JPH04263793A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH04263793A
JPH04263793A JP3024958A JP2495891A JPH04263793A JP H04263793 A JPH04263793 A JP H04263793A JP 3024958 A JP3024958 A JP 3024958A JP 2495891 A JP2495891 A JP 2495891A JP H04263793 A JPH04263793 A JP H04263793A
Authority
JP
Japan
Prior art keywords
header
refrigerant
heat exchanger
flows
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3024958A
Other languages
Japanese (ja)
Inventor
Hitoshi Mogi
仁 茂木
Tomoaki Ando
智朗 安藤
Shoichi Yokoyama
昭一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3024958A priority Critical patent/JPH04263793A/en
Publication of JPH04263793A publication Critical patent/JPH04263793A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Abstract

PURPOSE:To uniformize the speed distribution of air which flows between fins and maximize heat exchanging capacity. CONSTITUTION:A heat exchanger is constituted of a group of fins 1, between which air flows, a group of heat transfer tubes 2, through which refrigerant flows, headers 3, 4, connecting the ends of the group of heat transfer tubes 2 and partitioned so as to form a plurality of header chambers 3A, 3B, 4A, 4B, 4C, 4D, and a connecting tube 9, changing the flowing route of refrigerant in the headers 3, 4. The connecting tube 9 is arranged between the header chamber 4C, at the downstream side of the flow direction of the refrigerant upon evaporating, and the header chamber 4A of the most upstream side in the flow direction of the same.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷凍サイクルを構成す
る空気調和機において、ヘッダを用いて多パス方式に構
成された熱交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger configured in a multi-pass system using a header in an air conditioner constituting a refrigeration cycle.

【0002】0002

【従来の技術】従来より空気調和機の熱交換器は、冷媒
側の圧力損失を抑えるため、ヘッダを用いた多パス方式
を採用していた。以下に、図2を参照しながら従来の熱
交換器の一例について説明する。
BACKGROUND OF THE INVENTION Conventionally, heat exchangers for air conditioners have adopted a multi-pass system using headers in order to suppress pressure loss on the refrigerant side. An example of a conventional heat exchanger will be described below with reference to FIG.

【0003】図2は従来の熱交換器の断面図である。並
列した多数のフィン21間に多数の伝熱管22が挿入さ
れ、そして伝熱管22群の一端間をヘッダ23によって
、また他端間をヘッダ24によって、それぞれ連結して
いる。一方のヘッダ23の内部には中央部に一枚の仕切
り板25が設けられ、他方のヘッダ24の内部には二枚
の仕切り板26,27が設けられ、これら仕切り板25
,26,27により冷媒の流れ方向を規制する。
FIG. 2 is a cross-sectional view of a conventional heat exchanger. A large number of heat transfer tubes 22 are inserted between a large number of parallel fins 21, and one end of the group of heat transfer tubes 22 is connected by a header 23, and the other ends are connected by a header 24, respectively. One partition plate 25 is provided at the center inside one header 23, and two partition plates 26, 27 are provided inside the other header 24.
, 26 and 27 regulate the flow direction of the refrigerant.

【0004】冷媒は蒸発時、実線矢印で示すように、流
入口28より他方のヘッダ24の下部に流入し、仕切り
板27によって流れが規制された状態で伝熱管22を通
って一方のヘッダ23の下部に流入する。この一方のヘ
ッダ23の下部に流入した冷媒は、仕切り板25によっ
て流れが規制された状態で、再び伝熱管22を通って他
方のヘッダ24の中間部に戻り、このようなパスを順次
繰り返して、最後に伝熱管22a,22b を通って他
方のヘッダ24の上部に流入し、流出口29から流出す
る。
When the refrigerant evaporates, it flows into the lower part of the other header 24 from the inlet 28 as shown by the solid line arrow, passes through the heat transfer tubes 22 with the flow regulated by the partition plate 27, and flows into the one header 23. flows into the bottom of the The refrigerant that has flown into the lower part of one header 23 passes through the heat transfer tubes 22 again and returns to the middle part of the other header 24, with its flow being regulated by the partition plate 25, and repeats this path sequentially. , and finally flows into the upper part of the other header 24 through the heat transfer tubes 22a and 22b, and flows out from the outlet 29.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の熱交換器であると、伝熱管22a,22b 内の冷
媒の流量を均一にすることは困難であった。すなわち各
伝熱管22内を流動する気液二相の冷媒は、フィン21
間を流動する空気と熱交換して蒸発し、ガスの冷媒とな
る。しかし、最終出口側の伝熱管22a,22b 内の
冷媒は、偏流の発生により、どちらか一方に液成分が多
く、他方には少なく流れる。
However, with the conventional heat exchanger described above, it is difficult to equalize the flow rate of the refrigerant in the heat exchanger tubes 22a and 22b. In other words, the gas-liquid two-phase refrigerant flowing inside each heat transfer tube 22 flows through the fins 21
It exchanges heat with the air flowing between it and evaporates, becoming a gas refrigerant. However, due to the occurrence of drift in the refrigerant in the heat transfer tubes 22a and 22b on the final outlet side, a large amount of liquid component flows to one side and a small amount flows to the other side.

