JP2008542677A - Parallel flow evaporator with liquid trap for good flow distribution - Google Patents

Parallel flow evaporator with liquid trap for good flow distribution Download PDF

Info

Publication number
JP2008542677A
JP2008542677A JP2008513439A JP2008513439A JP2008542677A JP 2008542677 A JP2008542677 A JP 2008542677A JP 2008513439 A JP2008513439 A JP 2008513439A JP 2008513439 A JP2008513439 A JP 2008513439A JP 2008542677 A JP2008542677 A JP 2008542677A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
evaporator
economizer
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008513439A
Other languages
Japanese (ja)
Inventor
エフ. タラス,マイケル
リフソン,アレクサンダー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of JP2008542677A publication Critical patent/JP2008542677A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2500/00Problems to be solved
    • F25C2500/02Geometry problems

Abstract

平行流蒸発器は、膨張装置から蒸発器に送られる冷媒の速度を調整する液トラップを有する。最も単純な構成では、液トラップは垂直方向に配置されたu字形状のパイプとされ、蒸発器の入口マニホルドに接続される。液トラップを設けることにより、条件次第で少量の液冷媒が蒸気相から分離する。この分離した液は、トラップ内に集まりやすく、蒸発器の入口マニホルドに通じたラインの流動断面積を狭める。この断面積が小さくなるにつれて、ラインを通る冷媒の速度が速くなる。このようにして、少量の液相が分離することに伴い、残りの冷媒速度が速くなって、さらなる分離を大幅に低減するか、または完全になくすことを確実にする。その結果、均一な冷媒流が蒸発器に供給されて、蒸発器の性能が高まり、システムの信頼性が改善される。The parallel flow evaporator has a liquid trap that adjusts the speed of the refrigerant sent from the expansion device to the evaporator. In the simplest configuration, the liquid trap is a u-shaped pipe arranged vertically and connected to the inlet manifold of the evaporator. By providing the liquid trap, a small amount of liquid refrigerant is separated from the vapor phase depending on the conditions. This separated liquid tends to collect in the trap and narrows the flow cross-sectional area of the line leading to the evaporator inlet manifold. As this cross-sectional area decreases, the speed of the refrigerant passing through the line increases. In this way, as the small amount of liquid phase separates, the remaining refrigerant velocity increases, ensuring that further separation is greatly reduced or eliminated altogether. As a result, a uniform refrigerant flow is supplied to the evaporator, increasing the performance of the evaporator and improving the reliability of the system.

Description

本発明は、平行流蒸発器に関し、この平行流蒸発器では、入口マニホルドの上流に液トラップが配置されて、平行なチャネル間の流れ分布を良好にし、伝熱性を改善し、システムの信頼性を高める。   The present invention relates to a parallel flow evaporator, where a liquid trap is placed upstream of the inlet manifold to improve flow distribution between parallel channels, improve heat transfer, and system reliability. To increase.

冷媒システムは、調整される様々な屋内環境にある空気の温度及び湿度を制御するために利用される。冷房モードで作動する典型的な冷媒システムでは、冷媒はコンプレッサで圧縮されて、凝縮器(つまり、この場合は屋外熱交換器)に送られる。凝縮器では、外部周囲空気と冷媒の間で熱交換が行われる。冷媒は、凝縮器から膨張装置に進み、膨張装置で膨張されて低圧かつ低温となり、次いで、蒸発器(つまり、システムが冷房モードで作動する場合には屋内熱交換器)へ流れる。蒸発器では、屋内空気を調整するために、冷媒と屋内空気の間で熱交換が行われる。冷媒システムが冷房モードで作動している場合、蒸発器は、屋内環境に供給されている空気を冷却し、一般的には除湿も行う。   Refrigerant systems are utilized to control the temperature and humidity of air in various indoor environments that are regulated. In a typical refrigerant system operating in the cooling mode, the refrigerant is compressed by a compressor and sent to a condenser (ie, an outdoor heat exchanger in this case). In the condenser, heat exchange is performed between the external ambient air and the refrigerant. The refrigerant travels from the condenser to the expansion device, is expanded in the expansion device to a low pressure and low temperature, and then flows to the evaporator (ie, the indoor heat exchanger if the system operates in cooling mode). In the evaporator, heat is exchanged between the refrigerant and the indoor air in order to adjust the indoor air. When the refrigerant system is operating in the cooling mode, the evaporator cools the air supplied to the indoor environment and generally also dehumidifies it.

