JP2006200789A - Heater - Google Patents

Heater Download PDF

Info

Publication number
JP2006200789A
JP2006200789A JP2005011612A JP2005011612A JP2006200789A JP 2006200789 A JP2006200789 A JP 2006200789A JP 2005011612 A JP2005011612 A JP 2005011612A JP 2005011612 A JP2005011612 A JP 2005011612A JP 2006200789 A JP2006200789 A JP 2006200789A
Authority
JP
Japan
Prior art keywords
heater
steam
tube bundle
heat transfer
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005011612A
Other languages
Japanese (ja)
Inventor
Takashi Kamata
誉史 鎌田
Shunji Kono
俊二 河野
Koichi Yoshimura
浩一 吉村
Tatsuya Okihara
達也 沖原
Hiroshi Yamaguchi
浩 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Technology Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Technology Corp filed Critical Toshiba Corp
Priority to JP2005011612A priority Critical patent/JP2006200789A/en
Publication of JP2006200789A publication Critical patent/JP2006200789A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heater capable of miniaturizing a building even when reheat cycle is applied. <P>SOLUTION: A heater body 12 has a plurality of heat transfer tubes through which heated steam passes, as a tube bundle 14, and a shell 11 for storing the heater body 12 is mounted in piping of a main steam system. An annular-shaped supporting plate 17a and a disc-shaped supporting plate 17b support the tube bundle 14 of the heater body 12, and the heated steam flowing in the piping of the main steam system is circulated in the axial direction of the piping while exchanging the heat with the heater body 12. Thus, the heater can be miniaturized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蒸気タービンに流入する蒸気を過熱域まで加熱する加熱器に関する。   The present invention relates to a heater that heats steam flowing into a steam turbine to a superheated region.

例えば、沸騰水型原子力発電プラント(BWR発電プラント)では、原子炉で発生した蒸気を高圧タービンに導き、高圧タービンで仕事を終えた蒸気を中圧タービンに導き、さらに中圧タービンで仕事を終えた蒸気を低圧タービンに導くようにしているが、通常の火力発電プラントとは異なり、高圧タービンで仕事を終えた蒸気は再熱せずにそのまま中圧タービンに導くようにしている(例えば、特許文献1参照)。一方、改良型の沸騰水型原子力発電プラント(ABWR発電プラント)では、湿分分離加熱器を設置し、高圧タービンで仕事を終えた蒸気を湿分分離加熱器で再熱して中圧タービンに導くようにしている(例えば、特許文献2参照)。すなわち、BWR発電プラントは基本的に非再熱サイクルであり、ABWR発電プラントは再熱サイクルである。   For example, in a boiling water nuclear power plant (BWR power plant), steam generated in a nuclear reactor is guided to a high-pressure turbine, steam finished at the high-pressure turbine is guided to an intermediate-pressure turbine, and work is finished at an intermediate-pressure turbine. However, unlike ordinary thermal power plants, the steam that has finished work in the high-pressure turbine is directly recirculated to the medium-pressure turbine without reheating (for example, Patent Documents). 1). On the other hand, in the improved boiling water nuclear power plant (ABWR power plant), a moisture separation heater is installed, and the steam that has finished work in the high pressure turbine is reheated by the moisture separation heater and led to the intermediate pressure turbine. (For example, refer to Patent Document 2). That is, the BWR power plant is basically a non-reheat cycle, and the ABWR power plant is a reheat cycle.

再熱サイクルであるABWR発電プラントでは、高圧タービンへ流入する蒸気はほぼ飽和状態であるため、高圧タービンの排気蒸気は湿り蒸気となる。そこで、湿分分離加熱器で、この蒸気状態から湿分を除去したのち蒸気を過熱域まで昇温する。   In an ABWR power plant that is a reheat cycle, the steam flowing into the high-pressure turbine is almost saturated, so the exhaust steam of the high-pressure turbine becomes wet steam. Therefore, after the moisture is removed from the vapor state by the moisture separation heater, the temperature of the vapor is raised to the superheated region.

同様に、BWR発電プラントを再熱サイクル化することで、BWR発電プラントの出力増加と効率改善とを実現できると考えられており、既設のBWR発電プラントを再熱サイクル化することが検討されている。
特開平05−297187号公報 特開2002−357104号公報
Similarly, it is considered that the BWR power plant can be reheat cycled to increase the output and improve the efficiency of the BWR power plant, and it is considered to recycle the existing BWR power plant. Yes.
JP 05-297187 A JP 2002-357104 A

しかし、再熱サイクルを実現するためには湿分分離加熱器の設置が必要となり、湿分分離加熱器を設置するスペースを建屋内に確保することが必要となる。湿分分離加熱器は、発電プラントに設置される熱交換器のなかでも復水器についで巨大な熱交換器である。湿分分離加熱器は複数の主蒸気管を有し、また、排気蒸気流中の湿分の分離効率を上げるために、湿分分離加熱器の器内に設置された湿分分離装置を通過する蒸気流速を大幅に低下させる必要があるので、その容器は巨大なものとなる。   However, in order to realize the reheating cycle, it is necessary to install a moisture separation heater, and it is necessary to secure a space for installing the moisture separation heater in the building. The moisture separator heater is a huge heat exchanger following the condenser among heat exchangers installed in a power plant. The moisture separator heater has multiple main steam pipes and also passes through a moisture separator installed in the moisture separator heater to increase the efficiency of moisture separation in the exhaust steam stream. Since the steam flow rate to be greatly reduced is necessary, the container becomes huge.

