JPH08200886A - Heat exchanger air conditioning - Google Patents

Heat exchanger air conditioning

Info

Publication number
JPH08200886A
JPH08200886A JP7009817A JP981795A JPH08200886A JP H08200886 A JPH08200886 A JP H08200886A JP 7009817 A JP7009817 A JP 7009817A JP 981795 A JP981795 A JP 981795A JP H08200886 A JPH08200886 A JP H08200886A
Authority
JP
Japan
Prior art keywords
distributor
refrigerant
heat exchanger
heat transfer
intermediate header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7009817A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kanai
保博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP7009817A priority Critical patent/JPH08200886A/en
Publication of JPH08200886A publication Critical patent/JPH08200886A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To provide a heat exchanger for air conditioning with excellent heat exchange efficiency by constructing the exchanger such that a refrigerant uniformly flows into each heat transfer pipe with reduced pressure loss. CONSTITUTION: A second distributor 5 and a third distributor 8 are mounted on lower ends of a first intermediate header 4 and a second intermediate header 7, and four conduits are branched and extended from each first distributor, six conduits 6 from each second distributor 5, and seven conduits 9 from each third distributor 8. A connection pipes 17 are connected with an outlet header 10 from each upper end of the second intermediate header 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空調装置用熱交換器の
構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a heat exchanger for an air conditioner.

【0002】[0002]

【従来の技術】従来の空調装置の室外機に取り付ける熱
交換器においては、特公平3−45300にて開示され
ている如く、冷媒を入口部のヘッダより複数本のチュー
ブに分配してフィン群を通過させる構成となっていた。
2. Description of the Related Art In a conventional heat exchanger attached to an outdoor unit of an air conditioner, as disclosed in Japanese Examined Patent Publication No. 3-45300, a refrigerant is distributed from a header of an inlet portion to a plurality of tubes and fin groups are provided. It was configured to pass.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の構成の
熱交換器においては、蒸発時に、中間ヘッダに流入した
冷媒は、該中間ヘッダ内を上昇し、該ヘッダの途中部に
穿設した孔から伝熱管へ流入するため、下側の伝熱管に
は多数の冷媒が流入し、上方ほど伝熱管への流入量は少
なくなり、最悪の場合には熱交換の行われない伝熱管も
あった。
However, in the heat exchanger having the conventional structure, the refrigerant flowing into the intermediate header at the time of evaporation rises in the intermediate header and has a hole formed in the middle of the header. Since a large amount of refrigerant flows into the heat transfer tube on the lower side, the amount of inflow into the heat transfer tube decreases toward the top, and in the worst case, heat transfer did not occur in some heat transfer tubes. .

【0004】また、蒸発時においては、伝熱管内にて液
体冷媒と気体冷媒とが混在するようになるが、気体冷媒
はもはや熱交換には殆ど寄与しないにも関わらず混在し
ていることから、液体冷媒の熱交換をも阻害するものと
なっており、蒸発性能が悪くなっている。
At the time of evaporation, the liquid refrigerant and the gas refrigerant are mixed in the heat transfer tube, but the gas refrigerant is mixed even though it hardly contributes to heat exchange. The heat exchange of the liquid refrigerant is also hindered, and the evaporation performance is deteriorated.

【0005】更に、熱交換器を通過する冷媒は、蒸発が
進行するに従って体積が増加する。この状況で、従来の
熱交換器のように、分流した各チューブが入口部のヘッ
ダより出口部まで同一径のままであると、出口部に近づ
くにつれ、流速が増加し、圧力損失が増大する。
Further, the volume of the refrigerant passing through the heat exchanger increases as the evaporation proceeds. In this situation, if the divided tubes have the same diameter from the header of the inlet to the outlet like the conventional heat exchanger, the flow velocity increases and the pressure loss increases as they approach the outlet. .

【0006】[0006]

【課題を解決するための手段】本発明は、以上のような
問題を解決するため、次のような手段を用いるものであ
る。即ち、蒸発時に冷媒が流入する入口分配器と、同じ
く冷媒が流出する出口ヘッダとの間に、複数の中間ヘッ
ダを設け、これらの各ヘッダ間にフィン群を通過させる
ようにして多数の伝熱管を連結した空調用熱交換器にお
いて、該中間ヘッダの片端部に分配器を装着した。
The present invention uses the following means in order to solve the above problems. That is, a plurality of intermediate headers are provided between an inlet distributor into which the refrigerant flows during evaporation and an outlet header from which the refrigerant also flows out, and a large number of heat transfer tubes are arranged so that a fin group is passed between these headers. In the heat exchanger for air conditioning connected to each other, a distributor was attached to one end of the intermediate header.

【0007】また、同じく空調用熱交換器において、該
中間ヘッダの下部に分配器を装着した。
Similarly, in the heat exchanger for air conditioning, a distributor is attached to the lower part of the intermediate header.

【0008】また、同じく空調用熱交換器において、該
中間ヘッダに流入した冷媒を気体冷媒と液体冷媒とに分
離し、液体冷媒のみを該伝熱管に通過させるよう構成し
た。
Also, in the heat exchanger for air conditioning, the refrigerant flowing into the intermediate header is separated into a gas refrigerant and a liquid refrigerant, and only the liquid refrigerant is passed through the heat transfer tube.