冷媒システムに利用され得る蒸発器の一型式に平行流蒸発器がある。この型式の蒸発器は、入口マニホルドと出口マニホルドとの間で冷媒を伝達する数個の平行チャネルを有する。各チャネルは、通常、内壁で分離された様々な断面形状を有する平行な内部流路を多数備える。チャネル間には波状フィンが配置されて、伝熱性を高めるとともに、構造に剛性を付与する。通常、チャネル、マニホルドおよびフィンは、アルミニウムなどの同種の材料で構成され、ろう付けによって互いに取り付けられている。近年、平行流蒸発器が、その優れた性能、コンパクト性、剛性構造および高い耐腐食性によって、空調分野において多くの注目と関心を集めている。しかし、平行流蒸発器に関する1つの懸念としては、チャネル間において冷媒の分布が不均となることがある。平行流蒸発器における冷媒の不均一分布の問題は、通常、重力と不十分な冷媒速度とが相まって、入口マニホルド内で蒸気から液相が分離することによって引き起こされ、これにより、蒸発器チャネルを通る蒸気冷媒および液冷媒の量が不均一となる。不均一分布をもたらす他の事象としては、冷媒が様々なチャネルに達してから流出するまでに流れる距離の違い、圧力インピーダンスの不均一性、およびチャネル間での伝熱速度のばらつきなどがある。   One type of evaporator that can be utilized in a refrigerant system is a parallel flow evaporator. This type of evaporator has several parallel channels that transfer refrigerant between an inlet manifold and an outlet manifold. Each channel typically comprises a number of parallel internal channels having various cross-sectional shapes separated by an inner wall. Corrugated fins are placed between the channels to increase heat transfer and to add rigidity to the structure. Typically, the channels, manifolds and fins are made of similar materials such as aluminum and are attached to each other by brazing. In recent years, parallel flow evaporators have attracted much attention and attention in the air conditioning field due to their superior performance, compactness, rigid structure and high corrosion resistance. However, one concern with parallel flow evaporators is that the refrigerant distribution is uneven between the channels. The problem of non-uniform refrigerant distribution in parallel flow evaporators is usually caused by gravity and inadequate refrigerant velocity combined with the separation of the liquid phase from the vapor in the inlet manifold, which causes the evaporator channel to The amount of vapor refrigerant and liquid refrigerant passing through becomes uneven. Other events that lead to a non-uniform distribution include differences in the distance that the refrigerant flows from various channels to the outflow, pressure impedance non-uniformity, and heat transfer rate variation between channels.

公知の平行流蒸発器は、通常、円筒状の形状を有する入口マニホルドおよび出口マニホルドを備える。チャネルは、通常、平管を形成する同一のアルミニウム押出材から作られる。2相冷媒が入口マニホルドに入ると、蒸気相と液相とが頻繁に分離する。分離後は、2つの相が互いに独立して移動するので、冷媒の不均一分布問題が頻繁に生じてしまう。   Known parallel flow evaporators typically include an inlet manifold and an outlet manifold having a cylindrical shape. The channels are usually made from the same aluminum extrusion that forms a flat tube. As the two-phase refrigerant enters the inlet manifold, the vapor phase and the liquid phase frequently separate. After the separation, the two phases move independently of each other, so the problem of uneven distribution of the refrigerant frequently occurs.

そのような不均一分布が発生すると、熱交換器の性能は大幅に低下し、液冷媒が出口マニホルドから出ることを頻発させる。この液冷媒は、信頼性を損なう問題と永久的なコンプレッサの損傷とを引き起こす。これは、明らかに望ましくない。   When such a non-uniform distribution occurs, the performance of the heat exchanger is greatly reduced, causing liquid refrigerant to frequently exit the outlet manifold. This liquid refrigerant causes problems that impair reliability and permanent compressor damage. This is clearly undesirable.

本発明の開示した実施例では、平行流蒸発器には、その入口マニホルドの上流に液トラップが設けられている。この様式において、液相と蒸気相とが分離しないような速度で冷媒が移動している場合、冷媒はトラップを通過して入口マニホルドに流れ、ほぼ均等な分布で蒸発器チャネルに流れることができる。しかし、液分離が起こりそうなほど冷媒が低速で移動している場合、液が分離して液トラップに集積しやすくなる。液が液トラップに集積すると、冷媒の残りの部分に対する流れ断面積が減る。流れ断面積がより小さくなるので、その結果、冷媒速度が上がってジェット効果が起こり、ジェット効果によって、液滴を入口マニホルドに搬送し、さらなる相分離を制限する。この現象は自己調整する働きをし、冷媒の液部が蒸気から分離しにくくなるように、十分な冷媒速度を確実に維持する。   In the disclosed embodiment of the present invention, the parallel flow evaporator is provided with a liquid trap upstream of its inlet manifold. In this manner, if the refrigerant is moving at such a speed that the liquid phase and the vapor phase do not separate, the refrigerant can flow through the trap to the inlet manifold and to the evaporator channel with a substantially even distribution. . However, when the refrigerant is moving at such a low speed that liquid separation is likely to occur, the liquid is easily separated and collected in the liquid trap. As liquid accumulates in the liquid trap, the flow cross-sectional area for the remainder of the refrigerant is reduced. Since the flow cross-sectional area is smaller, the result is an increase in refrigerant velocity and a jet effect that transports droplets to the inlet manifold and limits further phase separation. This phenomenon is self-adjusting and reliably maintains sufficient refrigerant speed so that the liquid portion of the refrigerant is less likely to separate from the vapor.

