-tube heat exchanger in which a number of circular tubes are housed in a cylindrical shell. In recent years, Rankine cycle power generation plants that use a low boiling point medium as the working fluid have attracted attention in order to effectively utilize low-temperature energy such as waste heat, geothermal heat, and ocean temperature differences. There is a demand for something smaller and with higher performance than the fell-tube type. In order to satisfy this demand, three types of heat exchangers as shown in FIGS. 1 to 3 have been proposed.

第1案の熱交換器は第1図に示すように、金属帯を折シ
曲げて小ピツチの波形を有するように形成されたフイ/
21と隔離板とを交互に、かつ並列に設置して接合し、
温水24の流通する水平流路23と低沸点媒体26の流
通する垂直流路25が形成されている。その低沸点媒体
26は温水24との熱交換によシ蒸発して媒体蒸気27
となって流出する。この際、小さい温度差のもとて多量
の蒸気を発生させねばならないので、密に設けたフィン
21によシ単位容積当りの伝熱面積を大きくするように
構成されている。
As shown in Fig. 1, the first heat exchanger is made by bending a metal strip to form a small-pitch waveform.
21 and separators are installed and joined alternately and in parallel,
A horizontal flow path 23 through which hot water 24 flows and a vertical flow path 25 through which a low boiling point medium 26 flows are formed. The low boiling point medium 26 is evaporated by heat exchange with the hot water 24, and the medium vapor 27 is evaporated.
It flows out. At this time, since a large amount of steam must be generated with a small temperature difference, the fins 21 are arranged closely to increase the heat transfer area per unit volume.

第2案の熱交換器は伝熱管の外周面に薄い液膜を作って
蒸発させるものである。すなわち第2図に示すように水
平に、かつ数段に設置した伝熱管群29の上方よシ媒体
液28をスプレーすると、その伝熱管#29の各112
9mの外周面に液膜30が形成される。この場合、各伝
熱管29a内をff、遇する加熱流体31から各伝熱管
29mの管壁へ熱が伝達され、この熱は各伝熱管39m
の内部、それらの管壁と液膜30との境界面および液膜
30を通過して液膜表面30aに達し、この表面304
1へ蒸発潜熱を供給する。
The second heat exchanger creates a thin liquid film on the outer peripheral surface of the heat transfer tube and evaporates it. That is, as shown in FIG. 2, when the cleaning medium liquid 28 is sprayed horizontally and above the heat transfer tube group 29 installed in several stages, each 112 of the heat transfer tube #29 is sprayed upward.
A liquid film 30 is formed on the outer peripheral surface of 9 m. In this case, heat is transferred from the heated fluid 31 inside each heat exchanger tube 29a to the tube wall of each heat exchanger tube 29m, and this heat is transferred to each heat exchanger tube 39m.
, through the interface between the tube wall and the liquid film 30, and through the liquid film 30 to reach the liquid film surface 30a, and this surface 304
Supply latent heat of vaporization to 1.

上記液膜30を薄層に保りことができれば、熱流に対す
る液膜部分の抵抗は減少するから熱伝達車を向上させる
ことができる。また熱交換器内部に多量の液が存在する
ために生ずる弊害、すなわち下方に位置する伝熱管から
の気泡の発生、表面からの液の離脱および上方への気泡
の移動などく対し、多量の液の存在が呈する大きな抵抗
を除去することができる。さらに伝熱管の外周面に微細
なフィンまえは溝を設けることによシ、蒸発の熱□ 伝達を促進させることが可能である。
If the liquid film 30 can be kept thin, the resistance of the liquid film portion to heat flow will be reduced, thereby improving the heat transfer vehicle. In addition, in order to prevent the negative effects caused by the presence of a large amount of liquid inside the heat exchanger, such as the generation of bubbles from the heat exchanger tubes located below, the separation of liquid from the surface, and the movement of bubbles upward, a large amount of liquid The large resistance presented by the presence of Furthermore, by providing fine grooves in front of the fins on the outer peripheral surface of the heat transfer tube, it is possible to promote the transfer of evaporative heat.

