JPH09303701A - Exhaust gas boiler evaporator - Google Patents

Exhaust gas boiler evaporator

Info

Publication number
JPH09303701A
JPH09303701A JP11380596A JP11380596A JPH09303701A JP H09303701 A JPH09303701 A JP H09303701A JP 11380596 A JP11380596 A JP 11380596A JP 11380596 A JP11380596 A JP 11380596A JP H09303701 A JPH09303701 A JP H09303701A
Authority
JP
Japan
Prior art keywords
exhaust gas
fin
evaporator
tube
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11380596A
Other languages
Japanese (ja)
Inventor
Akira Yamazaki
亮 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11380596A priority Critical patent/JPH09303701A/en
Publication of JPH09303701A publication Critical patent/JPH09303701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To make all the tubes from the upstream to the downstream of an exhaust gas flow, uniformly perform a heat-exchange, and stabilize the operation of an evaporator by a method wherein the winding number of fins of respective fin tubes, are made smaller for the ones at the upstream side than the ones on the downstream side. SOLUTION: The winding number of fins 8 on a fin tube 7 which is located at the upstream side of an exhaust gas flow 9, is made smaller than the winding number of fins 8 of the fin tube 7 which is located at the downstream side of the exhaust gas flow 9. That is, the relationship between the fin tubes 7 and the fins 8 at the most downstream point A, an intermediate point B and the most upstream point C is constituted in such a manner that the winding number of the fins 8 is largest at the most downstream point A of the exhaust gas flow 9, is intermediate at the intermediate point B, and is smallest at the most upstream point C. By doing so, heat-exchanges are uniformly performed at all the tubes 7 from the upstream to the downstream of the exhaust gas flow 9, and the operation of an evaporator can be stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は複数のフィンチュー
ブを配置してなる排ガスボイラ蒸発器等の熱交換器に関
する。
TECHNICAL FIELD The present invention relates to a heat exchanger such as an exhaust gas boiler evaporator having a plurality of fin tubes arranged therein.

【0002】[0002]

【従来の技術】従来のものについて図3及び図4に基づ
いて説明する。図3は排ガスボイラの全貌と流体の概略
系統を示し、図4はその要部を示すものである。
2. Description of the Related Art A conventional device will be described with reference to FIGS. FIG. 3 shows the whole view of the exhaust gas boiler and a schematic system of fluid, and FIG. 4 shows the main part thereof.

【0003】1は水ドラムで、同水ドラム1 から下降管
2を通って入口ヘッダ3へ導びかれた水は、同入口ヘッ
ダ3で複数本のフィンチューブ7に分かれる。
Reference numeral 1 denotes a water drum. Water introduced from the water drum 1 to the inlet header 3 through the descending pipe 2 is divided into a plurality of fin tubes 7 at the inlet header 3.

【0004】同フィンチューブ7は、図では明示してい
ない排ガス通路に配置されて、蒸発器4を構成し、同排
ガス通路を流れる排ガス流れ9により前記各フィンチュ
ーブ7に分かれた水は熱交換(加熱)され、蒸気化す
る。
The fin tubes 7 are arranged in an exhaust gas passage not shown in the figure to form the evaporator 4, and the water separated into the fin tubes 7 by the exhaust gas flow 9 flowing through the exhaust gas passage is heat-exchanged. It is (heated) and vaporized.

【0005】各フィンチューブ7内で蒸気化した蒸気及
び蒸気化に至らなかった水分は出口ヘッダ5で合流し、
上昇管6で水ドラム1へ戻り、蒸気分は図示しない蒸気
タービン等の他系統へ送られ、水分は上記系路を再度循
環して順次熱交換を繰り返して蒸気化される。
The steam vaporized in each fin tube 7 and the moisture which has not been vaporized merge at the outlet header 5,
Returning to the water drum 1 through the rising pipe 6, the steam content is sent to another system such as a steam turbine (not shown), and the water content is circulated again through the above system path and is repeatedly heat-exchanged to be vaporized.

【0006】このように蒸気作成の基本動作を行う蒸発
器4を構成するフィンチューブ7についてみると、同フ
ィンチューブ7は周面にフィン8をスパイラル状に取り
付けて構成されている。
As for the fin tube 7 which constitutes the evaporator 4 which performs the basic operation for producing steam in this manner, the fin tube 7 is constructed by mounting fins 8 in a spiral shape on the peripheral surface.