一実施例において、単一のu字形状トラップではなく、多数のこの種のu字形状構造体によって形成された蛇行流路が使用される。   In one embodiment, instead of a single u-shaped trap, a serpentine channel formed by a number of such u-shaped structures is used.

他の開示した実施例において、冷媒システムには節約回路が設けられ、液トラップは、分岐された2相冷媒混合物をエコノマイザ熱交換器へと導くライン上で使用される。この実施例は、第1の開示した実施例に関するものと同様の恩恵および機能を提供する。   In another disclosed embodiment, the refrigerant system is provided with a saving circuit, and a liquid trap is used on the line leading the branched two-phase refrigerant mixture to the economizer heat exchanger. This embodiment provides similar benefits and functions as for the first disclosed embodiment.

本発明の上記および他の特徴は、以下の明細書および添付図面から最もよく理解され得る。   The above and other features of the present invention can be best understood from the following specification and the accompanying drawings.

図1に、平行流蒸発器22を有する冷媒システム20が示されている。公知のように、冷媒は、蒸発器22からコンプレッサ24、凝縮器26へと下流に移動し、膨張装置28を通って蒸発器22に戻る。膨張装置28を出た冷媒は、蒸気と液体が混合された状態にある。蒸発器22は、入口マニホルド34に沿って互いに離間した複数の平行チャネル32を有する。チャネル32と入口マニホルド34とは互いに流体連通している。さらに、チャネル32は出口マニホルド35に対しても同様に配置され、出口マニホルド35と流体連通している。フィン30は、チャネル32の間に配置されている。チャネル32、フィン30、入口マニホルド34、および出口マニホルド35は、通常、ろう付けによって互いに取り付けられている。公知のように、空気がフィン30およびチャネル32の上に供給されて調整される。調整空間に供給された空気との相互伝熱作用により、冷媒がチャネル32内で蒸発する。   In FIG. 1, a refrigerant system 20 having a parallel flow evaporator 22 is shown. As is known, the refrigerant travels downstream from the evaporator 22 to the compressor 24 and the condenser 26 and returns to the evaporator 22 through the expansion device 28. The refrigerant exiting the expansion device 28 is in a state where the vapor and the liquid are mixed. The evaporator 22 has a plurality of parallel channels 32 spaced from one another along an inlet manifold 34. Channel 32 and inlet manifold 34 are in fluid communication with each other. Further, the channel 32 is similarly disposed relative to the outlet manifold 35 and is in fluid communication with the outlet manifold 35. The fins 30 are disposed between the channels 32. Channel 32, fin 30, inlet manifold 34, and outlet manifold 35 are typically attached to each other by brazing. As is known, air is supplied and conditioned on the fins 30 and channels 32. The refrigerant evaporates in the channel 32 by the mutual heat transfer effect with the air supplied to the adjustment space.

上記のように、入口マニホルド34に接近している冷媒の速度が不十分なほど低い場合、蒸気から液冷媒が分離することがある。これにより、チャネル32の間でこれらの2つの冷媒相が偏って分布してしまう。図1に示すように、冷媒は十分な速度で移動しており、冷媒相は、ほとんど若しくは全く分離しない。   As described above, when the speed of the refrigerant approaching the inlet manifold 34 is low enough, the liquid refrigerant may be separated from the vapor. As a result, these two refrigerant phases are unevenly distributed between the channels 32. As shown in FIG. 1, the refrigerant is moving at a sufficient speed and the refrigerant phase is separated little or not.

入口マニホルド34へ導くチューブ36が、液トラップ38の下流に配置されている。図示されるように、液トラップ38は、u字形の形状をなし、概ね垂直方向に延在している。したがって、分離する傾向にあるすべての液が、液トラップ38内に集まる。   A tube 36 leading to the inlet manifold 34 is disposed downstream of the liquid trap 38. As shown in the figure, the liquid trap 38 has a u-shape and extends in a generally vertical direction. Thus, all liquids that tend to separate collect in the liquid trap 38.