第3案はfsa図に示すように、内部を加熱流体33が
流通する鉛直管32の外周面に、媒体液の薄膜層34を
形成して流下させることによシ蒸発を起させるようにし
たものである。このような熱交換器は化学工業、食品工
業例えば果汁の濃縮のように、液と加熱面との接触時間
を短縮して液の品質劣化を防止するのに好適である。
As shown in the fsa diagram, the third plan is to form a thin film layer 34 of the medium liquid on the outer peripheral surface of the vertical pipe 32 through which the heating fluid 33 flows, and to cause the liquid to evaporate by flowing down. It is something. Such a heat exchanger is suitable for use in the chemical industry and the food industry, for example, for concentrating fruit juice, to shorten the contact time between a liquid and a heated surface to prevent quality deterioration of the liquid.

上記第1案では、媒体液26と発生した蒸気27は狭く
仕切られ九流路25を同一方向に流れる。このような二
相流の流動状況では、液と蒸気の6流れが互に干渉し合
うため、一部の液は加熱壁面よシ剥離して蒸気流に押し
流される恐れがある。その蒸気の流れは液膜および液滴
を押し流す仕事をするため、二相流の圧力損失は増大し
、媒体液流を駆動するためのポンプ動力が増大するので
、低温度の熱源を利用するランキンサイクルにとっては
、有効仕事を大幅に減少することになるから回避しなけ
ればならない。さらに蒸気流に押し流される液のうち、
かなシの割合を占める量が蒸発せずに蒸発器出口から放
出されるため、密に設けたフィンによシ伝熱面積を増加
したにも拘らず、これらの伝熱面積が有効に作動しない
可能性が大である。
In the first plan, the medium liquid 26 and the generated steam 27 are narrowly partitioned and flow in the same direction through nine channels 25. In such a two-phase flow situation, the six flows of liquid and steam interfere with each other, so that some of the liquid may separate from the heated wall surface and be swept away by the steam flow. Because the steam flow does the work of displacing the liquid film and droplets, the pressure drop in the two-phase flow increases, and the pump power to drive the medium liquid flow increases, so the Rankine system uses a low-temperature heat source. This must be avoided as it will greatly reduce the useful work for the cycle. Furthermore, among the liquids swept away by the steam flow,
Because the amount that accounts for the heat transfer rate is released from the evaporator outlet without being evaporated, even though the heat transfer area has been increased by the densely arranged fins, these heat transfer areas do not work effectively. It is highly possible.

前記第2案は媒体の流動に対する抵抗が少ない構造であ
るが、実際には伝熱管29mの下部に液が懸垂して厚い
液膜30を形成する。また下方の伝熱管は上方の管群か
らの滴下液を受けるが、伝熱管2951の外周全面にわ
たって液膜30が必ずしも薄くならないため、期待した
ような熱伝達促進効果はえられない。
Although the second plan has a structure with less resistance to the flow of the medium, in reality, the liquid suspends at the bottom of the heat transfer tube 29m, forming a thick liquid film 30. Furthermore, although the lower heat transfer tubes receive the dripping liquid from the upper tube group, the liquid film 30 does not necessarily become thin over the entire outer periphery of the heat transfer tubes 2951, so the expected heat transfer promoting effect cannot be obtained.

一方、伝熱管29aの外周面にフィンまたは溝を設ける
と、伝熱管29mの表面積は増加する。
On the other hand, when fins or grooves are provided on the outer peripheral surface of the heat exchanger tube 29a, the surface area of the heat exchanger tube 29m increases.

しかしフィンの山あるいは溝と溝との間の隆起部におけ
る液膜は薄くなるが、フィンとフィンとの間あるいは溝
内は厚い液膜で覆われるから、熱伝達率は著しく向上し
ない。上記のように第2案では、媒体液は流動しやすい
が、熱交換器容積を画期的に小さくすることができない
However, although the liquid film on the ridges of the fins or the protrusions between the grooves becomes thinner, the areas between the fins or inside the grooves are covered with a thicker liquid film, so that the heat transfer coefficient does not improve significantly. As described above, in the second plan, the medium liquid flows easily, but the heat exchanger volume cannot be dramatically reduced.