これは、建屋を大きくする要因の一つであり、また、既設BWR発電プラントにABWR発電プラントに採用されている湿分分離加熱器を追加して設置するには、既設建屋の設置スペースを拡大したり、また、機器を搬入するための経路を確保する必要があり、発生する改造コストも莫大なものとなる。このように、従来の湿分分離加熱器使用した場合には、新規計画の発電プラントの建屋のコンパクト化や既設の発電プラントを再熱サイクル化することは非常に困難となっている。すなわち、再熱サイクルの発電プラント計画時には湿分分離加熱器を設置する設置スペースを建屋内に確保することが重要な計画の一つとなっている。   This is one of the factors that increase the size of the building. In addition, the installation space of the existing building is expanded in order to install the existing BWR power plant by adding the moisture separation heater used in the ABWR power plant. In addition, it is necessary to secure a route for carrying in the equipment, and the generated remodeling cost becomes enormous. As described above, when the conventional moisture separator / heater is used, it is very difficult to downsize the building of the newly planned power plant or recycle the existing power plant. In other words, it is one of the important plans to secure an installation space in the building for installing the moisture separation heater when planning a power plant for a reheat cycle.

本発明の目的は、再熱サイクル化しても建屋のコンパクト化を図ることができる加熱器を提供することである。   An object of the present invention is to provide a heater that can reduce the size of a building even if it is reheat cycled.

本発明の加熱器は、加熱蒸気が通過する複数の伝熱管を管束として有した加熱器本体と、主蒸気系統の配管に設けられ前記加熱器本体を収納したシェルと、前記加熱器本体の管束を支持すると共に前記主蒸気系統の配管を流れる被加熱蒸気を前記加熱器本体と熱交換しながら配管の軸方向に流通させる支え板とを備え、前記支え板は、被加熱蒸気の流下方向に適宜間隔をおいて交互に配置された2種類の支え板で構成し、一方の支え板は外周部が前記シェル内面に接する程度の大きさで、中心部に穴を有する円環状の板であり、他方の支え板は外周部が前記管束の外周部とほぼ等しい大きさで、中心部に穴のない円盤状の板であることことを特徴とする。   The heater of the present invention includes a heater body having a plurality of heat transfer tubes through which heating steam passes as a tube bundle, a shell provided in a main steam system pipe and housing the heater body, and a tube bundle of the heater body. And a support plate that circulates the heated steam flowing through the main steam system pipe in the axial direction of the pipe while exchanging heat with the main body of the heater, and the support plate extends in the flow-down direction of the heated steam. It is composed of two kinds of support plates arranged alternately at appropriate intervals, and one support plate is an annular plate having a size such that the outer peripheral portion is in contact with the inner surface of the shell and having a hole in the center portion. The other support plate is a disk-shaped plate having an outer peripheral portion substantially equal in size to the outer peripheral portion of the tube bundle and having no hole in the central portion.

本発明によれば、加熱蒸気が通過する複数の伝熱管を管束として有した加熱器本体を収納したシェルは主蒸気系統の配管に設けられ、加熱器本体の管束を支持する支え板は、主蒸気系統の配管を流れる被加熱蒸気を加熱器本体と熱交換しながら配管の軸方向に流通させる構成の加熱器であるので、コンパクト化を図ることができる。   According to the present invention, the shell containing the heater body having a plurality of heat transfer tubes through which the heating steam passes as a tube bundle is provided in the main steam system pipe, and the support plate for supporting the tube bundle of the heater body is the main plate. Since it is a heater of the structure which distribute | circulates the to-be-heated steam which flows through piping of a vapor | steam system to the axial direction of piping, exchanging heat with a heater main body, compactization can be achieved.

また、既設の発電プラントの建屋に設置する場合には、加熱器がコンパクト化されているので、新たな開口部の設置や復旧の必要がなくなり、搬入経路の障害物の撤去や復旧を最小化あるいは無くすことができる。   In addition, when installed in the building of an existing power plant, the heater is compact, so there is no need to install and restore new openings, minimizing removal and restoration of obstacles in the carry-in route Or it can be eliminated.