図2に示すように、冷媒速度は、相を分離させない図1の状態と比べて不十分なほど低く、いくらかの量の液冷媒40がトラップ38内に集積している。このため、冷媒が流れる残りの断面積42は大幅に小さくなる。これにより、入口マニホルド34へと進む冷媒の速度が増す。冷媒流の速度上昇に伴い、蒸気冷媒は、その液相を均一な態様でチャネル32に運ぶ傾向があり、概ね均等な分布を確実にする。実質的に、噴射区域(jetting zone)が形成され、蒸気冷媒は速度を速められて、さらなる相分離が制限される。このように、ヘッダ34の上流に液トラップ38を含むことにより、本発明は、冷媒の速度を自己調節し、最初に分離した少量の液冷媒40以外の残った液冷媒を蒸気相から分離しにくくすることにより、入口マニホルド34内の流れ状態が均一になることを保証する。入口マニホルド34は、当然、この均一な流れを維持できる適切な断面積および長さを有する必要がある。また、液トラップ38は、入口マニホルド34に近接して配置される必要がある。液トラップ38は、入口マニホルド34への入口から5インチ(約12.7cm)以内に配置され、かつその下方で垂直に延在していることが好ましい。この結果、蒸発器の性能が向上する。これはまた、蒸発器の出口マニホルド35内に液冷媒が存在しないようにし、かつシステムの信頼性を高める。   As shown in FIG. 2, the refrigerant velocity is insufficiently low compared to the state of FIG. 1 where the phases are not separated, and some amount of liquid refrigerant 40 has accumulated in the trap 38. For this reason, the remaining cross-sectional area 42 through which the refrigerant flows is greatly reduced. This increases the speed of the refrigerant traveling to the inlet manifold 34. As the refrigerant flow speed increases, the vapor refrigerant tends to carry its liquid phase to the channel 32 in a uniform manner, ensuring a generally even distribution. In effect, a jetting zone is formed and the vapor refrigerant is accelerated to limit further phase separation. Thus, by including the liquid trap 38 upstream of the header 34, the present invention self-regulates the speed of the refrigerant and separates the remaining liquid refrigerant from the vapor phase other than the small amount of liquid refrigerant 40 that was initially separated. This obfuscation ensures that the flow conditions in the inlet manifold 34 are uniform. The inlet manifold 34 must, of course, have an appropriate cross-sectional area and length that can maintain this uniform flow. Also, the liquid trap 38 needs to be placed in close proximity to the inlet manifold 34. The liquid trap 38 is preferably located within 5 inches from the inlet to the inlet manifold 34 and extends vertically below it. As a result, the performance of the evaporator is improved. This also ensures that no liquid refrigerant is present in the outlet manifold 35 of the evaporator and increases system reliability.

一般的な蒸発器において本発明を開示しているが、同様に蒸発器機能を果たす他の熱交換器(例えば、エコノマイザ熱交換器(または、いわゆるろう付けプレート熱交換器))も等しく本発明から恩恵を受け得る。   Although the present invention is disclosed in a general evaporator, other heat exchangers (e.g., economizer heat exchangers (or so-called brazed plate heat exchangers)) that perform the evaporator function as well are equally equivalent to the present invention. Can benefit from.

さらに、液トラップ38は、最も単純な構成で示されているが、(互いに連結された多数のu字形状セグメント、局所流動インピーダンスなどの)他の構成も実現可能である。   Furthermore, although the liquid trap 38 is shown in the simplest configuration, other configurations (such as multiple u-shaped segments coupled together, local flow impedance, etc.) are possible.

図3に示した他の実施例100は、入口マニホルド34へ導く部分104の上流にある複数の連続したu字形状トラップ102を有する。液トラップ102の各々が少量の液冷媒を集めることができ、蒸気相の速度を上げ、入口マニホルド34の入口での均一な状態を促進する。   Another embodiment 100 shown in FIG. 3 has a plurality of continuous u-shaped traps 102 upstream of the portion 104 leading to the inlet manifold 34. Each of the liquid traps 102 can collect a small amount of liquid refrigerant, increasing the speed of the vapor phase and promoting a uniform condition at the inlet of the inlet manifold 34.