【0009】また、該中間ヘッダの片端部(下部)に分
配器を装着した空調用熱交換器において、蒸発時に冷媒
を中間ヘッダに流入させる伝熱管の本数よりも、その中
間ヘッダに装着した分配器より冷媒を流出させる導管の
本数を多くした。
Further, in an air conditioning heat exchanger in which a distributor is installed at one end (lower part) of the intermediate header, the distribution installed in the intermediate header is more than the number of heat transfer tubes that make the refrigerant flow into the intermediate header during evaporation. The number of conduits that allow the refrigerant to flow out of the container has been increased.

【0010】[0010]

【作用】次に、本発明の作用について説明する。まず、
中間ヘッダの片端部に分配器を装着することにより、熱
交換器における中間ヘッダを用いた凝縮性能を保持しつ
つ、蒸発時において、中間ヘッダに流入した気体冷媒と
液体冷媒とを、該分配器にて各伝熱管に均等に流出させ
ることができる。
Next, the operation of the present invention will be described. First,
By mounting the distributor on one end of the intermediate header, while maintaining the condensation performance using the intermediate header in the heat exchanger, the gas refrigerant and the liquid refrigerant that have flowed into the intermediate header at the time of evaporation are separated by the distributor. It is possible to make it evenly flow out to each heat transfer tube.

【0011】また、前記において、分配器を中間ヘッダ
の上部に装着した場合、蒸発時に中間ヘッダに流入した
未だ蒸発していない比重の大きい液体冷媒が該中間ヘッ
ダ内を重力に逆らって上方に流れるために、ヘッダ内に
おける圧力損失が増加するが、該分配器を、中間ヘッダ
の下部に装着すれば、液体冷媒が該分配器内にとどま
り、圧力損失は低減される。
Further, in the above, when the distributor is mounted on the upper part of the intermediate header, the liquid refrigerant having a large specific gravity which has not yet evaporated and has flowed into the intermediate header at the time of evaporation flows upward in the intermediate header against gravity. Therefore, the pressure loss in the header increases, but if the distributor is mounted in the lower part of the intermediate header, the liquid refrigerant stays in the distributor and the pressure loss is reduced.

【0012】また、中間ヘッダに流入する冷媒を液体冷
媒と気体冷媒に分離し、分離状態で熱交換することによ
り、蒸発可能な液体冷媒のみを熱交換に寄与させ、蒸発
性能を向上させる。
Further, by separating the refrigerant flowing into the intermediate header into a liquid refrigerant and a gas refrigerant and exchanging heat in the separated state, only the evaporable liquid refrigerant contributes to the heat exchange and the evaporation performance is improved.

【0013】また、蒸発時に中間ヘッダに冷媒を流入す
る伝熱管よりも、分配器より冷媒を流出する導管の本数
を多くすることにより、熱交換器を通過中に蒸発が進む
につれ体積が増大する冷媒の圧力損失が低減する。
Further, by increasing the number of conduits through which the refrigerant flows out from the distributor, as compared with the heat transfer tubes through which the refrigerant flows into the intermediate header at the time of evaporation, the volume increases as the evaporation progresses while passing through the heat exchanger. The pressure loss of the refrigerant is reduced.

【0014】[0014]

【実施例】本発明の解決すべき課題及び構成は以上の如
くであり、次に添付の図面に示した本発明の実施例を説
明する。図1は本発明の空調用熱交換器の内部正面図、
図2は同じく中間ヘッダより気体冷媒を分離するよう構
成した実施例を示す内部正面図、図3の(a)は空調用
熱交換器の平面図、(b)は同じく内部平面図、図4は
図3(a)におけるE−E矢視による空調用熱交換器の
内部正面図、図5はA−A矢視による空調用熱交換器の
左側面図、図6はB−B矢視による同じく左側面図、図
7はC−C矢視による同じく左側面図、図8はD−D矢
視による同じく左側面図で、(a)は第二中間ヘッダ7
及び出口ヘッダ10を含む図、(b)は第二中間ヘッダ
7及び出口ヘッダ10を除去した図、図9は同じく右側
面図、図10は分配器の正面一部断面図である。
The problems and configurations to be solved by the present invention are as described above, and the embodiments of the present invention shown in the accompanying drawings will be described below. FIG. 1 is a front view of the inside of a heat exchanger for air conditioning of the present invention,
2 is an internal front view showing an embodiment configured to separate the gas refrigerant from the intermediate header, FIG. 3 (a) is a plan view of an air conditioning heat exchanger, FIG. 3 (b) is the same internal plan view, and FIG. 3A is an internal front view of the air conditioning heat exchanger taken along the line EE in FIG. 3A, FIG. 5 is a left side view of the air conditioning heat exchanger taken along the line AA, and FIG. 6 is taken along the line BB. FIG. 7 is a left side view taken along the line CC of FIG. 7, FIG. 7 is a left side view taken along the line D-D of FIG. 8, and FIG.
FIG. 9B is a view including the second intermediate header 7 and the outlet header 10, FIG. 9 is a right side view, and FIG. 10 is a partial front sectional view of the distributor.