(第1の実施の形態)
図1は本発明の第1の実施の形態に係わる加熱器の構成図であり、図1(a)は縦断面図、図1(b)は横断面図である。円筒形をしたシェル11の中に、そのシェル11の全長に亘る長さを有する加熱器本体12が設けられている。シェル11の両端部には主蒸気系統の配管、例えばクロスアラウンド管18が接続される。シェル11内には、一方のクロスアラウンド管18−1から矢印Aの如く被加熱蒸気が流入し、加熱器本体12と熱交換した後、他方のクロスアラウンド管18−2から排出されるようになっている。
(First embodiment)
FIG. 1 is a configuration diagram of a heater according to a first embodiment of the present invention, in which FIG. 1 (a) is a longitudinal sectional view and FIG. 1 (b) is a transverse sectional view. A heater body 12 having a length over the entire length of the shell 11 is provided in the cylindrical shell 11. Pipes of the main steam system, for example, a cross-around pipe 18 are connected to both ends of the shell 11. Steam to be heated flows into the shell 11 from one cross-around pipe 18-1 as indicated by an arrow A, and after exchanging heat with the heater body 12, is discharged from the other cross-around pipe 18-2. It has become.

加熱器本体12は、加熱蒸気が通過する複数の直管の伝熱管を有し、その伝熱管の両端部にヘッダー13を取り付けて管束14として形成されている。被加熱蒸気の流下方向の下流に位置しているヘッダー13には加熱蒸気入口管15から矢印Bの如く加熱蒸気が供給され、管束14を通って被加熱蒸気と熱交換した後、上流側に位置しているヘッダー13を経て加熱蒸気出口管16から排出される。   The heater body 12 has a plurality of straight heat transfer tubes through which heated steam passes, and is formed as a tube bundle 14 by attaching headers 13 to both ends of the heat transfer tubes. The heating steam is supplied from the heating steam inlet pipe 15 to the header 13 positioned downstream in the flow direction of the heated steam as indicated by the arrow B, and after exchanging heat with the heated steam through the pipe bundle 14, the upstream is upstream. It is discharged from the heated steam outlet pipe 16 via the header 13 located.

ところで、加熱器本体12は、シェル11内において被加熱蒸気の流下方向に所定寸法を隔てて交互に配置された2種類の支え板17a、17bで支持されるようになっている。   By the way, the heater body 12 is supported by two types of support plates 17a and 17b that are alternately arranged in the shell 11 with a predetermined dimension in the flow direction of the steam to be heated.

一方の支え板17aは中心に穴を有し、かつ外周縁でシェル11の内周面に密着固定される円環型に形成され、他方の支え板17bは中心に穴を持たず、外周縁は管束14の外径と同等の寸法を有する円盤型に形成されている。   One support plate 17a has a hole in the center and is formed in an annular shape that is closely fixed to the inner peripheral surface of the shell 11 at the outer peripheral edge, and the other support plate 17b does not have a hole in the center and has an outer peripheral edge. Is formed in a disk shape having a dimension equivalent to the outer diameter of the tube bundle 14.

穴のない円盤型支え板17bはシェル11との間に空間を有し、シェル11側の流体がこの空間を通ることができるようになっている。一方、円環型支え板17aはシェル11側の流体がこの穴のある位置に配列されている伝熱管と伝熱管との間の空間からシェル11の長手方向に通ることができるようになっている。   The disc-shaped support plate 17b without a hole has a space between it and the shell 11, and fluid on the shell 11 side can pass through this space. On the other hand, the annular support plate 17a allows the fluid on the shell 11 side to pass in the longitudinal direction of the shell 11 from the space between the heat transfer tubes arranged at the positions with the holes. Yes.

従って、被加熱蒸気Aは、図示左側に位置するクロスアラウンド管18−1からシェル11内に流入し、加熱器本体12のヘッダー13により加熱器本体12とシェル11との間の空間を通り、円環型支え板17aにより管束14の中心方向に向きを変えて管束14内に流入する。円環型支え板17aを通過した被加熱蒸気Aは穴のない円盤型支え板17bによって、放射方向に向きを変えて流れ、伝熱管と垂直に近い角度で接触しながら通過する。このように、円環型支え板17a、円盤型支え板17bは、シェル11内部を流れる被加熱蒸気Aが管束14の伝熱管と直角方向の流れ成分を持つように配置され、全体としてシェル11の軸方向に流通させる。これを繰り返しながら管束14内を流れる間に被加熱蒸気は温度上昇し、他方のクロスアラウンド管18−2から排出される。一方、加熱蒸気Bは管束14の被加熱蒸気Aの下流側の加熱蒸気入口管15より流入し、伝熱管内を流れる間に、シェル11側を通る被加熱蒸気に冷却されて凝縮し、徐々に凝縮ドレンの比率を増しながら流れる。   Accordingly, the steam A to be heated flows into the shell 11 from the cross-around pipe 18-1 located on the left side in the drawing, passes through the space between the heater body 12 and the shell 11 by the header 13 of the heater body 12, The direction is changed in the direction of the center of the tube bundle 14 by the annular support plate 17 a and flows into the tube bundle 14. The heated steam A that has passed through the annular support plate 17a flows in a radial direction by the disk-type support plate 17b without holes, and passes while contacting the heat transfer tube at an angle close to perpendicular. In this way, the annular support plate 17a and the disk support plate 17b are arranged so that the heated steam A flowing inside the shell 11 has a flow component perpendicular to the heat transfer tubes of the tube bundle 14, and the shell 11 as a whole. Circulate in the axial direction. While being repeated, the heated steam rises in temperature while flowing in the tube bundle 14, and is discharged from the other cross-around tube 18-2. On the other hand, the heated steam B flows from the heated steam inlet pipe 15 downstream of the heated steam A of the tube bundle 14 and is cooled and condensed by the heated steam passing through the shell 11 side while flowing through the heat transfer pipe. It flows while increasing the ratio of condensed drain.