他の冷媒システムの実施例110が図4に示されている。この実施例では、コンプレッサ112が、圧縮した冷媒を凝縮器114へ送り出す。ライン116は、主冷媒流ライン126から分岐して、エコノマイザ膨張装置118を通って延びる。液トラップ120は、入口122を通ってエコノマイザ熱交換器124に流れる冷媒を調整する。液トラップ120は、図1および図2の実施例と同じ機能を付与し、かつ動作する。エコノマイザ熱交換器124は、分岐ライン116内の冷媒と主流ライン126内の冷媒との間で熱交換が行われるように、隣接したチャネルを有する構造とされることを理解されたい。主流ライン126は、冷媒を出口128に送り、さらに主膨張装置130を通過させて蒸発器132に送る。本発明は、エコノマイザ熱交換器124および蒸発器132の両方で液トラップを利用することができる。冷媒は、蒸発器132からコンプレッサ112に戻る。エコノマイザ熱交換器124の下流のライン134は、分岐した冷媒をコンプレッサ112内の中間圧縮点に戻す。   Another refrigerant system embodiment 110 is shown in FIG. In this embodiment, the compressor 112 sends the compressed refrigerant to the condenser 114. Line 116 branches from main refrigerant flow line 126 and extends through economizer expansion device 118. The liquid trap 120 adjusts the refrigerant flowing through the inlet 122 to the economizer heat exchanger 124. The liquid trap 120 provides the same function and operates as the embodiment of FIGS. It should be understood that the economizer heat exchanger 124 is structured to have adjacent channels so that heat exchange is performed between the refrigerant in the branch line 116 and the refrigerant in the mainstream line 126. The main flow line 126 sends the refrigerant to the outlet 128 and further passes through the main expansion device 130 to the evaporator 132. The present invention can utilize liquid traps in both the economizer heat exchanger 124 and the evaporator 132. The refrigerant returns from the evaporator 132 to the compressor 112. A line 134 downstream of the economizer heat exchanger 124 returns the branched refrigerant to an intermediate compression point in the compressor 112.

すべての入口マニホルドが水平な構成で示されているが、不均一分布の現象は、垂直方向の配置において、より顕著になることを指摘しておかなければならない。そのような状況では、本発明の利点がさらに顕著になる。   It should be pointed out that although all inlet manifolds are shown in a horizontal configuration, the phenomenon of non-uniform distribution becomes more pronounced in a vertical arrangement. In such a situation, the advantages of the present invention are even more pronounced.

本発明の好ましい実施例を開示したが、当業者であれば、本発明の範囲を逸脱することなく、いくつかの変更がなされ得ることを理解されるであろう。この理由から、本発明の特許請求の範囲および内容を確定するために、請求項を検討されたい。   While preferred embodiments of the present invention have been disclosed, those skilled in the art will appreciate that several modifications can be made without departing from the scope of the present invention. For this reason, the claims should be studied to determine the scope and content of the invention.

本発明を組み込んだ蒸発器の断面図。Sectional drawing of the evaporator incorporating this invention. 異なる流れ状態にある図1の蒸発器を示す図。FIG. 2 shows the evaporator of FIG. 1 in different flow states. 他の実施例を示す図。The figure which shows another Example. さらに他の実施例を示す図。The figure which shows another Example.

Claims (15)