さらに第3案では、媒体液34が垂直管32の管壁に沿
って流下するので、第2案におけるように懸垂液によp
有効伝熱面積が減少する恐れはない。ところが伝熱管3
2が長くなると、その下部に乾き面を生じないように上
方から十分な量の媒体液34を供給する必要がある。こ
のため液膜厚さを伝熱管全長にわたって平均にすると、
平均の液膜厚さは必ずしも小さくならない。
Furthermore, in the third plan, the medium liquid 34 flows down along the pipe wall of the vertical pipe 32, so that the suspension liquid 34 flows down as in the second plan.
There is no risk that the effective heat transfer area will decrease. However, heat transfer tube 3
2, it is necessary to supply a sufficient amount of medium liquid 34 from above so as not to form a dry surface at the bottom. Therefore, if the liquid film thickness is averaged over the entire length of the heat transfer tube,
The average liquid film thickness does not necessarily become smaller.

そこで伝熱管32の長手方向に小ピツチで液供給口を設
け、これらの供給口に少量の媒体液を供給することによ
シ液膜を薄く保つ方法が考えられる。しかし液供給口を
多数設けると構造が複雑となシ、さらに蒸発器の計画負
荷以外の作動点では、上方の液供給口から流下する媒体
液が完全に蒸発せずに下方の液供給口に達するので、流
下液と供給液は重なシ合って蒸発器の性能を大幅に低下
させる。
Therefore, a method can be considered to keep the liquid film thin by providing liquid supply ports at small pitches in the longitudinal direction of the heat transfer tube 32 and supplying a small amount of medium liquid to these supply ports. However, providing a large number of liquid supply ports complicates the structure, and furthermore, at operating points other than the planned load of the evaporator, the medium liquid flowing down from the upper liquid supply port does not completely evaporate and flows into the lower liquid supply port. As a result, the effluent and feed liquid overlap, significantly reducing the performance of the evaporator.

また上方の液供給口から流下する液が下方の液供給口に
達する以前に完全に蒸発するため、乾いた伝熱面が出現
するので、蒸発器の性能は低下する。このように第3案
では、蒸発器の性能を大幅に向上させることが困難でア
シ、仮9に計画負荷士は高性能がえられたとしても、蒸
発器の負荷変動に対志させることが至−である。これは
排熱利用の蒸発器のように熱源の容量が大きく変動する
場合に梅に重大な問題を生ずる恐れがある。
Furthermore, since the liquid flowing down from the upper liquid supply port is completely evaporated before reaching the lower liquid supply port, a dry heat transfer surface appears, and the performance of the evaporator is degraded. In this way, in the third option, it is difficult to significantly improve the performance of the evaporator, and even if the planned load operator could achieve high performance, it would be difficult to adapt it to the load fluctuations of the evaporator. To -. This may cause serious problems for plums when the capacity of the heat source fluctuates greatly, such as in an evaporator that uses waste heat.

本発明は上記にかんがみ小形で高い熱交換性能を有し、
かつ蒸発する媒体の二相流々動に対する抵抗の小さい蒸
発器を提供することを目的とするもので、作動媒体液の
ヘッダと作動媒体蒸気のヘッダとの間に、熱交換板を鉛
直に、かつ並列に設置して媒体液流路と加熱流体流路を
交互に形成し、前記媒体液流路の内壁面に、その液流路
に連通する空洞を設けると共に、前記媒体液流路内に屈
曲帯を設け、この屈曲帯の屈曲部を前記内壁面に近接さ
せると共に、前記屈曲部に切欠きを設けたことを特徴と
するものである。
In view of the above, the present invention is compact and has high heat exchange performance,
The purpose is to provide an evaporator with low resistance to two-phase flow of the medium to be evaporated, and a heat exchange plate is installed vertically between the working medium liquid header and the working medium vapor header. A medium liquid flow path and a heating fluid flow path are arranged in parallel to alternately form, and a cavity communicating with the liquid flow path is provided on the inner wall surface of the medium liquid flow path, and a bend is formed in the medium liquid flow path. The invention is characterized in that a band is provided, a bent part of the bent band is brought close to the inner wall surface, and a notch is provided in the bent part.