第1の実施の形態によれば、主蒸気配管に接続できるシェル11内に加熱器本体12を設置し、被加熱蒸気をシェル11の長手方向に流動させながら加熱するので、再熱サイクルを可能とする小型の加熱器が可能となり、プラント出力増加とプラント効率向上を図ることができる。   According to the first embodiment, the heater main body 12 is installed in the shell 11 that can be connected to the main steam pipe, and the heated steam is heated while flowing in the longitudinal direction of the shell 11, so that a reheat cycle is possible. Thus, a small heater can be achieved, and plant output can be increased and plant efficiency can be improved.

(第2の実施の形態)(請求項3対応)
図2は本発明の第2の実施の形態に係わる加熱器の構成図であり、図2(a)は縦断面図、図2(b)は横断面図、図2(c)は他の一例の縦断面図である。この第2の実施の形態は、図1に示した第1の実施の形態に対し、管束の複数の伝熱管の配列形状を、多角形状、円筒形状、または円柱形状のいずれかになるように形成したものである。図1と同一要素には同一符号を付し重複する説明は省略する。
(Second Embodiment) (Corresponding to Claim 3)
FIG. 2 is a block diagram of a heater according to the second embodiment of the present invention, in which FIG. 2 (a) is a longitudinal sectional view, FIG. 2 (b) is a transverse sectional view, and FIG. It is a longitudinal cross-sectional view of an example. This second embodiment is different from the first embodiment shown in FIG. 1 in that the arrangement shape of the plurality of heat transfer tubes in the tube bundle is any one of a polygonal shape, a cylindrical shape, and a columnar shape. Formed. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

管束14の複数の伝熱管の管配列は、図2(a)に示すように複数個の伝熱管を円筒形の管束14aに配列して構成される。あるいは、図2(c)に示すように、複数個の伝熱管を多角形に配列して一つの多角形の管束14bを形成し、その多角形の複数の管束14bを円筒状に配列して構成される。その場合、各々の管束14b間に被加熱蒸気が管束14bと管束14bとの間をショートパスすることを防止するショートパス防止板19を設ける。そして、図2(b)に示すように、円筒形あるいは円筒状の管束14の中心軸がシェル11の胴軸と一致した位置に配置される。   The tube arrangement of the plurality of heat transfer tubes of the tube bundle 14 is configured by arranging a plurality of heat transfer tubes in a cylindrical tube bundle 14a as shown in FIG. Alternatively, as shown in FIG. 2 (c), a plurality of heat transfer tubes are arranged in a polygon to form one polygonal tube bundle 14b, and the plurality of polygonal tube bundles 14b are arranged in a cylindrical shape. Composed. In that case, a short path prevention plate 19 is provided between each of the tube bundles 14b to prevent the heated steam from short-passing between the tube bundles 14b and 14b. Then, as shown in FIG. 2B, the cylindrical or cylindrical tube bundle 14 is arranged at a position where the central axis coincides with the trunk axis of the shell 11.

管束14は被加熱蒸気の流下方向に交互に配置された穴ありの円環型支え板17aと穴なしの円盤型支え板17bとで支持される。円環型支え板17a相互間と、シェル11内周および管束14a外周との間に空間を形成し、この空間および伝熱管が配置されていない中心部の空間に被加熱蒸気が流通する。一方、円盤型支え板17bは被加熱蒸気の流れを垂直方向に向きを変化させ、前述した円環型支え板17a相互間とシェル11内周および管束14a外周との間の空間、伝熱管が配置されていない中心部の空間に被加熱蒸気を導く。   The tube bundle 14 is supported by circular support plates 17a with holes and disc support plates 17b without holes, which are alternately arranged in the flow direction of the heated steam. A space is formed between the annular support plates 17a and the inner periphery of the shell 11 and the outer periphery of the tube bundle 14a, and the steam to be heated flows through the space and the central space where the heat transfer tubes are not arranged. On the other hand, the disk-shaped support plate 17b changes the direction of the flow of the steam to be heated in the vertical direction, and the space between the above-described ring-shaped support plates 17a and the inner periphery of the shell 11 and the outer periphery of the tube bundle 14a, The heated steam is guided to the central space which is not arranged.