圧縮した冷媒を凝縮器に送るコンプレッサと、
前記凝縮器から膨張装置へ流れ、さらに前記膨張装置から蒸発器へ流れる冷媒と、
前記膨張装置と前記蒸発器とを連結するラインと、
を備え、
前記蒸発器は、入口マニホルドと、出口マニホルドと、前記入口マニホルドから冷媒を受け、冷媒を前記出口マニホルドに送る複数のチャネルと、前記チャネル間に配置されたフィンと、を有し、
前記ラインには前記膨張装置から前記蒸発器へ流れる蒸気冷媒から分離した液を収集する液トラップが設けられている、冷媒システム。
A compressor for sending the compressed refrigerant to the condenser;
Refrigerant flowing from the condenser to the expansion device, and further flowing from the expansion device to the evaporator;
A line connecting the expansion device and the evaporator;
With
The evaporator has an inlet manifold, an outlet manifold, a plurality of channels that receive refrigerant from the inlet manifold and route refrigerant to the outlet manifold, and fins disposed between the channels,
A refrigerant system, wherein the line is provided with a liquid trap for collecting liquid separated from the vapor refrigerant flowing from the expansion device to the evaporator.
前記液トラップが、前記入口マニホルドの下方で垂直に延在する請求項1に記載の冷媒システム。   The refrigerant system of claim 1, wherein the liquid trap extends vertically below the inlet manifold. 前記液トラップが、前記ラインの下方に延在する概ねu字形状部分によって形成されている請求項1に記載の冷媒システム。   The refrigerant system according to claim 1, wherein the liquid trap is formed by a generally u-shaped portion extending below the line. 前記液トラップが、前記入口マニホルドから5インチ以内に配置されている請求項1に記載の冷媒システム。   The refrigerant system of claim 1, wherein the liquid trap is located within 5 inches of the inlet manifold. 前記冷媒システムにさらにエコノマイザ回路が設けられ、該エコノマイザ回路がエコノマイザ熱交換器を有し、前記エコノマイザ熱交換器には、エコノマイザ膨張装置を通って主流ラインを前記エコノマイザ熱交換器へと接続するとともに、前記エコノマイザ熱交換器の下流にある前記コンプレッサの中間圧縮点へと続く分岐ラインと、前記エコノマイザ膨張装置から前記エコノマイザ熱交換器へ流れる蒸気冷媒から分離した液を収集する液トラップと、が設けられている請求項1に記載の冷媒システム。   The refrigerant system is further provided with an economizer circuit, the economizer circuit having an economizer heat exchanger, wherein the economizer heat exchanger connects a mainstream line to the economizer heat exchanger through an economizer expansion device. A branch line leading to an intermediate compression point of the compressor downstream of the economizer heat exchanger, and a liquid trap for collecting liquid separated from the vapor refrigerant flowing from the economizer expansion device to the economizer heat exchanger. The refrigerant system according to claim 1. 前記液トラップが、直列でかつ離間した複数のu字形状液トラップ部分を含む請求項1に記載の冷媒システム。   The refrigerant system according to claim 1, wherein the liquid trap includes a plurality of u-shaped liquid trap portions arranged in series and spaced apart from each other. 複数の管を有する蒸発器を設けるステップであって、前記複数の管は、入口マニホルドから冷媒を受け、該冷媒を出口マニホルドに送り、さらに前記出口マニホルドからコンプレッサに送り、前記コンプレッサは前記冷媒を凝縮器に送り、前記冷媒は前記凝縮器から膨張装置へ流れてから前記蒸発器に戻る、蒸発器を設けるステップと、
前記膨張装置を前記蒸発器に接続する流体ラインを設けるステップであって、前記流体ラインには蒸気冷媒から分離した液を捕捉する液トラップが設けられている、流体ラインを設けるステップと、
冷媒をきわめて均一な状態で前記入口マニホルドに送るために、前記蒸気冷媒から液が分離することに伴い、液トラップが冷媒の速度を自己調整するように、前記冷媒システムに冷媒を通流させるステップと、
を含む、冷媒システムを作動させる方法。
Providing an evaporator having a plurality of tubes, the plurality of tubes receiving refrigerant from an inlet manifold, sending the refrigerant to an outlet manifold, and further sending the refrigerant from the outlet manifold to the compressor; Providing an evaporator, wherein the refrigerant is sent to a condenser and the refrigerant flows from the condenser to the expansion device and then returns to the evaporator;
Providing a fluid line connecting the expansion device to the evaporator, wherein the fluid line is provided with a fluid trap for capturing a liquid separated from vapor refrigerant;
Passing the refrigerant through the refrigerant system such that a liquid trap self adjusts the speed of the refrigerant as the liquid separates from the vapor refrigerant to deliver the refrigerant to the inlet manifold in a very uniform state. When,
A method of operating a refrigerant system, comprising:
前記冷媒システムにさらにエコノマイザ回路が設けられ、前記エコノマイザ回路は、エコノマイザ熱交換器を有するとともに、冷媒を分岐させて、この分岐した冷媒をエコノマイザ膨張装置を介して前記エコノマイザ熱交換器に送り、さらに前記エコノマイザ回路は、前記エコノマイザ膨張装置から前記エコノマイザ熱交換器へ流れる蒸気から分離した液を捕捉するために設けられた液トラップを有し、
冷媒をきわめて均一な状態で前記エコノマイザ熱交換器に送るために、前記蒸気冷媒から液が分離することに伴い、前記液トラップが冷媒の速度を自己調整するように、前記エコノマイザ膨張装置を介して前記エコノマイザ熱交換器に冷媒を送るステップをさらに含む請求項7に記載の方法。
The refrigerant system further includes an economizer circuit, the economizer circuit includes an economizer heat exchanger, branches the refrigerant, and sends the branched refrigerant to the economizer heat exchanger via an economizer expansion device. The economizer circuit has a liquid trap provided to capture liquid separated from steam flowing from the economizer expansion device to the economizer heat exchanger,
In order to send the refrigerant to the economizer heat exchanger in a very uniform state, as the liquid is separated from the vapor refrigerant, the liquid trap passes through the economizer expansion device so as to self-adjust the refrigerant speed. The method of claim 7, further comprising sending a refrigerant to the economizer heat exchanger.
入口マニホルドに導く流体ラインと、
前記流体ラインに設けられた液トラップと、
前記入口マニホルドから流体を受け取る複数のチャネルを有する熱交換器と、
を備える熱交換器および流体ラインシステム。
A fluid line leading to the inlet manifold;
A liquid trap provided in the fluid line;
A heat exchanger having a plurality of channels for receiving fluid from the inlet manifold;
A heat exchanger and a fluid line system.
前記熱交換器が、冷媒システム用蒸発器である請求項9に記載の熱交換器および流体ラインシステム。   The heat exchanger and fluid line system according to claim 9, wherein the heat exchanger is an evaporator for a refrigerant system. 前記熱交換器が、冷媒システム用エコノマイザ熱交換器である請求項9に記載の熱交換器および流体ラインシステム。   The heat exchanger and fluid line system according to claim 9, wherein the heat exchanger is an economizer heat exchanger for a refrigerant system. 前記液トラップが、前記入口マニホルドの下方で垂直に延在する請求項9に記載の熱交換器および流体ラインシステム。   The heat exchanger and fluid line system of claim 9, wherein the liquid trap extends vertically below the inlet manifold. 前記液トラップが、前記ラインのu字形状で下方に延在する部分によって概ね形成されている請求項9に記載の熱交換器および流体ラインシステム。   The heat exchanger and fluid line system of claim 9, wherein the liquid trap is generally formed by a u-shaped portion of the line that extends downward. 前記液トラップが、前記入口マニホルドから5インチ以内に配置されている請求項9に記載の熱交換器および流体ラインシステム。   The heat exchanger and fluid line system of claim 9, wherein the liquid trap is located within 5 inches of the inlet manifold. 前記液トラップが、直列でかつ離間した複数のu字形状構造体によって形成されている請求項9に記載の熱交換器および流体ラインシステム。   The heat exchanger and fluid line system according to claim 9, wherein the liquid trap is formed by a plurality of u-shaped structures arranged in series and spaced apart from each other.
JP2008513439A 2005-05-24 2005-05-24 Parallel flow evaporator with liquid trap for good flow distribution Ceased JP2008542677A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2005/018349 WO2006127001A2 (en) 2005-05-24 2005-05-24 Parallel-flow evaporators with liquid trap for providing better flow distribution