【0015】本発明の空調用熱交換器の構成を説明す
る。熱交換器の本体部1は、ヘッダ側の左側板1Lと右
側板1Rとの間にフィン群を挟持してなるものであり、
該本体部1のフィン群内には、図3(b)の如く、平面
視左右方向に3列の伝熱管が貫設されており、最も後面
寄りの列の垂直面上に配設されたものを伝熱管14、中
間列の垂直面上に配設されたものを伝熱管15、最も前
面寄りの列の垂直面上に配設されたものを伝熱管16と
しており、また、図3(b)、図4、図9の如く、該本
体部1の右側板1R外側にて、伝熱管14と伝熱管15
とがU字接続管11にて連結されており、また、同じく
右側板1R外側において、図1(図2)、図3(b)、
図9の如く、上下二本の伝熱管16・16がU字接続管
13にて連結され、そして、図3(b)、図4、図5の
如く、左側板1L外側においては、上下二本の伝熱管1
5・15がU字接続管12にて連結している。
The structure of the air conditioning heat exchanger of the present invention will be described. The main body 1 of the heat exchanger has a fin group sandwiched between a left side plate 1L and a right side plate 1R on the header side,
As shown in FIG. 3B, three rows of heat transfer tubes are penetrating in the fin group of the main body 1 in the left-right direction in a plan view, and the heat transfer tubes are arranged on the vertical surface of the row closest to the rear surface. The heat transfer tubes 14 are the ones, the heat transfer tubes 15 are those arranged on the vertical surface of the middle row, and the heat transfer tubes 16 are those arranged on the vertical surface of the row closest to the front. b), as shown in FIGS. 4 and 9, the heat transfer tube 14 and the heat transfer tube 15 are provided outside the right side plate 1R of the main body 1.
1 and 2 are connected by a U-shaped connecting pipe 11, and also outside the right side plate 1R, as shown in FIG. 1 (FIG. 2), FIG. 3 (b),
As shown in FIG. 9, the upper and lower heat transfer pipes 16 and 16 are connected by the U-shaped connecting pipe 13, and the upper and lower heat transfer pipes 16 and 16 are connected outside the left side plate 1L as shown in FIGS. 3B, 4 and 5. Book heat transfer tube 1
5 and 15 are connected by a U-shaped connecting pipe 12.

【0016】このように伝熱管を配設した熱交換器にお
いて、図4の如く、二個の第一(入口)分配器2より各
々4本の導管3・3・・・が延設されており、図8の如
く、本体部1の左側板1Lに穿設した入口孔1aを介し
て、該本体部1内のフィン群を通過する如く貫設される
伝熱管14の左端部に接続され、更に、U字接続管1
1、伝熱管15、U字接続管12、伝熱管15、U字接
続管11、伝熱管14を経由し、図4、図8の如く、本
体部1の左側板1Lに穿設した出口孔1bを介して、垂
直状管の第一中間ヘッダ4より延設した4本の導入管4
a・4a・・・の中の一本の右端に接続される。従っ
て、第一分配器2より延設した各導管3より導入される
冷媒が、第一中間ヘッダ4に至るまで、本体部1のフィ
ン群内を、伝熱管14・15を介して二往復する構成と
なっている。
In the heat exchanger having the heat transfer tubes thus arranged, as shown in FIG. 4, four conduits 3, 3 ... Are extended from the two first (inlet) distributors 2, respectively. As shown in FIG. 8, it is connected to the left end portion of the heat transfer tube 14 penetrating so as to pass through the fin group in the main body 1 through the inlet hole 1a formed in the left side plate 1L of the main body 1. , Moreover, U-shaped connecting tube 1
1, the heat transfer tube 15, the U-shaped connection tube 12, the heat transfer tube 15, the U-shaped connection tube 11, and the heat transfer tube 14, and an exit hole formed in the left side plate 1L of the main body 1 as shown in FIGS. 4 introduction pipes 4 extended from the first intermediate header 4 of a vertical pipe via 1b
It is connected to the right end of one of a. Therefore, the refrigerant introduced from each conduit 3 extending from the first distributor 2 makes two round trips through the heat transfer tubes 14 and 15 in the fin group of the main body 1 until reaching the first intermediate header 4. It is composed.

【0017】該第一中間ヘッダ4は、上下に二個配設し
ており、この片端部に第二分配器5を装着するものであ
るが、本実施例では、図1、図4、図8の如く、該第一
中間ヘッダ4の下端に装着している(上端は閉塞されて
いる。)。そして、該第二分配器5の下部より6本の導
管6・6・・・が延設されており、各導管6が、図3
(b)、図4、図8の如く、本体部1の左側板1Lに穿
設した入口孔1cを介して、伝熱管14に連結され、更
にU字接続管11、伝熱管15を経由し(フィン群内を
一往復して)、図3(b)、図4、図7、図8の如く、
該左側板1Lに穿設した出口孔1dを介して、第二中間
ヘッダ7より延設した6本の導入管7a・7a・・・の
中の一本の右端に接続される。
The first intermediate header 4 is provided in upper and lower two, and the second distributor 5 is attached to one end of the first intermediate header 4. In the present embodiment, FIGS. As shown in FIG. 8, it is attached to the lower end of the first intermediate header 4 (the upper end is closed). Six conduits 6, 6 ... Are extended from the lower part of the second distributor 5, and each conduit 6 is shown in FIG.
(B), as shown in FIG. 4 and FIG. 8, it is connected to the heat transfer tube 14 through the inlet hole 1c formed in the left side plate 1L of the main body 1, and further through the U-shaped connection tube 11 and the heat transfer tube 15. As shown in FIG. 3 (b), FIG. 4, FIG. 7, and FIG.
It is connected to one of the right ends of the six introducing pipes 7a, 7a, ... Extending from the second intermediate header 7 through an outlet hole 1d formed in the left side plate 1L.