以下本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第4図および第5図において、2は作動媒体液6を導入
する液配管5が取付けられた液ヘッダ、3は媒体蒸気8
を導出する蒸気配管7が取付けられた蒸気ヘッダ、9は
液ヘッダ2と蒸気ヘッダ3との間に鉛直に、かつ並列に
任意数設置された熱交換板で、これらの熱交換板9によ
シ媒体液6の流通する媒体液流路(以F液流路と称す)
10しよび加熱流体19の流通する加熱流体流路11が
交互に任意数形成されている。前記液流路10にはとい
12が適宜間隔を保って任意数(第5図では5個)並設
されている。
In FIGS. 4 and 5, 2 is a liquid header to which a liquid pipe 5 for introducing the working medium liquid 6 is attached, and 3 is a liquid header with a medium vapor 8.
The steam header 9 is equipped with a steam pipe 7 that leads out the water, and 9 is a heat exchange plate installed vertically and in parallel between the liquid header 2 and the steam header 3. Medium liquid flow path through which the medium liquid 6 flows (hereinafter referred to as F liquid flow path)
10 and heating fluid passages 11 through which heating fluid 19 flows are formed in an arbitrary number alternately. In the liquid flow path 10, an arbitrary number (5 in FIG. 5) of grooves 12 are arranged in parallel at appropriate intervals.

上記液流路10は第6図および第7図に示すように構成
されている。すなわちとい12の下方に屈曲帯13をそ
れぞれ設け、その屈曲帯13の屈曲部13aを液流路1
0の壁(熱交換板)9aに近接させると共に、その屈曲
部13aに切欠き14が適宜間隔を保って福方向に任意
数設けられている。前記とい12および屈曲帯13の下
部には、それぞれ液膜、流61,6bにょシ囲まれた蒸
気流路17が形成されている。
The liquid flow path 10 is constructed as shown in FIGS. 6 and 7. That is, bending bands 13 are provided below the gutter 12, and the bending portions 13a of the bending bands 13 are connected to the liquid flow path 1.
0 wall (heat exchange plate) 9a, and an arbitrary number of notches 14 are provided in the bending portion 13a in the forward direction at appropriate intervals. A vapor passage 17 surrounded by a liquid film and streams 61 and 6b is formed in the lower part of the gutter 12 and the bent band 13, respectively.

上記液流路10の壁(熱交換板)9mの内面には、断面
の相当直径1−以下の空洞15が多数設けられておシ、
この字1,15は開孔16を介して液流路10に連通さ
れている。
On the inner surface of the wall (heat exchange plate) 9m of the liquid flow path 10, a large number of cavities 15 having an equivalent cross-sectional diameter of 1 - or less are provided.
These characters 1 and 15 are communicated with the liquid flow path 10 via the opening 16.

次に上記のような構成からなる本実施例の作用について
説明する。
Next, the operation of this embodiment configured as described above will be explained.

媒体液6は液配管5によ)ヘッダ2内、に流入され、し
かもそのヘッダ2の内部に自由液面20を定位置に保つ
のに十分な流量で流通する。そして各とい12にそれぞ
れ流入する媒体液6はヘッダ2壁のとい連結口における
液流の流路断面積と自由液面20からの距離に比例する
液圧ヘッドにょシ決まる流量で流れる。各とい12に流
入した媒体液6はとい12と壁面9aとの間の隙間から
壁面9aおよび屈曲IFI:iKそれぞれ沿って液膜流
6m、(!bとなって流下しながら蒸発して蒸気8を発
生する。この蒸気8は蒸気ヘッダ3に向って流れ、その
蒸気ヘッダ3に集められた蒸気8は配管7を経て流出す
る。
The liquid medium 6 flows into the header 2 (via the liquid line 5) and flows therein at a flow rate sufficient to maintain the free liquid level 20 in place. The medium liquid 6 flowing into each gutter 12 flows at a flow rate determined by the hydraulic head, which is proportional to the flow path cross-sectional area of the liquid flow at the gutter connection port in the wall of the header 2 and the distance from the free liquid surface 20. The medium liquid 6 that has flowed into each gutter 12 flows down from the gap between the gutter 12 and the wall surface 9a along the wall surface 9a and the bending IFI: iK as a liquid film flow of 6 m, (!b) and evaporates into vapor 8. The steam 8 flows toward the steam header 3, and the steam 8 collected in the steam header 3 flows out through the pipe 7.