【0007】そして、図4(a)に示すA点,B点、及
びC点のいずれの点を取ってみても図4(b)に示すよ
うに各フィンチューブ7におけるフィン8の山数は全て
のものが同一に構成されている。
Then, even if any of points A, B and C shown in FIG. 4A is taken, the number of peaks of the fins 8 in each fin tube 7 is as shown in FIG. 4B. Everything is configured the same.

【0008】即ち、排ガス流れ9に対する上流側(高
温)のC点、途中(中温)のB点、及び下流側(低温)
のA点のどこであってもフィンチューブ7の全てが同じ
巻数のフィン8を備えた構造になっている。
That is, a point C on the upstream side (high temperature), a point B on the way (medium temperature), and a downstream side (low temperature) with respect to the exhaust gas flow 9
All of the fin tubes 7 have the same number of turns 8 at any point A.

【0009】[0009]

【発明が解決しようとする課題】排ガスボイラ設計にあ
たり、従来から最も困難であり、注意を払っている事項
の一つは、蒸発器内の流体を安定して流動させる事であ
るが、従来のものでは、前記したように蒸発器管のフィ
ン巻数が、排ガス上流側から下流側まで同一であった
為、排ガス上流側(高温ガス側)のチューブで熱交換量
が大きく、下流側へ行くにつれて熱交換量が小さくなる
というものである。
In designing an exhaust gas boiler, one of the most difficult and paying attentions to date is to make the fluid in the evaporator flow stably. However, since the number of fin turns of the evaporator tube was the same from the exhaust gas upstream side to the downstream side as described above, the heat exchange amount was large in the exhaust gas upstream side (high temperature gas side) tube, and The amount of heat exchange is small.

【0010】従って、排ガスの熱量が過大であった場合
には、熱交換が大であるチューブの内部では流体の気化
が急速に進み、管内部蒸気体積率が過大となり、流体の
循環力が妨げられる事となる。
Therefore, when the heat quantity of the exhaust gas is excessive, the vaporization of the fluid rapidly progresses inside the tube where the heat exchange is large, the vapor volume ratio inside the tube becomes excessive, and the circulation force of the fluid is impeded. Will be done.

【0011】この現象により、チューブ管群内での熱吸
収アンバランスが生じ、蒸発器全体の計画熱吸収量がず
れる為、蒸発量及び蒸気温度が計画値からずれるという
問題や、更に供給熱量が多くなるとチューブ内が空焚き
状態となり、焼損する問題も起こり得る。
Due to this phenomenon, heat absorption imbalance occurs in the tube group, and the planned heat absorption amount of the entire evaporator deviates, so that the evaporation amount and the steam temperature deviate from the planned values, and further the supplied heat amount If the number increases, the inside of the tube will be in an empty state, which may cause a problem of burning out.

【0012】本発明は従来のものにおけるこのような不
具合点を解消し、排ガス流れの上流から下流にかけ全て
のチューブに於て均一に熱交換を行なわせ、蒸発器の操
作を安定させるようにしたものを提供することを課題と
するものである。
The present invention solves the above-mentioned problems in the conventional one, and heat is uniformly exchanged in all the tubes from the upstream side to the downstream side of the exhaust gas flow to stabilize the operation of the evaporator. The challenge is to provide things.

【0013】[0013]

【課題を解決するための手段】本発明は前記課題を解決
するべくなされたもので、排ガス通路に複数のフィンチ
ューブを配置して構成した排ガスボイラ蒸発器におい
て、それぞれのフィンチューブのフィン巻数を上流側の
ものは下流側のものより少なくした排ガスボイラ蒸発器
を提供し、排ガス上流側チューブについてフィン巻数を
少なくし、下流側に向かうにつれて順次多くする様な構
造として各チューブの熱吸収量が均一となる様にして、
過大な熱量を持つ排ガスに対しても、蒸発器内の内部流
体流量アンバランス、熱吸収量アンバランス及びチュー
ブの破損を生じない、コンパクトな蒸発器の計画が可能
となるようにしたものである。
The present invention has been made to solve the above problems, and in an exhaust gas boiler evaporator in which a plurality of fin tubes are arranged in an exhaust gas passage, the fin winding number of each fin tube is set. The upstream side provides an exhaust gas boiler evaporator that is smaller than the downstream side, and the heat absorption amount of each tube is designed so that the number of fin turns of the exhaust gas upstream side tube is reduced and it is gradually increased toward the downstream side. So that it is uniform,
Even for exhaust gas with an excessive amount of heat, it is possible to plan a compact evaporator that does not cause imbalance in the internal fluid flow rate in the evaporator, heat absorption amount imbalance, and tube damage. .