【0018】第二中間ヘッダ7は、図1、図4、図7、
図8の如く、上下に二個配設されていて、各第二中間ヘ
ッダ7において、下端が開口していて(上端は閉塞され
ている。)、第三分配器8を装着しており、該第三分配
器8の下部より7本の導管9・9・・・が延設されてい
て、各導管9は、図1、図3(b)、図7の如く、本体
部1の左側板1Lに穿設した入口孔1eを介して伝熱管
16の左端に接続され、更にU字接続管13、伝熱管1
6を経由し(フィン群内を一往復して)、図1、図3
(b)、図6の如く、本体部1の左側面に穿設された出
口孔1fを介して出口ヘッダ10より延設した14本の
導入管10a・10a・・・に各々接続されている。
The second intermediate header 7 is shown in FIG. 1, FIG. 4, FIG.
As shown in FIG. 8, two upper and lower parts are arranged, the lower end of each second intermediate header 7 is open (the upper end is closed), and the third distributor 8 is mounted. Seven conduits 9, 9 ... Are extended from the lower part of the third distributor 8, and each conduit 9 is located on the left side of the main body 1 as shown in FIGS. 1, 3 (b) and 7. It is connected to the left end of the heat transfer tube 16 via an inlet hole 1e formed in the plate 1L, and further has a U-shaped connecting tube 13 and the heat transfer tube 1.
1 and 3 (through one round trip within the fin group) via 6
(B) As shown in FIG. 6, each of the 14 inlet pipes 10a, 10a, ... Extending from the outlet header 10 is connected via an outlet hole 1f formed in the left side surface of the main body 1. .

【0019】更に、図2図示の実施例においては、第一
中間ヘッダ4・第二中間ヘッダ7の上端を開口し、各上
端部より接続管17・17・・・を、該出口ヘッダ10
の出口側部位に接続しており、各第一中間ヘッダ4・第
二中間ヘッダ7内における液体・気体混合冷媒より気体
冷媒を導入して、該出口ヘッダ10内に流出させる構成
としている。
Further, in the embodiment shown in FIG. 2, the upper ends of the first intermediate header 4 and the second intermediate header 7 are opened, and the connecting pipes 17, 17 ...
Of the first intermediate header 4 and the second intermediate header 7, and the gas refrigerant is introduced from the liquid / gas mixed refrigerant in the first intermediate header 4 and the second intermediate header 7 to flow out into the outlet header 10.

【0020】以上のような構成の熱交換器において、冷
媒の流れを説明する。まず、図1図示の実施例において
は、蒸発時に、第一分配器2に飽和状の気体及び液体冷
媒が流入し、導管3、伝熱管14・15等を経て第一中
間ヘッダ4内に流入して混合され、第二分配器5より各
導管6・6・・・に均等に分配されて流出し、再び第二
中間ヘッダ7内に流入して混合され、第三分配器8より
導管9・9・・・に均等に分配される。
The flow of the refrigerant in the heat exchanger having the above structure will be described. First, in the embodiment shown in FIG. 1, the saturated gas and liquid refrigerant flow into the first distributor 2 during evaporation, and flow into the first intermediate header 4 via the conduit 3, the heat transfer tubes 14 and 15, and the like. , And are evenly distributed from the second distributor 5 to the respective conduits 6, 6, ... Outgoing, again flowing into the second intermediate header 7 and mixed, and then being supplied from the third distributor 8 to the conduit 9.・ Distributed evenly to 9 ...

【0021】このように、図1図示の実施例において
は、液体・気体二相冷媒が伝熱管内を通過するが、図2
図示の実施例においては、第一中間ヘッダ4・第二中間
ヘッダ7内に流入した二相冷媒のうち、気体冷媒は、比
重が小さいので、上昇して各上端より接続パイプ17内
に流出し、一方、液体冷媒は比重が大きいので、下方に
落下して、第二分配器5・第三分配器8内に流入し、従
って、導管6・9にて伝熱管14・15・16内に流入
される冷媒は、主に液体冷媒であり、圧力損失(高圧
化)の低減をもたらし、かつ、蒸発熱を吸収する液体冷
媒が直接伝熱管の内壁に触れる確率が増すため、熱交換
効率が向上する。
As described above, in the embodiment shown in FIG. 1, the liquid / gas two-phase refrigerant passes through the heat transfer tube.
In the illustrated embodiment, of the two-phase refrigerants that have flowed into the first intermediate header 4 and the second intermediate header 7, the gas refrigerant has a small specific gravity, so it rises and flows out into the connection pipe 17 from each upper end. On the other hand, since the liquid refrigerant has a large specific gravity, it drops downward and flows into the second distributor 5 / third distributor 8 and thus into the heat transfer pipes 14, 15/16 through the conduits 6/9. The refrigerant that flows in is mainly a liquid refrigerant, which reduces pressure loss (increased pressure) and increases the probability that the liquid refrigerant that absorbs the heat of evaporation directly contacts the inner wall of the heat transfer tube, so that the heat exchange efficiency is improved. improves.