上記壁面9mは空洞15を設けて蒸発熱伝達に有効な多
孔面に構成されているため、任意の開孔16から蒸気を
噴出し、空洞15から脱出する蒸気質量を補足するため
に、他の開孔16から液が空洞15内に浸入する。この
侵入液は、空洞15の壁面が僅かな温度差のもとに加熱
されていると、短時間に蒸発1   ・・1を発生し、
この蒸気は再び前記開孔よシ噴出される。液膜6aが厚
い場合には、蒸気は気泡となって液膜6mを横切って液
膜表面に達するが、液膜6aが薄い場合には、気泡形状
とならずに液膜6aを排除して蒸気の離脱が行われる。
The wall surface 9m has a cavity 15 and is configured as a porous surface that is effective for evaporative heat transfer. Liquid enters the cavity 15 through the opening 16. When the wall surface of the cavity 15 is heated with a slight temperature difference, this intruding liquid will evaporate 1...1 in a short time,
This steam is again blown out through the opening. When the liquid film 6a is thick, the vapor turns into bubbles and crosses the liquid film 6m to reach the liquid film surface. However, when the liquid film 6a is thin, the vapor does not form a bubble shape and eliminates the liquid film 6a. Steam withdrawal takes place.

この場合、壁9aと液膜6aとの温度差IC以下の場合
でも活発に蒸気を発生するので、多孔伝熱面の熱伝達率
は通常の平滑面の熱伝達率の約10倍となる。
In this case, even if the temperature difference between the wall 9a and the liquid film 6a is less than IC, steam is actively generated, so the heat transfer coefficient of the porous heat transfer surface is about 10 times that of a normal smooth surface.

液流路10内の屈曲帯13に設けた切欠き14を通過し
て流下する液膜6aおよび屈曲帯13に沿って流下する
液膜6bの流量は、切欠き14の形状と寸法によシ制御
される。この際、屈曲帯13と壁面9aとの間には液だ
ま#)18が形成される場合が多いが、この液だまり1
8においても、これに接する多孔伝熱面(壁面−9i)
から蒸気を活発に発生する。前記屈曲帯13を金属製と
すれば、相隣る切欠き14間の屈曲部13bを経て熱が
壁面9aから屈曲帯13によく伝達されるので、屈曲帯
13はフィンの役目をして液膜流6bを加熱すZ  、
蒸気を活発に発生させることができる。
The flow rate of the liquid film 6a flowing down through the notch 14 provided in the bending zone 13 in the liquid flow path 10 and the flow rate of the liquid film 6b flowing down along the bending zone 13 depends on the shape and dimensions of the notch 14. controlled. At this time, a liquid pool #) 18 is often formed between the bending band 13 and the wall surface 9a;
8, the porous heat transfer surface (wall surface -9i) in contact with this
It actively generates steam. If the bending band 13 is made of metal, heat is well transferred from the wall surface 9a to the bending band 13 through the bending portion 13b between adjacent notches 14, so the bending band 13 acts as a fin and prevents liquid from flowing. Z heating the membrane flow 6b,
It can actively generate steam.