被加熱蒸気Aはクロスアラウンド管18からシェル11内に流入し、円環型支え板17aにより管束14の中心方向に導かれ管束14内の空間部に流入する。円環型支え板17aを通過した被加熱蒸気Aは、円盤型支え板17bで流れる方向を放射方向に変えられ、伝熱管と直交する方向に導かれる。従って、被加熱蒸気Aは管束14を通過するときには管束14の伝熱管と垂直に近い角度で通過し、円環型支え板17aの穴を通過するとき、または円環型支え板17aとシェル11とで形成されるの空間ではシェル11の軸方向へ流れる。これを繰り返しながら管束14内を流れる間に温度上昇する。   The steam A to be heated flows into the shell 11 from the cross-around pipe 18, is guided toward the center of the tube bundle 14 by the annular support plate 17 a, and flows into the space in the tube bundle 14. The heated steam A that has passed through the annular support plate 17a is changed in the direction of flow in the disk support plate 17b to a radial direction and is guided in a direction orthogonal to the heat transfer tube. Accordingly, when the heated steam A passes through the tube bundle 14, it passes at an angle close to perpendicular to the heat transfer tubes of the tube bundle 14, and passes through the hole of the annular support plate 17 a, or the annular support plate 17 a and the shell 11. And flows in the axial direction of the shell 11. While repeating this, the temperature rises while flowing in the tube bundle 14.

一方、加熱蒸気は管束14の被加熱蒸気の下流側の加熱蒸気入口15より流入し、管束14の伝熱管内を流れる間に、シェル11側を通る被加熱蒸気に冷却されて凝縮し、徐々に凝縮ドレンの比率を増しながら流れる。   On the other hand, the heating steam flows from the heating steam inlet 15 on the downstream side of the steam to be heated in the tube bundle 14 and is cooled and condensed by the steam to be heated passing through the shell 11 side while flowing in the heat transfer pipe of the tube bundle 14. It flows while increasing the ratio of condensed drain.

第2の実施の形態によれば、円環型支え板17aの穴部に管束14を配列しないので、円環型支え板17aの間隔を広げることができる。従って、管束14に被加熱蒸気が通過することに伴う励振力を抑制でき振動を防止できる。また、円環型支え板17aの穴がある位置に直管を配列した第1の実施の形態では、伝熱管に対して平行に流れる被加熱蒸気が存在するが、第2の実施の形態では、円環型支え板17aの穴部に管束14を配列しないので、伝熱管に対して平行に流れる被加熱蒸気がなくなり、熱交換効率を高めることができ、被加熱蒸気の流速を調整することができる。従って、低圧タービン性能を最適化する適切な圧力や温度の蒸気を供給する加熱器を得ることが可能となり、プラント出力増加とプラント効率向上させるという効果が得られる。   According to the second embodiment, since the tube bundle 14 is not arranged in the hole portion of the annular support plate 17a, the interval between the annular support plates 17a can be increased. Therefore, the excitation force associated with the passage of heated steam through the tube bundle 14 can be suppressed, and vibration can be prevented. Further, in the first embodiment in which the straight pipes are arranged at positions where the holes of the annular support plate 17a are located, there is heated steam that flows parallel to the heat transfer pipes, but in the second embodiment, Since the tube bundle 14 is not arranged in the hole portion of the annular support plate 17a, the heated steam flowing in parallel with the heat transfer tube is eliminated, the heat exchange efficiency can be improved, and the flow rate of the heated steam is adjusted. Can do. Therefore, it is possible to obtain a heater that supplies steam having an appropriate pressure and temperature that optimizes the low-pressure turbine performance, and the effects of increasing plant output and improving plant efficiency are obtained.