【0006】そして伝熱管22a,22b 内、液成分
の少ない伝熱管では、冷媒は伝熱管の途中で蒸発しきっ
てしまい、その後はガス冷媒の単相流が顕熱交換を行う
だけである。したがって、伝熱管内の温度は上昇し、次
第に流入空気の露点温度以上になり、フィン21の表面
に結露が生じにくくなる。そのため、新鮮な空気は、結
露が生じ通風抵抗が大きいフィン21間よりも、結露が
生じていないフィン21間を流れようとして風速分布が
不均一となる。
[0006] In the heat transfer tubes 22a and 22b, in which the liquid component is small, the refrigerant completely evaporates in the middle of the heat transfer tube, and thereafter only the single-phase flow of gas refrigerant performs sensible heat exchange. Therefore, the temperature inside the heat exchanger tube increases and gradually reaches or exceeds the dew point temperature of the incoming air, making it difficult for dew condensation to form on the surfaces of the fins 21. Therefore, fresh air tends to flow between the fins 21 where no dew condensation occurs, rather than between the fins 21 where dew condensation occurs and the ventilation resistance is large, resulting in non-uniform wind speed distribution.

【0007】その結果、液成分が少ない冷媒の流れる部
分、すなわち熱交換能力の小さいところに空気が大量に
流れ、本来、伝熱に寄与する液成分の多い部分には空気
が流れにくくなり、熱交換能力が減少するという課題が
生じていた。
As a result, a large amount of air flows into areas where the refrigerant with a small liquid component flows, that is, where the heat exchange capacity is small, and it becomes difficult for air to flow into areas with a large amount of liquid components, which normally contribute to heat transfer, resulting in heat transfer. The issue was that exchange capacity was reduced.

【0008】本発明の目的とするところは、フィン間に
流入する空気の風速分布の均一化を図り、熱交換能力を
最大限に発揮させるようにした熱交換器を提供する点に
ある。
[0008] An object of the present invention is to provide a heat exchanger in which the velocity distribution of the air flowing between the fins is made uniform and the heat exchange ability is maximized.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、空気が流入するフィン群と、前記フィン群
に挿入され、内部を冷媒が流動する伝熱管群と、前記伝
熱管群の端部間を連結しかつ複数のヘッダ室を区画形成
したヘッダと、前記ヘッダ内の冷媒の流れる経路を変更
させる連結管とによって構成され、前記連結管を、蒸発
時の冷媒の流れ方向に対し、下流側のヘッダ室と最上流
のヘッダ室との間に配設した熱交換器である。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a group of fins into which air flows, a group of heat transfer tubes inserted into the group of fins and through which a refrigerant flows, and a group of heat transfer tubes through which a refrigerant flows. A header that connects the ends of the header and defines a plurality of header chambers, and a connecting pipe that changes the flow path of the refrigerant in the header. On the other hand, it is a heat exchanger disposed between the downstream header chamber and the most upstream header chamber.

【0010】0010

【作用】上記した本発明によると、下流側のヘッダ室と
最上流のヘッダ室との間に冷媒の流れる経路を変更させ
る連結管を設け、冷媒中の液成分が多い段階で最上流の
ヘッダ室に冷媒を流してやることにより、最上部の伝熱
管内部を流れる冷媒を気液二相の冷媒としる。これによ
り、最上部のフィン群を空気の露点温度以下にして結露
させ、流入空気の風速分布を均一にすることになり、熱
交換器の熱交換能力を最大限に発揮することが可能とな
るものである。
[Operation] According to the present invention, a connecting pipe is provided between the downstream header chamber and the most upstream header chamber to change the flow path of the refrigerant, and when the liquid component in the refrigerant is large, the most upstream header By flowing the refrigerant into the chamber, the refrigerant flowing inside the uppermost heat transfer tube becomes a gas-liquid two-phase refrigerant. As a result, the uppermost fin group is lowered to below the dew point temperature of the air, causing dew to condense, making the wind speed distribution of the incoming air uniform, and making it possible to maximize the heat exchange capacity of the heat exchanger. It is something.