【0014】[0014]

【発明の実施の形態】本発明の実施の一形態を図1及び
図2に基づいて説明する。なお前記した従来のものと同
一の部材等については、図中同一の符号を付して示し、
重複する説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS. The same members and the like as the conventional ones described above are designated by the same reference numerals in the drawings,
Duplicate description will be omitted.

【0015】本実施の形態では、図1に示すように排ガ
ス流れ9の上流側にあるフィンチューブ7におけるフィ
ン8の巻数を、下流側にあるそれより少なくしたこと、
換言すれば、排ガス流れ9の下流側にあるフィンチュー
ブ7におけるフィン8の巻数を上流側にあるそれより多
く構成したものである。
In the present embodiment, as shown in FIG. 1, the number of turns of the fin 8 in the fin tube 7 on the upstream side of the exhaust gas flow 9 is smaller than that on the downstream side,
In other words, the number of windings of the fins 8 in the fin tube 7 on the downstream side of the exhaust gas flow 9 is larger than that on the upstream side.

【0016】即ち同図1(a)に示す排ガス流れ9の最
下流点A、中間点B、及び最上流点Cに於けるフィンチ
ューブ7とフィン8の関係を同図1(b),(c),
(d)に夫々を示すように最下流点Aでは図1(b)の
ようにフィン8の巻数が最も多く、中間点Bでは図1
(c)のように中位であり、最上流点Cでは図1(d)
のように最も少なく構成している。
That is, the relationship between the fin tubes 7 and the fins 8 at the most downstream point A, the middle point B, and the most upstream point C of the exhaust gas flow 9 shown in FIG. 1A is shown in FIGS. c),
As shown in (d), the number of windings of the fin 8 is largest at the most downstream point A as shown in FIG.
As shown in FIG. 1 (c), it is in the middle position, and at the most upstream point C, FIG.
Is the least configured.

【0017】これは、A,B,C点の夫々の間について
の記載は省略しているが、要するにA点からBを経てC
点に至るに従ってフィン8の巻数を順次少なくしている
ことを示すものである。
Although the description between the points A, B, and C is omitted, in short, from point A to point B through C
This indicates that the number of turns of the fin 8 is gradually reduced as the number of points is reached.

【0018】なお、フィン8の巻数を決定するに際して
は、フィンチューブ7内部の水の質量流量に対し、流体
の気化が過大とならないだけの吸収熱量を得られる巻数
を選定しなければならないが、この作業は、排ガス流れ
上流側のフィンチューブ7から順次行ない、全体として
必要吸収熱量を確保するように配慮しなければならな
い。
When determining the number of turns of the fins 8, it is necessary to select the number of turns capable of obtaining the absorbed heat amount so that the vaporization of the fluid does not become excessive with respect to the mass flow rate of the water in the fin tube 7. This work must be carried out sequentially from the fin tubes 7 on the upstream side of the exhaust gas flow, and consideration must be given to securing the required amount of absorbed heat as a whole.

【0019】この作業を行う場合には図2に示す、流体
の層分離判定の基準グラフを用いて行う。図2において
は、横軸を管内面熱流束とし縦軸を管内質量速度をとっ
ており、蒸発器内の運転圧力により層分離の判定を行な
うのであるが、グラフ上判定線よりもプロット点が上方
である場合には、蒸発管内の循環水は安定した流れを確
保出来る事となり、下方にプロット点が来る場合には、
蒸発管内循環水の、管内質量流量が十分でなく、流体気
泡体積率が過大となり、管内で流体がスティックをおこ
す等、循環不良を起こす事となる。
When this work is carried out, it is carried out by using the reference graph of the fluid layer separation judgment shown in FIG. In FIG. 2, the horizontal axis represents the heat flux on the inner surface of the tube and the vertical axis represents the mass velocity in the tube, and the layer separation is determined by the operating pressure in the evaporator. When it is on the upper side, the circulating water in the evaporation pipe can secure a stable flow, and when the plot point is on the lower side,
The mass flow rate of circulating water in the evaporating pipe is not sufficient, the volume ratio of fluid bubbles becomes too large, and the fluid sticks in the pipe, causing poor circulation.