(第3の実施の形態)
図3は本発明の第3の実施の形態に係わる加熱器の一例を示す構成図であり、図3(a)は縦断面図、図3(b)は横断面図である。この第3の実施の形態は、図1に示した第1の実施の形態に対し、加熱器本体12の複数の伝熱管として複数のU字管を使用し、その複数のU字管の一端部にヘッダーを取り付けて管束として形成したものである。図1と同一要素には同一符号を付し重複する説明は省略する。
(Third embodiment)
FIG. 3 is a block diagram showing an example of a heater according to the third embodiment of the present invention, in which FIG. 3 (a) is a longitudinal sectional view and FIG. 3 (b) is a transverse sectional view. The third embodiment uses a plurality of U-shaped tubes as a plurality of heat transfer tubes of the heater body 12 with respect to the first embodiment shown in FIG. 1, and one end of the plurality of U-shaped tubes. A header is attached to the part to form a tube bundle. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

図3において、加熱器本体12の伝熱管にU字管20を使用して2パスの管束14を構成する。U字管の一端部にヘッダー13を取り付けて管束として形成する。ヘッダー13は被加熱蒸気の入口側に設けられている。その際に、ヘッダー13を仕切板21で仕切ってヘッダー13a、13bに区分し、ヘッダー13aには加熱蒸気入口管15を接続し、ヘッダー13bには加熱蒸気出口管16を接続する。ヘッダー13はU字管の一方端に設けられるので、管束14の伝熱管の熱伸びを拘束しない。   In FIG. 3, a 2-pass tube bundle 14 is configured using a U-shaped tube 20 as a heat transfer tube of the heater body 12. A header 13 is attached to one end of the U-shaped tube to form a tube bundle. The header 13 is provided on the inlet side of the steam to be heated. At that time, the header 13 is partitioned by the partition plate 21 to be divided into headers 13a and 13b, the heating steam inlet pipe 15 is connected to the header 13a, and the heating steam outlet pipe 16 is connected to the header 13b. Since the header 13 is provided at one end of the U-shaped tube, the thermal expansion of the heat transfer tubes of the tube bundle 14 is not restricted.

図4は、本発明の第3の実施の形態に係わる加熱器の他の一例を示す構成図であり、図4(a)は縦断面図、図4(b)は横断面図である。この他の一例は、図3に示した一例に対し、ヘッダー13を被加熱蒸気の出口側に設けたものである。図3と同一要素には同一符号を付し重複する説明は省略する。   4A and 4B are configuration diagrams showing another example of the heater according to the third embodiment of the present invention. FIG. 4A is a longitudinal sectional view, and FIG. 4B is a transverse sectional view. In another example, the header 13 is provided on the outlet side of the heated steam as compared with the example shown in FIG. The same elements as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.

図4に示すように、被加熱蒸気の出口側をヘッダー13を設け、ヘッダー13を仕切板21で仕切ってヘッダー13a、13bに区分し、ヘッダー13aには加熱蒸気入口管15を接続し、ヘッダー13bには加熱蒸気出口管16を接続する。これにより、加熱蒸気による伝熱管の熱伸びを拘束しないことが可能となり、これによる熱応力の発生を防ぐことができる。   As shown in FIG. 4, a header 13 is provided on the outlet side of the steam to be heated, the header 13 is partitioned by a partition plate 21, and is divided into headers 13a and 13b. A heating steam inlet pipe 15 is connected to the header 13a. A heating steam outlet pipe 16 is connected to 13b. Thereby, it becomes possible not to restrain the heat | fever elongation of the heat exchanger tube by heating steam, and generation | occurrence | production of the thermal stress by this can be prevented.

図5は、本発明の第3の実施の形態に係わる加熱器の別の他の一例を示す構成図であり、図5(a)は縦断面図、図5(b)は横断面図である。この他の一例は、図3に示した一例に対し、複数個のU字管を設け、複数個の伝熱管を多角形に配列して一つの多角形の管束14bを形成し、その多角形の複数の管束14bを円筒状に配列して構成したものである。図3と同一要素には同一符号を付し重複する説明は省略する。   FIG. 5 is a block diagram showing another example of a heater according to the third embodiment of the present invention, in which FIG. 5 (a) is a longitudinal sectional view and FIG. 5 (b) is a transverse sectional view. is there. In another example, a plurality of U-shaped tubes are provided in the example shown in FIG. 3, and a plurality of heat transfer tubes are arranged in a polygon to form one polygonal tube bundle 14b. The plurality of tube bundles 14b are arranged in a cylindrical shape. The same elements as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.

図5に示すように、複数の管束14bを多角形状に配列し、管束側方に被加熱蒸気が管束14bと管束14bの間をショートパスすることを防止するショートパス防止板19を設置することで、一つの管束14bを小型の複数管束にすることができ、一つの管束14bを小型にすることができる。これにより製造性や搬入性を向上することができる。   As shown in FIG. 5, a plurality of tube bundles 14b are arranged in a polygonal shape, and a short path prevention plate 19 for preventing heated steam from short-passing between the tube bundle 14b and the tube bundle 14b is installed on the side of the tube bundle. Thus, one tube bundle 14b can be made into a small plurality of tube bundles, and one tube bundle 14b can be made small. Thereby, manufacturability and importability can be improved.

第3の実施の形態によれば、ヘッダー13はU字管の一方端に設けられるので、管束14の伝熱管の熱伸びを拘束しないので、熱応力の発生を防ぐことができる。   According to the third embodiment, since the header 13 is provided at one end of the U-shaped tube, the thermal expansion of the heat transfer tube of the tube bundle 14 is not constrained, so that generation of thermal stress can be prevented.