【0011】[0011]

【実施例】以下、本発明の一実施例について、図1を参
照に説明する。図1は本発明の熱交換器の断面図である
[Embodiment] An embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a sectional view of the heat exchanger of the present invention.

【0012】図1において、並列した多数のフィン1間
に多数の伝熱管2が挿入されている。そして伝熱管2群
の一端間を連結するリターン側のヘッダ3と、他端間を
連結する流入出口側のヘッダ4とが設けられ、これらヘ
ッダ3,4は上下方向に対して一体で、かつ直管である
In FIG. 1, a large number of heat transfer tubes 2 are inserted between a large number of parallel fins 1. A header 3 on the return side that connects one end of the two groups of heat exchanger tubes and a header 4 on the inflow/outlet side that connects the other end are provided, and these headers 3 and 4 are integral in the vertical direction, and It is a straight pipe.

【0013】前記リターン側のヘッダ3の内部には中央
部に一枚の仕切り板5が設けられ、この仕切り板5によ
りリターン側のヘッダ3内を上部ヘッダ室3Aと下部ヘ
ッダ室3Bとに区画している。また流入出口側のヘッダ
4の内部には三枚の仕切り板6,7,8が設けられ、こ
れら仕切り板6,7,8により流入出口側のヘッダ4内
を、最上部ヘッダ室4Aと上部ヘッダ室4Bと下部ヘッ
ダ室4Cと最下部ヘッダ室4Dとに区画している。これ
ら仕切り板5,6,7,8により冷媒の流れ方向を規制
する。
A partition plate 5 is provided in the center of the header 3 on the return side, and the partition plate 5 divides the inside of the header 3 on the return side into an upper header chamber 3A and a lower header chamber 3B. are doing. Furthermore, three partition plates 6, 7, 8 are provided inside the header 4 on the inflow/outlet side, and these partition plates 6, 7, 8 divide the inside of the header 4 on the inflow/outlet side into the uppermost header chamber 4A and the uppermost header chamber 4A. It is divided into a header chamber 4B, a lower header chamber 4C, and a lowermost header chamber 4D. These partition plates 5, 6, 7, and 8 regulate the flow direction of the refrigerant.

【0014】そして最上部ヘッダ室4Aと下部ヘッダ室
4Cとの間には、冷媒の流れる経路を変更させる連結管
9が設けられている。また最下部ヘッダ室4Dには流入
口10が、上部ヘッダ室4Bには流出口11が形成され
ている。
A connecting pipe 9 is provided between the uppermost header chamber 4A and the lower header chamber 4C to change the flow path of the refrigerant. Further, an inlet 10 is formed in the lowermost header chamber 4D, and an outlet 11 is formed in the upper header chamber 4B.

【0015】上記構成において、蒸発時、気液二相の冷
媒は、図1の実線矢印で示すように、流入口10を通っ
てヘッダ4の最下部ヘッダ室4Dに流入し、仕切り板8
によって流れ方向を規制されることにより伝熱管2を通
ってリターン側のヘッダ3の下部ヘッダ室3Bに流入し
、そして仕切り板5によって流れ方向を規制され、伝熱
管2を通って再び流入出口側のヘッダ4の下部ヘッダ室
4Cに戻る。
In the above configuration, during evaporation, the gas-liquid two-phase refrigerant flows into the lowermost header chamber 4D of the header 4 through the inlet 10, as shown by the solid arrow in FIG.
The flow direction is regulated by the heat exchanger tubes 2, so that it flows into the lower header chamber 3B of the header 3 on the return side, and then the flow direction is regulated by the partition plate 5, and it flows through the heat exchanger tubes 2 again to the inlet and outlet side. Return to the lower header chamber 4C of the header 4.

【0016】この流入出口側のヘッダ4の下部ヘッダ室
4Cに戻った冷媒は、両仕切り板7,8によって流れ方
向を規制され、連結管9を通って流入出口側のヘッダ4
の最上部ヘッダ室4Aに流入し、仕切り板6によって流
れ方向を規制されることにより伝熱管2を通ってリター
ン側のヘッダ3の上部ヘッダ室3Aに流入し、そして仕
切り板5によって流れ方向を規制されて、伝熱管2を通
って再び流入出口側のヘッダ4の上部ヘッダ室4Bに戻
る。この上部ヘッダ室4Bに戻った冷媒は流出口11を
通って熱交換器の外へ出て行く。
The flow direction of the refrigerant returned to the lower header chamber 4C of the header 4 on the inflow/outlet side is regulated by both partition plates 7, 8, and passes through the connecting pipe 9 to the header 4 on the inflow/outlet side.
It flows into the uppermost header chamber 4A of the header 3 on the return side through the heat exchanger tubes 2, where the flow direction is regulated by the partition plate 6, and then flows into the upper header chamber 3A of the header 3 on the return side, and the flow direction is regulated by the partition plate 5. The heat exchanger passes through the heat transfer tube 2 and returns to the upper header chamber 4B of the header 4 on the inlet and outlet side. The refrigerant that has returned to the upper header chamber 4B exits the heat exchanger through the outlet 11.