【0020】いま、或る蒸発器について安定した循環を
得られるフィン山数(巻数)の選定例を示すと次の表の
ようになる。
The following table shows an example of selecting the number of fin crests (number of turns) that can obtain stable circulation for a certain evaporator.

【0021】[0021]

【表1】 [Table 1]

【0022】上記計算による結果の管内質量速度とHe
at Fluxの関係を図2にプロットし、基準判定線
よりも上方である場合は問題ないのであるが、下方とな
った場合は、フィン山数m枚/inchを減らし、管内
面熱流束(Heat Flux)を小さくする事によ
り、判定線上方とする。この作業を排ガス上流側の列よ
り順次行い、計画の蒸発器全体の吸収熱量が得られるよ
うに後流側のフィン枚数により、調整を行なうようにす
ればよい。
Heaviness and He in the tube resulting from the above calculation
The relationship of at Flux is plotted in FIG. 2, and there is no problem when it is above the reference judgment line, but when it is below, the number of fin crests m / inch is reduced and the heat flux (Heat) on the inner surface of the pipe is reduced. By decreasing Flux), it is above the judgment line. This work may be sequentially performed from the upstream side of the exhaust gas, and adjustment may be performed by the number of fins on the downstream side so that the planned heat absorption amount of the entire evaporator can be obtained.

【0023】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。
Although the present invention has been described with reference to the illustrated embodiments, the present invention is not limited to such embodiments.
It goes without saying that various modifications may be made to the specific structure within the scope of the present invention.

【0024】[0024]

【発明の効果】以上本発明によれば、チューブ内の流体
が安定して流れるようになり、管内流体のアンバラン
ス、帯流、等が防がれるものである。そして自然循環型
の水ドラム付蒸発器に本発明を採用した場合には、各チ
ューブ内の吸収熱量が均一化される事により、安定した
水の循環力が得られると共に、管内流量アンバランスが
是正され、チューブ破損等の事故を回避することができ
るものである。
As described above, according to the present invention, the fluid in the tube can stably flow, and the imbalance of the fluid in the tube, the band flow, etc. can be prevented. When the present invention is applied to a natural circulation type evaporator with a water drum, the amount of heat absorbed in each tube is made uniform, so that a stable water circulation force can be obtained and an unbalanced flow rate in the tube can be obtained. It can be corrected and avoid accidents such as tube damage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態に係る蒸発器の概略構造
を示し、(a)は全貌、(b)は(a)のA部詳細、
(c)は(a)のB部詳細、(d)は(a)のC部詳細
の説明図。
FIG. 1 shows a schematic structure of an evaporator according to an embodiment of the present invention, (a) is a general view, (b) is a detailed A part of (a),
(C) is an explanatory view of details of the B part of (a), and (d) is a detailed view of the C part of (a).

【図2】図1のものにおける各フィンチューブでの流体
の層分離判定基準を示すグラフ。
FIG. 2 is a graph showing the criteria for fluid layer separation in each fin tube in FIG.

【図3】従来の排ガスボイラ蒸発器の概略系統図。FIG. 3 is a schematic system diagram of a conventional exhaust gas boiler evaporator.

【図4】図3のものの要部を示し、(a)は蒸発器全
貌、(b)は(a)のA,B,C部詳細の説明図。
4A and 4B show the main parts of FIG. 3, in which FIG. 4A is an overall view of the evaporator, and FIG.