(第4の実施の形態)
図6は本発明の第4の実施の形態に係わる加熱器の構成図であり、図6(a)は縦断面図、図6(b)は図6(a)を矢視6B方向に見た場合の横断面図である。この第4の実施の形態は、図3に示した第3の実施の形態に対し、前記ヘッダー内部を仕切板21で仕切り、加熱蒸気の流れを多パスにしたものである。図3と同一要素には同一符号を付し重複する説明は省略する。
(Fourth embodiment)
6A and 6B are configuration diagrams of a heater according to the fourth embodiment of the present invention. FIG. 6A is a longitudinal sectional view, and FIG. 6B is a view of FIG. FIG. In the fourth embodiment, in contrast to the third embodiment shown in FIG. 3, the inside of the header is partitioned by a partition plate 21, and the flow of heated steam is made into multiple passes. The same elements as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.

図6(a)において、ヘッダー13内部の空間を横位置の仕切板21aと、縦位置の仕切板21bで仕切る構成としており、図6(a)ではヘッダー13の内部を3区分に仕切った場合を示している。仕切板21a、21bで3区分に仕切られたヘッダー13a、13b、13cのうち、図6(a)の左下のヘッダー13aに加熱蒸気入口管15を接続し、図6(a)の右下のヘッダー13bに加熱蒸気出口管16を接続する。そして、加熱蒸気入口15からヘッダー13aに加熱蒸気が流入すると、ヘッダー13aに位置する管束14−1から加熱蒸気がU字管20を通り、さらに管束14−2を通ってヘッダー13cに流入する。ヘッダー13cに流入した加熱蒸気は管束14−3を通り、さらにU字管20を通ってヘッダー13bに位置する管束14−4を通り、ヘッダー13bの加熱蒸気出口管16から排出される。このように、加熱蒸気はU字管の管束14を2往復する。   6A, the space inside the header 13 is divided by a horizontal partition plate 21a and a vertical partition plate 21b. In FIG. 6A, the header 13 is partitioned into three sections. Is shown. Of the headers 13a, 13b, and 13c partitioned into three sections by the partition plates 21a and 21b, the heating steam inlet pipe 15 is connected to the lower left header 13a in FIG. 6A, and the lower right in FIG. The heating steam outlet pipe 16 is connected to the header 13b. When the heating steam flows into the header 13a from the heating steam inlet 15, the heating steam flows from the tube bundle 14-1 located in the header 13a through the U-shaped tube 20 and further into the header 13c through the tube bundle 14-2. The heated steam that has flowed into the header 13c passes through the tube bundle 14-3, passes through the U-shaped tube 20, passes through the tube bundle 14-4 positioned in the header 13b, and is discharged from the heated steam outlet tube 16 of the header 13b. In this way, the heated steam reciprocates the U-tube bundle 14 twice.

この場合、ヘッダ13c内に流出する際に発生した凝縮液は、ヘッダー13c内に残り、加熱蒸気だけが次の管束14に流入するので管束14の伝熱管内を流れる凝縮液を削減することができる。従って、伝熱管内を凝縮液で塞ぐことを防止でき、管束14の長さの調整、被加熱蒸気の圧力や温度の調整ができる。   In this case, the condensate generated when flowing out into the header 13c remains in the header 13c, and only the heating steam flows into the next tube bundle 14, so that the condensate flowing in the heat transfer tubes of the tube bundle 14 can be reduced. it can. Therefore, it is possible to prevent the heat transfer tube from being blocked with condensate, and to adjust the length of the tube bundle 14 and the pressure and temperature of the steam to be heated.

被加熱蒸気はクロスアラウンド管18からシェル11内に流入し、ヘッダー13とシェル11との間の空間を通り管束14に流入する。被加熱蒸気は円環型支え板17aにより管束14の伝熱管と垂直に近い角度で通過し、また、円盤型支え板17bを通過するときには、伝熱管と垂直に近い角度で通過する。一方、円環型支え板17aを通過するとき、または円環型支え板17aとシェル11とで形成される空間を通過するときはシェル11の軸方向へ流れる。これを繰り返しながら管束内を流れる間に温度上昇する。   Steam to be heated flows into the shell 11 from the cross-around pipe 18 and flows into the tube bundle 14 through the space between the header 13 and the shell 11. The steam to be heated passes through the annular support plate 17a at an angle close to the vertical to the heat transfer tubes of the tube bundle 14, and when passing through the disc type support plate 17b, passes through an angle close to the heat transfer tubes. On the other hand, when passing through the annular support plate 17a or passing through the space formed by the annular support plate 17a and the shell 11, the flow flows in the axial direction of the shell 11. While repeating this, the temperature rises while flowing in the tube bundle.