【0017】このように流動する間に気液二相の冷媒は
、フィン1などを介して空気と熱交換し、完全にガスの
状態となって熱交換器の外へ出るが、流入口10での冷
媒は、ほとんどが液成分の気液二相流である。
While flowing in this manner, the gas-liquid two-phase refrigerant exchanges heat with the air through the fins 1 and the like, and exits the heat exchanger completely in a gas state. The refrigerant in this system is a gas-liquid two-phase flow with mostly liquid components.

【0018】前述したように、リターン側のヘッダ3の
下部ヘッダ室3Bから伝熱管2を通って流入出口側のヘ
ッダ4の下部ヘッダ室4Cに戻り、そして連結管9に入
った状態の冷媒は、まだ熱交換器全体の半分でしか熱交
換していないため、冷媒中の液成分はまだ半分しか蒸発
していない。
As mentioned above, the refrigerant that has returned from the lower header chamber 3B of the header 3 on the return side through the heat transfer tubes 2 to the lower header chamber 4C of the header 4 on the inflow/outlet side and then entered the connecting pipe 9 is , because only half of the heat exchanger is still exchanging heat, only half of the liquid component in the refrigerant has evaporated.

【0019】そのため、最上部ヘッダ室4Aから上部ヘ
ッダ室3Aへと設けられ熱交換器最上部に位置した伝熱
管2a,2b 内の冷媒は、液成分が十分に多く、フィ
ン1を介して空気と熱交換して蒸発しても完全にガス化
することはなく、気液二相の状態が維持される。したが
って、伝熱管2a,2b が挿入されている部分のフィ
ン1の温度は流入空気の露点温度以下となり、フィン1
に結露が発生して、流入空気の通風抵抗は均一となる。 その結果、風速分布も均一となる。
Therefore, the refrigerant in the heat exchanger tubes 2a and 2b, which are provided from the top header chamber 4A to the top header chamber 3A and located at the top of the heat exchanger, has a sufficiently large liquid component and is transferred to the air through the fins 1. Even if it evaporates by exchanging heat with the gas, it will not completely gasify, and the gas-liquid two-phase state will be maintained. Therefore, the temperature of the fin 1 in the portion where the heat exchanger tubes 2a, 2b are inserted is below the dew point temperature of the incoming air, and the fin 1
Condensation occurs, and the ventilation resistance of the incoming air becomes uniform. As a result, the wind speed distribution also becomes uniform.

【0020】さらに、結露水は重力により、フィン1の
上部から下部へ落下していくため、熱交換器全体が均一
に結露水に覆われ、熱交換器全体の風速分布が均一とな
り、熱交換器の熱交換能力を最大限に発揮することが可
能となる。
Furthermore, since the condensed water falls from the top to the bottom of the fins 1 due to gravity, the entire heat exchanger is evenly covered with condensed water, and the air velocity distribution throughout the heat exchanger becomes uniform, which improves heat exchange. This makes it possible to maximize the heat exchange capacity of the vessel.

【0021】上記の本発明の実施例では、流入出口側の
ヘッダ4に連結管9を配設したが、ヘッダ室の数に基づ
くパス数に応じてリターン側のヘッダ3に連結管9を配
設することも可能となる。
In the embodiment of the present invention described above, the connecting pipe 9 is arranged in the header 4 on the inlet and outlet side, but the connecting pipe 9 is arranged in the header 3 on the return side depending on the number of passes based on the number of header chambers. It is also possible to set

【0022】[0022]

【発明の効果】以上述べたように本発明によると、ヘッ
ダに冷媒の流れる経路を変更させる連結管を設けること
により、液成分の多い冷媒を熱交換器の上部に流入させ
ることができ、フィン全体を結露させて流入空気の風速
分布を均一にすることができて、熱交換器の熱交換能力
を最大限に発揮することが可能となる。
As described above, according to the present invention, by providing the header with a connecting pipe that changes the flow path of the refrigerant, the refrigerant with a large liquid component can flow into the upper part of the heat exchanger, and the fin It is possible to make the entire air condensate and to make the wind speed distribution of the inflowing air uniform, making it possible to maximize the heat exchange ability of the heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示す熱交換器の断面図であ
る。
FIG. 1 is a sectional view of a heat exchanger showing an embodiment of the present invention.