【0022】また、図1図示及び図2図示の両実施例に
おいて、第一中間ヘッダ4・第二中間ヘッダ7の片端部
に第二分配器5・第三分配器8を装着することによっ
て、各中間ヘッダ4・7の後程に分岐延設する伝熱管1
4・15・16内に均等に冷媒を分配するので、ある伝
熱管においては、殆ど冷媒が流入せずに、熱交換がなさ
れないというような、伝熱管に流入させる冷媒の偏りに
より発生する熱交換効率の低下という弊害が低減される
のである。
Further, in both the embodiments shown in FIGS. 1 and 2, by mounting the second distributor 5 and the third distributor 8 on one end of the first intermediate header 4 and the second intermediate header 7, respectively. Heat transfer tube 1 that branches and extends after each intermediate header 4 and 7
Since the refrigerant is evenly distributed in 4.15.16, the heat generated by the deviation of the refrigerant flowing into the heat transfer tube, such that the refrigerant hardly flows into a certain heat transfer tube and heat exchange is not performed, The adverse effect of the deterioration of the exchange efficiency is reduced.

【0023】また、熱交換器においては、蒸発時に入口
部(第一分配器2)より出口部(出口ヘッダ10)まで
通過する間に、冷媒が気化することにより体積が増大す
るが、この体積増大に見合って、冷媒の通過容量を増大
させる等、圧力損失増大を抑制しなければ、上流側にお
いて冷媒の圧力が増大してしまう。即ち、上流側冷媒温
度が下流側に較べて増加してしまう。従って、上流側冷
媒温度とフィン群1を通過する空気温度との差が小さく
なり、熱交換効率が低下する。従って、出口部において
できるだけ冷媒の流速を抑制する。即ち、圧力損失の少
ない構造とする必要がある。
In the heat exchanger, the volume of the heat exchanger increases due to vaporization of the refrigerant while passing from the inlet portion (first distributor 2) to the outlet portion (outlet header 10) during evaporation. If the increase in pressure loss is not suppressed by increasing the passage capacity of the refrigerant in proportion to the increase, the pressure of the refrigerant will increase on the upstream side. That is, the temperature of the refrigerant on the upstream side increases as compared with the temperature on the downstream side. Therefore, the difference between the temperature of the upstream side refrigerant and the temperature of the air passing through the fin group 1 becomes small, and the heat exchange efficiency decreases. Therefore, the flow velocity of the refrigerant is suppressed as much as possible at the outlet portion. That is, it is necessary to have a structure with less pressure loss.

【0024】このため、本実施例においては、まず、前
記の如く、第一中間ヘッダ4・第二中間ヘッダ7の片端
部に第二分配器5・第三分配器8を装着する構成におい
て、該第二分配器5・第三分配器8を該第一中間ヘッダ
4・第二中間ヘッダ7の下端に装着している。即ち、該
第一中間ヘッダ4・第二中間ヘッダ7内に流入する液体
冷媒・気体冷媒のうち、熱交換のための蒸発に寄与する
液体冷媒が、比重が大きいために下方に落下して、自然
に該第二分配器5・第三分配器8内に流入する構成とな
っている。もし、該第一中間ヘッダ4・第二中間ヘッダ
7の上端に該第二分配器5・第三分配器8を装着すれ
ば、比重の大きい液体冷媒が重力に逆らって中間ヘッダ
内を上方に流れ、第二分配器5・第三分配器8内に流入
し、圧力損失が大きくなるが、下端に装着しているの
で、このような圧力損失が抑えられるのである。
Therefore, in the present embodiment, first, as described above, in the structure in which the second distributor 5 and the third distributor 8 are attached to one end of the first intermediate header 4 and the second intermediate header 7, respectively, The second distributor 5 and the third distributor 8 are attached to the lower ends of the first intermediate header 4 and the second intermediate header 7. That is, of the liquid refrigerant / gaseous refrigerant flowing into the first intermediate header 4 / second intermediate header 7, the liquid refrigerant that contributes to evaporation for heat exchange falls downward because of its large specific gravity, It is configured to naturally flow into the second distributor 5 and the third distributor 8. If the second distributor 5 and the third distributor 8 are mounted on the upper ends of the first intermediate header 4 and the second intermediate header 7, the liquid refrigerant having a large specific gravity moves upward in the intermediate header against the gravity. Flowing into the second distributor 5 / third distributor 8, the pressure loss increases, but since it is attached to the lower end, such pressure loss is suppressed.

【0025】また、各第一分配器2・第二分配器5・第
三分配器8より延設される導管3・6・9は、上流側の
導管3が4本、それより下流側の導管6が6本、そし
て、最も下流側の導管9が7本となっている。即ち下流
側に至るほど一分配器より延設する導管の本数を増加さ
せて、冷媒の通過容量を増大させているので、下流側ほ
ど体積の増大する冷媒の流速を高めることなく、即ち、
圧力損失を低減できるのである。
The conduits 3, 6.9 and 9 extending from the first distributor 2, the second distributor 5, and the third distributor 8 each have four upstream conduits 3 and downstream conduits. There are six conduits 6 and seven downstreammost conduits 9. That is, since the number of conduits extending from one distributor to the downstream side is increased to increase the passage capacity of the refrigerant, without increasing the flow rate of the refrigerant whose volume increases toward the downstream side, that is,
The pressure loss can be reduced.