屈曲J’1aに設けた切欠き14の寸法を鉛直方向に変
化させることにより、鉛直方向に液膜厚さの分布をつけ
ることも可能である。すなわち加熱流体の温度が比較的
に高い蒸発器入口近傍(第6図の流路10の下方)に多
量の液を供給するようにし、大きな温度差を効果的に利
用して蒸発器全体の性能を向上させることができる。ま
た屈曲帯13の屈曲ピッチを上下方向に変化させること
により、蒸気発生量が多い個所、例えば第6図の液流路
10の下部において、前記屈曲ピッチを大きくして蒸気
流路17の断面積を広くするようにしてもよい。
By changing the dimension of the notch 14 provided in the bend J'1a in the vertical direction, it is also possible to provide a distribution of the liquid film thickness in the vertical direction. In other words, a large amount of liquid is supplied near the evaporator inlet where the temperature of the heating fluid is relatively high (below the flow path 10 in Figure 6), and the large temperature difference is effectively used to improve the overall performance of the evaporator. can be improved. Furthermore, by changing the bending pitch of the bending band 13 in the vertical direction, the bending pitch can be increased to increase the cross-sectional area of the vapor flow path 17 at a location where a large amount of steam is generated, for example, at the lower part of the liquid flow path 10 in FIG. may be made wider.

なお蒸気泡が多孔伝熱面から活発に発生する場合、液膜
が多孔伝熱面から剥離し、または蒸気泡が液表面から離
脱する際に微小な液滴を飛散するが、これらの離脱液は
下方に落下して屈曲帯に捕集される。
Note that when vapor bubbles are actively generated from the porous heat transfer surface, minute droplets are scattered when the liquid film peels off from the porous heat transfer surface or the vapor bubbles separate from the liquid surface, but these separated liquid falls downward and is collected in the bend zone.

以上説明したように本発明によれば、単位容積当シの伝
熱面積を増大させ、しかも発生した蒸気の流動に対する
抵抗を小さくすることができる。
As explained above, according to the present invention, it is possible to increase the heat transfer area per unit volume and to reduce the resistance to the flow of generated steam.

また作動媒体液流路内を流下する液膜の厚さに関係なく
高熱伝達率を維持することができるので、液流量の変動
による熱交換性能の低下を防止することができる。さら
に作動媒体液の供給量を蒸発器の上下方向に変化させる
ことによシ、加熱流体との間の温度差を効果的に利用し
て温度効率と向上させることができる。
Furthermore, since a high heat transfer coefficient can be maintained regardless of the thickness of the liquid film flowing down the working medium liquid flow path, it is possible to prevent a decrease in heat exchange performance due to fluctuations in the liquid flow rate. Furthermore, by changing the supply amount of the working medium in the vertical direction of the evaporator, the temperature difference between the working medium and the heating fluid can be effectively used to improve the temperature efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の蒸発器の斜視図、第2図は従来の他の蒸
発器における管群の新面図、第3図は従来のさらに他の
蒸発器における熱交換管の斜視図、第4図は本発明に係
わる蒸発器の一実施例を示す斜視図、第5図は第4図の
媒体液流路における縦断面図、第6図は第4図の実施例
の要部の断面斜視図、第7図は同実施例の媒体液流路の
一部の断面斜視図でおる。  ゛ 2・・・媒体液ヘッダ、3・・・媒体蒸気ヘッダ、9゜
9a・・・熱交換板、10・・・媒体液流路、ii・・
・加熱流体流路、13・・・屈曲帯% 131・・・屈
曲部、14・・・切欠き、15・・・空洞。 第 2  図 第  4  図 6−/i ′¥i  5 図 ↑ 〆七 i 第に図
FIG. 1 is a perspective view of a conventional evaporator, FIG. 2 is a new view of a tube group in another conventional evaporator, FIG. 3 is a perspective view of heat exchange tubes in yet another conventional evaporator, and FIG. FIG. 4 is a perspective view showing an embodiment of the evaporator according to the present invention, FIG. 5 is a longitudinal sectional view of the medium liquid flow path in FIG. 4, and FIG. A perspective view, FIG. 7 is a cross-sectional perspective view of a part of the medium liquid flow path of the same embodiment.゛2...Medium liquid header, 3...Medium vapor header, 9゜9a...Heat exchange plate, 10...Medium liquid flow path, ii...
- Heating fluid flow path, 13...Bending zone % 131...Bending portion, 14...Notch, 15...Cavity. Figure 2 Figure 4 Figure 6-/i '\i 5 Figure ↑ 〆7i Figure 7

Claims (1)