【図2】従来例を示す熱交換器の断面図である。FIG. 2 is a sectional view of a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1        フィン 2        伝熱管 2a,2b     最上部伝熱管 3        リターン側のヘッダ3A     
   上部ヘッダ室 3B        下部ヘッダ室 4        流入出口側のヘッダ4A     
   最上部ヘッダ室 4B        上部ヘッダ室 4C        下部ヘッダ室 4D        最下部ヘッダ室 5        仕切り板 6,7,8     仕切り板 9        連結管 10        流入口 11        流出口
1 Fin 2 Heat exchanger tubes 2a, 2b Top heat exchanger tube 3 Return side header 3A
Upper header chamber 3B Lower header chamber 4 Inflow/outlet side header 4A
Top header chamber 4B Top header chamber 4C Bottom header chamber 4D Bottom header chamber 5 Partition plates 6, 7, 8 Partition plate 9 Connecting pipe 10 Inlet 11 Outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  空気が流入するフィン群と、前記フィ
ン群に挿入され、内部を冷媒が流動する伝熱管群と、前
記伝熱管群の端部間を連結しかつ複数のヘッダ室を区画
形成したヘッダと、前記ヘッダ内の冷媒の流れる経路を
変更させる連結管とによって構成され、前記連結管を、
蒸発時の冷媒の流れ方向に対し、下流側のヘッダ室と最
上流のヘッダ室との間に配設することを特徴とした熱交
換器。
1. A group of fins into which air flows, a group of heat transfer tubes inserted into the group of fins and through which a refrigerant flows, and ends of the group of heat transfer tubes are connected and a plurality of header chambers are defined. the header, and a connecting pipe that changes the flow path of the refrigerant in the header, and the connecting pipe is
A heat exchanger characterized in that it is disposed between a downstream header chamber and an upstream header chamber with respect to the flow direction of refrigerant during evaporation.
JP3024958A 1991-02-20 1991-02-20 Heat exchanger Pending JPH04263793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3024958A JPH04263793A (en) 1991-02-20 1991-02-20 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3024958A JPH04263793A (en) 1991-02-20 1991-02-20 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH04263793A true JPH04263793A (en) 1992-09-18

Family

ID=12152492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3024958A Pending JPH04263793A (en) 1991-02-20 1991-02-20 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH04263793A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351603C (en) * 2003-09-15 2007-11-28 汉拏空调株式会社 Heat exchanger
JP2015108463A (en) * 2013-12-03 2015-06-11 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2016053473A (en) * 2016-01-22 2016-04-14 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2021188781A (en) * 2020-05-27 2021-12-13 株式会社神戸製鋼所 Heat exchanger and binary power generation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351603C (en) * 2003-09-15 2007-11-28 汉拏空调株式会社 Heat exchanger
US7461687B2 (en) 2003-09-15 2008-12-09 Halla Climate Control Corporation Heat exchanger
JP2015108463A (en) * 2013-12-03 2015-06-11 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2016053473A (en) * 2016-01-22 2016-04-14 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2021188781A (en) * 2020-05-27 2021-12-13 株式会社神戸製鋼所 Heat exchanger and binary power generation device

Similar Documents

Publication Publication Date Title
US5941303A (en) Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
US7640970B2 (en) Evaporator using micro-channel tubes
JP3866797B2 (en) Refrigerant evaporator
CN107429975A (en) Heat exchanger and air conditioner
CN100451522C (en) Liquid separating air condenser
BRPI0500537B1 (en) spiral mount for a heat exchanger, and, heat exchanger
KR20060025082A (en) An evaporator using micro- channel tubes
JP4178472B2 (en) Heat exchanger and air conditioner
JPH04177091A (en) Heat exchanger
CN107407512A (en) Heat exchanger and air conditioner
JP6644194B1 (en) Outdoor units and air conditioners
JPH04263793A (en) Heat exchanger
JPS6214751B2 (en)
CN219063811U (en) Heat exchanger structure, refrigerant system and refrigeration equipment
JPH04268128A (en) Heat exchanger
JPH0468297A (en) Heat exchanger
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
JP3632248B2 (en) Refrigerant evaporator
CN214792027U (en) Multi-process horizontal pipe internal condensation heat exchanger capable of achieving split liquid drainage
JPH08200886A (en) Heat exchanger air conditioning
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
CN112066601A (en) Heat exchanger and air conditioning system
JP2574488B2 (en) Heat exchanger
JPH085198A (en) Air conditioning heat exchanger
JPH02143094A (en) Heat exchanger equipped with heat transfer tube