【0026】また、各第一分配器2・第二分配器5・第
三分配器8の内部構造において、その内部に配設する図
10図示のオリフィス18の開口径(又は通過長さ)
を、上流側の第一分配器2において小さく、第二分配器
5においてやや大きく、そして、最も下流側の第三分配
器8において最大にするよう構成することにより、同様
に下流側ほど冷媒の通過容量が大きくなり、下流側ほど
体積の増大する冷媒の流速を、出口部において高くして
しまうことなく、圧力損失を低減させられる。
Further, in the internal structure of each of the first distributor 2, the second distributor 5, and the third distributor 8, the opening diameter (or passage length) of the orifice 18 shown in FIG.
Is designed to be small in the first distributor 2 on the upstream side, slightly large in the second distributor 5, and maximized in the third distributor 8 on the most downstream side. The pressure loss can be reduced without increasing the flow velocity of the refrigerant, which has a larger passage capacity and increases in volume toward the downstream side, at the outlet portion.

【0027】その他、第一中間ヘッダ4・第二中間ヘッ
ダ7・出口ヘッダ10の内径を、上流側の第一中間ヘッ
ダ4から下流側の出口ヘッダ10に移行するにつれて大
きくすると、同様の効果を奏する。
In addition, if the inner diameters of the first intermediate header 4, the second intermediate header 7, and the outlet header 10 are increased as they move from the upstream first intermediate header 4 to the downstream outlet header 10, the same effect is obtained. Play.

【0028】以上は、蒸発時における冷媒の流れを基に
本発明の熱交換器の構成を説明したものだが、凝縮時に
おいては、過熱蒸気冷媒が出口ヘッダ10より流入し、
前記と逆のルートにて、第二中間ヘッダ7・第一中間ヘ
ッダ4を経て、第一分配器2より流出してゆくものであ
る。この過程において、冷媒が凝縮して凝縮熱を外部に
放出するのであるが、各導管9・6より更に、蒸発時と
は逆に上流側となる出口ヘッダ10より下流側の第一分
配器2へと移行するにつれ、導管数(伝熱管数)が減少
する。これは、出口ヘッダ10より流入した過熱蒸気冷
媒は、伝熱管内を通過するに従い凝縮し、体積を減少す
るので、使用する中間ヘッダを経るごとに減少させても
圧力損失はほとんど上昇しないからである。
The structure of the heat exchanger of the present invention has been described above on the basis of the flow of the refrigerant at the time of evaporation, but at the time of condensation, the superheated steam refrigerant flows from the outlet header 10,
It flows out of the first distributor 2 via the second intermediate header 7 and the first intermediate header 4 in the route opposite to the above. In this process, the refrigerant condenses and releases the heat of condensation to the outside. The first distributor 2 on the downstream side of the outlet header 10 which is on the upstream side of each conduit 9 and 6 and on the opposite side to the evaporation time. The number of conduits (the number of heat transfer tubes) decreases with the transition to. This is because the superheated vapor refrigerant flowing in from the outlet header 10 is condensed as it passes through the heat transfer tube and its volume is reduced, so that the pressure loss hardly rises even if it is reduced with each intermediate header used. is there.

【0029】第三分配器8・第二分配器5に流入した冷
媒は、そこで混合され、第二中間ヘッダ7・第一中間ヘ
ッダ4に流入するが、該第三分配器8・第二分配器5
は、各々該第二中間ヘッダ7・第一中間ヘッダ4の下端
に装着されていることから、該第二中間ヘッダ7・第一
中間ヘッダ4の上端部に接続されている伝熱管には、比
重の小さい気体冷媒が多く流入する。即ち、分配器直前
の伝熱管内面には液冷媒が全周にわたって堆積し伝熱を
阻害するが、第二中間ヘッダ7・第一中間ヘッダ4の上
端に接続されている伝熱管には伝熱を阻害する液膜が堆
積していない。また下端に接続されている伝熱管も下面
には液が堆積するが上面には堆積せず、凝縮効果が高
い。このように本発明の熱交換器は、凝縮性能において
も優れた効果をもたらすものである。
The refrigerant flowing into the third distributor 8 and the second distributor 5 is mixed there and flows into the second intermediate header 7 and the first intermediate header 4, and the third distributor 8 and the second distributor Bowl 5
Are attached to the lower ends of the second intermediate header 7 and the first intermediate header 4, respectively, so that the heat transfer tubes connected to the upper ends of the second intermediate header 7 and the first intermediate header 4 are A large amount of gas refrigerant having a small specific gravity flows in. That is, the liquid refrigerant accumulates on the entire inner surface of the heat transfer tube immediately before the distributor to impede heat transfer, but the heat transfer tube connected to the upper ends of the second intermediate header 7 and the first intermediate header 4 transfers heat. The liquid film that inhibits is not deposited. Further, in the heat transfer tube connected to the lower end, liquid is deposited on the lower surface but not on the upper surface, and the condensation effect is high. As described above, the heat exchanger of the present invention also has an excellent effect on the condensation performance.

【0030】[0030]