Publications (1)

Publication Number Publication Date
JP2008542677A true JP2008542677A (en) 2008-11-27

Family

ID=37452484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008513439A Ceased JP2008542677A (en) 2005-05-24 2005-05-24 Parallel flow evaporator with liquid trap for good flow distribution

Country Status (10)

Country Link
US (1) US20090229282A1 (en)
EP (1) EP1883771A4 (en)
JP (1) JP2008542677A (en)
CN (1) CN100554833C (en)
AU (1) AU2005332040B2 (en)
BR (1) BRPI0520260A2 (en)
CA (1) CA2604466A1 (en)
HK (1) HK1120600A1 (en)
MX (1) MX2007012510A (en)
WO (1) WO2006127001A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6997048B2 (en) 2018-07-30 2022-01-17 ダイハツ工業株式会社 Vehicle air conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2310791A4 (en) * 2008-05-14 2013-04-10 Carrier Corp Heat exchanger drip tube
WO2010085601A2 (en) * 2009-01-25 2010-07-29 Alcoil, Inc. Heat exchanger
US10188098B2 (en) * 2009-05-12 2019-01-29 Reflect Scientific Inc. Extremely fast freezing, low-temperature blast freezer
US8783057B2 (en) * 2011-02-22 2014-07-22 Colmac Coil Manufacturing, Inc. Refrigerant distributor
US20130256423A1 (en) * 2011-11-18 2013-10-03 Richard G. Lord Heating System Including A Refrigerant Boiler
CN103900164A (en) * 2014-03-31 2014-07-02 华南理工大学 Air-conditioning outdoor unit capable of reducing refrigerant charge and method implemented by air-conditioning outdoor unit
CN104315758B (en) * 2014-10-20 2016-09-07 广东美的制冷设备有限公司 Air-conditioner and parallel-flow evaporator thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1996605A (en) * 1934-09-20 1935-04-02 Gen Electric Refrigerator evaporator
JPS50110461U (en) * 1974-02-16 1975-09-09
JPS56146961A (en) * 1980-04-17 1981-11-14 Mitsubishi Electric Corp Cooler
JPS56153776U (en) * 1980-04-17 1981-11-17
JPH07190520A (en) * 1993-12-27 1995-07-28 Kobe Steel Ltd Freezer
US5901782A (en) * 1994-10-24 1999-05-11 Modine Manufacturing Co. High efficiency, small volume evaporator for a refrigerant
JPH11159904A (en) * 1997-10-09 1999-06-15 Internatl Comfort Prod Corp Heat pump type cooling and heating device, and refrigerant charge regulating structure and method there of
JP2002048484A (en) * 2000-07-31 2002-02-15 Kyoritsu Reinetsu Kk Refrigerant circulating route of natural circulation type heat pump
JP2005090852A (en) * 2003-09-17 2005-04-07 Mitsubishi Electric Corp Heat transport device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528260A (en) * 1968-08-30 1970-09-15 Gen Motors Corp Refrigeration apparatus with components connected by chlorinated polyethylene hoses
US4290266A (en) * 1979-09-04 1981-09-22 Twite Terrance M Electrical power generating system
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
JPH0579725A (en) * 1991-09-18 1993-03-30 Nippondenso Co Ltd Multiple path type evaporator
JPH06307737A (en) * 1993-04-23 1994-11-01 Nippondenso Co Ltd Refrigerant vaporizer
JPH07332806A (en) 1994-04-12 1995-12-22 Nippondenso Co Ltd Refrigerator
US5806585A (en) * 1995-02-27 1998-09-15 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
JP4249380B2 (en) * 2000-08-17 2009-04-02 三菱電機株式会社 Air conditioner
US6817205B1 (en) * 2003-10-24 2004-11-16 Carrier Corporation Dual reversing valves for economized heat pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1996605A (en) * 1934-09-20 1935-04-02 Gen Electric Refrigerator evaporator
JPS50110461U (en) * 1974-02-16 1975-09-09
JPS56146961A (en) * 1980-04-17 1981-11-14 Mitsubishi Electric Corp Cooler
JPS56153776U (en) * 1980-04-17 1981-11-17
JPH07190520A (en) * 1993-12-27 1995-07-28 Kobe Steel Ltd Freezer
US5901782A (en) * 1994-10-24 1999-05-11 Modine Manufacturing Co. High efficiency, small volume evaporator for a refrigerant
JPH11159904A (en) * 1997-10-09 1999-06-15 Internatl Comfort Prod Corp Heat pump type cooling and heating device, and refrigerant charge regulating structure and method there of
JP2002048484A (en) * 2000-07-31 2002-02-15 Kyoritsu Reinetsu Kk Refrigerant circulating route of natural circulation type heat pump
JP2005090852A (en) * 2003-09-17 2005-04-07 Mitsubishi Electric Corp Heat transport device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6997048B2 (en) 2018-07-30 2022-01-17 ダイハツ工業株式会社 Vehicle air conditioner