【特許請求の範囲】[Claims] 作動媒体液のヘッダと作動媒体蒸気のヘッダとの間に、
熱交換板を鉛直に、かつ並列に設置して媒体液流路と加
熱流体流路を交互に形成し、前記媒体液流路の内壁rM
Kはその液流路に連通ずる空洞を設け、前記媒体液流路
内には屈曲帯を設け、この屈曲帯の屈曲部を前記内壁面
に近接させると共に1前記屈曲部に切欠きを設けたこと
を特徴とする蒸発器。
Between the working medium liquid header and the working medium vapor header,
Heat exchange plates are installed vertically and in parallel to alternately form a medium liquid flow path and a heating fluid flow path, and the inner wall rM of the medium liquid flow path is
K is provided with a cavity that communicates with the liquid flow path, a bending band is provided in the medium liquid flow path, the bending part of the bending band is brought close to the inner wall surface, and a notch is provided in the bending part. An evaporator characterized by:
JP11504681A 1981-07-24 1981-07-24 Evaporator Pending JPS5818094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11504681A JPS5818094A (en) 1981-07-24 1981-07-24 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11504681A JPS5818094A (en) 1981-07-24 1981-07-24 Evaporator

Publications (1)

Publication Number Publication Date
JPS5818094A true JPS5818094A (en) 1983-02-02

Family

ID=14652840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11504681A Pending JPS5818094A (en) 1981-07-24 1981-07-24 Evaporator

Country Status (1)

Country Link
JP (1) JPS5818094A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306400A (en) * 1987-05-29 1988-12-14 林 邦彦 Heat exchanger
JPH037887A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Laminated type heat exchanger
JPH037886A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Laminated type heat exchanger
JPH037885A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Laminated type heat exchanger
FR2690503A1 (en) * 1992-04-23 1993-10-29 Commissariat Energie Atomique Plate evaporator with high thermal performance operating in nucleated boiling regime.
US5987909A (en) * 1998-08-31 1999-11-23 Martin, Sr.; Lendell Air conditioner drain pan

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306400A (en) * 1987-05-29 1988-12-14 林 邦彦 Heat exchanger
JPH037887A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Laminated type heat exchanger
JPH037886A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Laminated type heat exchanger
JPH037885A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Laminated type heat exchanger
FR2690503A1 (en) * 1992-04-23 1993-10-29 Commissariat Energie Atomique Plate evaporator with high thermal performance operating in nucleated boiling regime.
US5987909A (en) * 1998-08-31 1999-11-23 Martin, Sr.; Lendell Air conditioner drain pan

Similar Documents

Publication Publication Date Title
US4745965A (en) Separate type heat exchanger
JPS5888A (en) Wet type/dry type combination type steam condenser
GB2131538A (en) Liquid film evaporation type heat exchanger
KR101146105B1 (en) Heat plate for heat exchanger
JP3100372B1 (en) Heat exchanger
JPS5818094A (en) Evaporator
JPS5841440B2 (en) Tube group heat exchanger
EP0647823B1 (en) Heat pipe and gas-liquid contacting apparatus capable of heat exchange using the heat pipes and heat exchanger of gas-liquid contacting plate type
US20210394080A1 (en) Evaporators, condensers and systems for separation
JPH0128316B2 (en)
CN208785800U (en) Reboiler built in a kind of tower bottom
CN206235218U (en) Outer ripple heat exchange of heat pipe and sea water desalinating unit
RU2623351C1 (en) Condenser-evaporator
SU1740948A1 (en) Heat exchanger
JPS63143486A (en) Condensation evaporator
JP2005093179A (en) Microchannel type evaporator
CN112683080B (en) Thermodynamic type superconducting cooling process
Al-Hawaj A study and comparison of plate and tubular evaporators
JPH037877B2 (en)
JPH01244286A (en) Shell tube type heat exchanger
KR200349474Y1 (en) Thermosiphon Heat Pipe Type Heat Exchanger
RU2058005C1 (en) Contact heat exchanger
RU2037121C1 (en) Heat exchanger
RU2061944C1 (en) Direct-contact heat exchanger
SU626329A1 (en) Evaporator