【発明の効果】本発明は、以上のように構成したので、
次のような効果を奏する。即ち、蒸発時の熱交換器にお
いて、請求項1の如く構成することにより、各伝熱管に
均等に冷媒が分配され、また、請求項2の如く構成する
ことにより、各中間ヘッダ内の圧力損失を減じ、また、
請求項3の如く構成することにより、伝熱管に液体冷媒
を多く送り込み、蒸発効果が小さく、かつ圧力損失増大
の要因となる気体冷媒は分離して伝熱管を通さない。更
に、請求項4の如く構成することにより、下流側ほど体
積の増大する冷媒の流速を低減し、圧力損失を減じる。
以上のように、圧力損失が少なく、かつ、各伝熱管に均
等に冷媒が分配されることから、熱交換率の非常に高い
優れた空調用熱交換器を提供することができる。
Since the present invention is constructed as described above,
The following effects are obtained. That is, in the heat exchanger at the time of evaporation, the refrigerant is evenly distributed to each heat transfer tube by configuring as in claim 1, and the pressure loss in each intermediate header by configuring as in claim 2. And also
According to the third aspect of the invention, a large amount of liquid refrigerant is sent into the heat transfer tube, the vaporizing effect is small, and the gas refrigerant that causes a pressure loss increase is separated and does not pass through the heat transfer tube. Further, with the structure according to claim 4, the flow velocity of the refrigerant whose volume increases toward the downstream side is reduced and the pressure loss is reduced.
As described above, since the pressure loss is small and the refrigerant is evenly distributed to the heat transfer tubes, it is possible to provide an excellent air conditioning heat exchanger having a very high heat exchange rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空調用熱交換器の内部正面図である。FIG. 1 is an internal front view of a heat exchanger for air conditioning of the present invention.

【図2】同じく中間ヘッダより気体冷媒を分離するよう
構成した実施例を示す内部正面図である。
FIG. 2 is an internal front view showing an embodiment similarly configured to separate the gas refrigerant from the intermediate header.

【図3】(a)は空調用熱交換器の平面図、(b)は同
じく内部平面図である。
3A is a plan view of an air conditioning heat exchanger, and FIG. 3B is an internal plan view of the same.

【図4】図3(a)におけるE−E矢視による空調用熱
交換器の内部正面図である。
FIG. 4 is an internal front view of the air conditioning heat exchanger taken along the line EE in FIG.

【図5】A−A矢視による空調用熱交換器の左側面図で
ある。
FIG. 5 is a left side view of the air conditioning heat exchanger taken along the line AA.

【図6】B−B矢視による同じく左側面図である。FIG. 6 is a left side view of the same taken along the line BB.

【図7】C−C矢視による同じく左側面図である。FIG. 7 is a left side view of the same taken along the line C-C.

【図8】D−D矢視による同じく左側面図で、(a)は
第二中間ヘッダ7及び出口ヘッダ10を含む図、(b)
は第二中間ヘッダ7及び出口ヘッダ10を除去した図で
ある。
8 is a left side view of the same taken along the line D-D, FIG. 8A is a diagram including a second intermediate header 7 and an outlet header 10, and FIG.
FIG. 6 is a diagram in which the second intermediate header 7 and the exit header 10 are removed.

【図9】同じく右側面図である。FIG. 9 is a right side view of the same.

【図10】分配器の正面一部断面図である。FIG. 10 is a partial front sectional view of the distributor.

【符号の説明】[Explanation of symbols]

1 本体部 1L 左側板 1R 右側板 1a 入口孔 1b 出口孔 1c 入口孔 1d 出口孔 1e 入口孔 1f 出口孔 2 第一分配器 3 導管 4 第一中間ヘッダ 4a 導入管 5 第二分配器 6 導管 7 第二中間ヘッダ 7a 導入管 8 第三分配器 9 導管 10 出口ヘッダ 10a 導入管 11 U字接続管 12 U字接続管 13 U字接続管 14 伝熱管 15 伝熱管 16 伝熱管 17 接続パイプ 18 オリフィス 1 Main Body 1L Left Side Plate 1R Right Side Plate 1a Inlet Hole 1b Outlet Hole 1c Inlet Hole 1d Outlet Hole 1e Inlet Hole 1f Outlet Hole 2 First Distributor 3 Conduit 4 First Intermediate Header 4a Inlet Pipe 5 Second Distributor 6 Conduit 7 Second intermediate header 7a Introducing pipe 8 Third distributor 9 Conduit 10 Outlet header 10a Introducing pipe 11 U-shaped connecting pipe 12 U-shaped connecting pipe 13 U-shaped connecting pipe 14 Heat transfer pipe 15 Heat transfer pipe 16 Heat transfer pipe 17 Connection pipe 18 Orifice