【符号の説明】[Explanation of symbols]

1 水ドラム 2 下降管 3 入口ヘッダ 4 蒸発器 5 出口ヘッダ 6 上昇管 7 フィンチューブ 8 フィン 9 排ガス流れ 1 Water Drum 2 Downcomer 3 Inlet Header 4 Evaporator 5 Outlet Header 6 Upcomer 7 Fin Tube 8 Fin 9 Exhaust Gas Flow

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 排ガス通路に複数のフィンチューブを配
置して構成した排ガスボイラ蒸発器において、それぞれ
のフィンチューブのフィン巻数を上流側のものは下流側
のものより少なくしたことを特徴とする排ガスボイラ蒸
発器。
1. An exhaust gas boiler evaporator comprising a plurality of fin tubes arranged in an exhaust gas passage, wherein the number of fin turns of each fin tube is smaller on the upstream side than on the downstream side. Boiler evaporator.
JP11380596A 1996-05-08 1996-05-08 Exhaust gas boiler evaporator Pending JPH09303701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11380596A JPH09303701A (en) 1996-05-08 1996-05-08 Exhaust gas boiler evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11380596A JPH09303701A (en) 1996-05-08 1996-05-08 Exhaust gas boiler evaporator

Publications (1)

Publication Number Publication Date
JPH09303701A true JPH09303701A (en) 1997-11-28

Family

ID=14621519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11380596A Pending JPH09303701A (en) 1996-05-08 1996-05-08 Exhaust gas boiler evaporator

Country Status (1)

Country Link
JP (1) JPH09303701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015102324A (en) * 2013-11-21 2015-06-04 アルストム テクノロジー リミテッドALSTOM Technology Ltd Evaporator apparatus and method of operating the same
KR20160075789A (en) * 2012-01-17 2016-06-29 제네럴 일렉트릭 테크놀러지 게엠베하 Tube arrangement in a once-through horizontal evaporator
JP2019143917A (en) * 2018-02-22 2019-08-29 三菱日立パワーシステムズ株式会社 Evaporator, waste heat recovery boiler with the same, and evaporator modification method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160075789A (en) * 2012-01-17 2016-06-29 제네럴 일렉트릭 테크놀러지 게엠베하 Tube arrangement in a once-through horizontal evaporator
US10274192B2 (en) 2012-01-17 2019-04-30 General Electric Technology Gmbh Tube arrangement in a once-through horizontal evaporator
JP2015102324A (en) * 2013-11-21 2015-06-04 アルストム テクノロジー リミテッドALSTOM Technology Ltd Evaporator apparatus and method of operating the same
JP2019143917A (en) * 2018-02-22 2019-08-29 三菱日立パワーシステムズ株式会社 Evaporator, waste heat recovery boiler with the same, and evaporator modification method
CN110186020A (en) * 2018-02-22 2019-08-30 三菱日立电力系统株式会社 The remodeling method of evaporator, the heat recovery boiler for having evaporator and evaporator

Similar Documents

Publication Publication Date Title
CN103748414B (en) Pipe in once-through horizontal evaporator is arranged
JP2006514411A (en) Three-fluid evaporative heat exchanger
JP2001505645A (en) boiler
RU2123634C1 (en) Method of operation of flow-type steam generator and steam generator used for realization of this method
US4567736A (en) Absorption heat pump
JPH09303701A (en) Exhaust gas boiler evaporator
JPS61119957A (en) Device for supplying absorption refrigeration system with heat
JP2005127650A (en) Plate fin type regenerative heat exchanger and gas turbine power generation system
JP2000265908A (en) Egr gas cooling device
JP2002060205A (en) Fuel reformer
JPH0658198B2 (en) Shell tube heat exchanger
JP3800753B2 (en) Connection structure of flat tube and connecting tube
JP3300083B2 (en) Water tube evaporator with vertical drum
JPH0473592A (en) Heat exchanger
JP2003294338A (en) Heat exchanger
JPS6137994Y2 (en)
JP2004257599A (en) High temperature regenerator and absorption type chiller/heater using the same
JP2001041608A (en) Evaporator and absorber for absorption refrigerating machine
JP2000283394A (en) Forced convection atmosphere heat source type cryogenic liquefied gas gasifier
JPH04263793A (en) Heat exchanger
JP2006200789A (en) Heater
JPH0616243Y2 (en) Natural circulation boiler steam drum
JPH09196507A (en) Heat exchanger for air conditioning
JPH07280473A (en) Loop type heat pipe
KR100195926B1 (en) Refrigernat vapor influx device of absorber for plate heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019