Also Published As

Publication number Publication date
CA2604466A1 (en) 2006-11-30
EP1883771A4 (en) 2011-12-21
WO2006127001A2 (en) 2006-11-30
EP1883771A2 (en) 2008-02-06
US20090229282A1 (en) 2009-09-17
HK1120600A1 (en) 2009-04-03
AU2005332040B2 (en) 2009-07-02
CN101180506A (en) 2008-05-14
WO2006127001A3 (en) 2007-01-18
MX2007012510A (en) 2007-11-09
AU2005332040A1 (en) 2006-11-30
BRPI0520260A2 (en) 2009-09-15
CN100554833C (en) 2009-10-28

Similar Documents

Publication Publication Date Title
CN109154460B (en) Laminated header, heat exchanger, and air conditioner
EP2853843B1 (en) A refrigerant distributing device, and heat exchanger equipped with such a refrigerant distributing device
JP2008542677A (en) Parallel flow evaporator with liquid trap for good flow distribution
US11506402B2 (en) Outdoor unit of air-conditioning apparatus and air-conditioning apparatus
US9746255B2 (en) Heat pump heat exchanger having a low pressure drop distribution tube
EP2097701B1 (en) Refrigerant distribution improvement in parallel flow heat exchanger manifolds
US20150362222A1 (en) Refrigerant distribution device and a heat pump apparatus using the same refrigerant distribution device
EP3370000B1 (en) Outdoor unit for air conditioner
US9791189B2 (en) Heat exchanger and refrigeration cycle apparatus
CN101600932B (en) Multi-channel heat exchanger with improved condensate drainage
CN101568782A (en) Heat exchanger with improved condensate removal
KR102148724B1 (en) Heat exchanger and air conditional having the same
EP3916320B1 (en) Outdoor unit and air conditioning device
CN110998215B (en) Heat exchanger
US20210190331A1 (en) Refrigerant distributor, heat exchanger, and air-conditioning apparatus
EP3587988B1 (en) Heat exchanger and air conditioner
US11614260B2 (en) Heat exchanger for heat pump applications
CN111902683B (en) Heat exchanger and refrigeration cycle device
KR20070120566A (en) Parallel-flow evaporators with liquid trap for providing better flow distribution
JP2019211138A (en) Air conditioner
JP2012037099A (en) Indoor unit of air conditioner
JP2012082983A (en) Parallel flow heat exchanger, and heat pump device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101026

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20130528