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蒸発時に冷媒が流入する入口分配器と、
同じく冷媒が流出する出口ヘッダとの間に、複数の中間
ヘッダを設け、これらの各ヘッダ間にフィン群を通過さ
せるようにして多数の伝熱管を連結した空調用熱交換器
において、該中間ヘッダの片端部に分配器を装着したこ
とを特徴とする空調用熱交換器。
1. An inlet distributor into which a refrigerant flows during evaporation,
Similarly, in an air-conditioning heat exchanger in which a plurality of intermediate headers are provided between the outlet headers from which the refrigerant flows and a large number of heat transfer tubes are connected so that fin groups pass between these headers, A heat exchanger for air conditioning, characterized in that a distributor is attached to one end of the.
【請求項2】 蒸発時に冷媒が流入する入口分配器と、
同じく冷媒が流出する出口ヘッダとの間に、複数の中間
ヘッダを設け、これらの各ヘッダ間にフィン群を通過さ
せるようにして多数の伝熱管を連結した空調用熱交換器
において、該中間ヘッダの下部に分配器を装着したこと
を特徴とする空調用熱交換器。
2. An inlet distributor into which a refrigerant flows during evaporation,
Similarly, in an air-conditioning heat exchanger in which a plurality of intermediate headers are provided between the outlet headers from which the refrigerant flows and a large number of heat transfer tubes are connected so that fin groups pass between these headers, A heat exchanger for air conditioning, characterized in that a distributor is attached to the lower part of the.
【請求項3】 蒸発時に冷媒が流入する入口分配器と、
同じく冷媒が流出する出口ヘッダとの間に、複数の中間
ヘッダを設け、これらの各ヘッダ間にフィン群を通過さ
せるようにして多数の伝熱管を連結した空調用熱交換器
において、該中間ヘッダに流入した冷媒を気体冷媒と液
体冷媒とに分離し、液体冷媒のみを該伝熱管に通過させ
るよう構成したことを特徴とする空調用熱交換器。
3. An inlet distributor into which the refrigerant flows during evaporation,
Similarly, in an air-conditioning heat exchanger in which a plurality of intermediate headers are provided between the outlet headers from which the refrigerant flows and a large number of heat transfer tubes are connected so that fin groups pass between these headers, A heat exchanger for air conditioning, characterized in that the refrigerant flowing into is separated into a gas refrigerant and a liquid refrigerant, and only the liquid refrigerant is passed through the heat transfer tube.
【請求項4】 請求項1又は2記載の空調用熱交換器に
おいて、蒸発時に冷媒を中間ヘッダに流入させる伝熱管
の本数よりも、その中間ヘッダに装着した分配器より冷
媒を流出させる導管の本数を多くしたことを特徴とする
空調用熱交換器。
4. The air conditioner heat exchanger according to claim 1, wherein the number of heat transfer tubes that allow the refrigerant to flow into the intermediate header during evaporation is greater than that of the conduits through which the refrigerant flows out from the distributor attached to the intermediate header. A heat exchanger for air conditioning characterized by increasing the number.
JP7009817A 1995-01-25 1995-01-25 Heat exchanger air conditioning Pending JPH08200886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7009817A JPH08200886A (en) 1995-01-25 1995-01-25 Heat exchanger air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7009817A JPH08200886A (en) 1995-01-25 1995-01-25 Heat exchanger air conditioning

Publications (1)

Publication Number Publication Date
JPH08200886A true JPH08200886A (en) 1996-08-06

Family

ID=11730711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7009817A Pending JPH08200886A (en) 1995-01-25 1995-01-25 Heat exchanger air conditioning

Country Status (1)

Country Link
JP (1) JPH08200886A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682718B1 (en) * 2005-08-25 2007-02-15 엘에스전선 주식회사 Air conditioner having refrigerants distributor for branch
JP2008157472A (en) * 2006-12-20 2008-07-10 Maruyasu Industries Co Ltd Heat exchanger
KR101283252B1 (en) * 2013-02-01 2013-07-11 이순길 Thermal media equal distribution type air conditioning unit
CN103913018A (en) * 2013-07-24 2014-07-09 劳特斯空调(江苏)有限公司 Finned tube air-cooled heat exchanger
JP2016014504A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Heat exchanger, and refrigeration cycle device with the same
WO2016098204A1 (en) * 2014-12-17 2016-06-23 三菱電機株式会社 Heat exchanger and refrigeration cycle device provided with heat exchanger
WO2023208073A1 (en) * 2022-04-28 2023-11-02 浙江盾安人工环境股份有限公司 Heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100682718B1 (en) * 2005-08-25 2007-02-15 엘에스전선 주식회사 Air conditioner having refrigerants distributor for branch
JP2008157472A (en) * 2006-12-20 2008-07-10 Maruyasu Industries Co Ltd Heat exchanger
KR101283252B1 (en) * 2013-02-01 2013-07-11 이순길 Thermal media equal distribution type air conditioning unit
CN103913018A (en) * 2013-07-24 2014-07-09 劳特斯空调(江苏)有限公司 Finned tube air-cooled heat exchanger
JP2016014504A (en) * 2014-07-02 2016-01-28 三菱電機株式会社 Heat exchanger, and refrigeration cycle device with the same
WO2016098204A1 (en) * 2014-12-17 2016-06-23 三菱電機株式会社 Heat exchanger and refrigeration cycle device provided with heat exchanger
WO2023208073A1 (en) * 2022-04-28 2023-11-02 浙江盾安人工环境股份有限公司 Heat exchanger

Similar Documents

Publication Publication Date Title
KR100240826B1 (en) Refrigerant evaporator
KR100216052B1 (en) Evaporator
US7640970B2 (en) Evaporator using micro-channel tubes
US6155075A (en) Evaporator with enhanced refrigerant distribution
US4370868A (en) Distributor for plate fin evaporator
JP3056151B2 (en) Heat exchanger
CN1316223C (en) Heat exchanger with flow distributing orifice partitions
US20060054310A1 (en) Evaporator using micro-channel tubes
JP7470909B2 (en) Microchannel heat exchanger and air conditioner
JPH0387572A (en) Heat exchanger
JP2008542677A (en) Parallel flow evaporator with liquid trap for good flow distribution
JPH08200886A (en) Heat exchanger air conditioning
JPH09222284A (en) Condenser
JP3122578B2 (en) Heat exchanger
US4458750A (en) Inlet header flow distribution
JPS6214751B2 (en)
WO2023045707A1 (en) Falling film evaporator
JP2001221535A (en) Refrigerant evaporator
US4417619A (en) Air-cooled heat exchanger
JPH04268128A (en) Heat exchanger
JP3632248B2 (en) Refrigerant evaporator
JP2644900B2 (en) Heat exchanger
JP3083385B2 (en) Heat exchanger
JPH10170098A (en) Laminated evaporator
JP2574488B2 (en) Heat exchanger