第4の実施の形態によれば、ヘッダー13の内部空間を仕切板21で仕切るので、加熱蒸気の流れを多パスにすることができる。また、管束14の伝熱管内を流れる加熱蒸気の伝熱管出口における蒸気性状を調整することができ、また、加熱蒸気を2往復させることができるので加熱器を短くすることができる。   According to the fourth embodiment, since the internal space of the header 13 is partitioned by the partition plate 21, the flow of the heating steam can be made into multiple passes. Further, the steam property at the heat transfer tube outlet of the heated steam flowing in the heat transfer tube of the tube bundle 14 can be adjusted, and the heater can be shortened because the heated steam can be reciprocated twice.

(第5の実施の形態)
図7は本発明の第5の実施の形態に係わる加熱器の構成図であり、図7(a)は横断面図、図7(b)は支え板の一例を示す横断面図、図7(c)は支え板の一例を示す縦断面図、図7(d)は支え板の他の一例を示す横断面図、図7(e)は支え板の他の一例を示す縦断面図である。この第5の実施の形態は、図3に示した第3の実施の形態に対し、円環型支え板17a及び円盤型支え板17bに代えて、管束14の支え板17cを外輪つき短冊板で構成したものである。図3と同一要素には同一符号を付し重複する説明は省略する。
(Fifth embodiment)
7A and 7B are configuration diagrams of a heater according to the fifth embodiment of the present invention, in which FIG. 7A is a cross-sectional view, FIG. 7B is a cross-sectional view showing an example of a support plate, and FIG. (C) is a longitudinal sectional view showing an example of a support plate, FIG. 7 (d) is a transverse sectional view showing another example of the support plate, and FIG. 7 (e) is a longitudinal sectional view showing another example of the support plate. is there. This fifth embodiment is different from the third embodiment shown in FIG. 3 in that the support plate 17c of the tube bundle 14 is a strip plate with an outer ring instead of the annular support plate 17a and the disc support plate 17b. It is composed of The same elements as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.

図7(b)及び図7(c)に示すように、支え板17cは円板状の短冊板22と外輪部23とから形成され、短冊板22は複数の帯板を縦横方向に配置して複数の格子を有して円板状に形成される。そして、複数の帯板で形成された格子に伝熱管を通して伝熱管を支持する。また、外輪部23は短冊板22の外周に設けられシェル11に取り付けられる。   As shown in FIGS. 7B and 7C, the support plate 17c is formed of a disk-shaped strip plate 22 and an outer ring portion 23, and the strip plate 22 has a plurality of strip plates arranged in the vertical and horizontal directions. And has a plurality of lattices and is formed in a disk shape. And a heat exchanger tube is supported through a heat exchanger tube in the lattice formed with a plurality of strips. The outer ring portion 23 is provided on the outer periphery of the strip plate 22 and is attached to the shell 11.

すなわち、支え板17cは管配列にあわせて複数の帯板で構成する帯板で囲まれる空間で伝熱管を支持する。帯板で構成された短冊板22の外周は円筒状または円盤状の外輪部23が取付けられる。取付けられた外輪部23はシェル11に取り付けられ、短冊板22の補強とシェル11と管束14との空間を被加熱蒸気が通過してショートパスすることを防止する。   That is, the support plate 17c supports the heat transfer tube in a space surrounded by a strip plate constituted by a plurality of strip plates in accordance with the tube arrangement. A cylindrical or disk-shaped outer ring portion 23 is attached to the outer periphery of the strip plate 22 formed of a band plate. The attached outer ring portion 23 is attached to the shell 11 and prevents the heated steam from passing through the space between the shell 11 and the tube bundle 14 and the short passage through the reinforcement of the strip plate 22.

図7(d)及び図7(e)は他の一例の支え板17cの説明図であり、図7(b)及び図7(c)に示したものに対し、外輪部23を短冊板22に対してずらして取り付けたものである。   FIGS. 7 (d) and 7 (e) are explanatory views of another example of the support plate 17c. The outer ring portion 23 is a strip plate 22 compared to the support plate 17c shown in FIGS. 7 (b) and 7 (c). It is attached by shifting with respect to.

第5の実施の形態によれば、被加熱蒸気は管束14のシェル11の軸方向にのみ流すことが可能となり、被加熱蒸気の管束14を通過する際の圧力損失を低減することができる。従って、圧力の高い被加熱蒸気を低圧タービンに提供することができプラント出力の増大及びプラント効率向上を図ることができる。   According to the fifth embodiment, the steam to be heated can flow only in the axial direction of the shell 11 of the tube bundle 14, and the pressure loss when the steam to be heated passes through the tube bundle 14 can be reduced. Therefore, heated steam having a high pressure can be provided to the low-pressure turbine, and the plant output can be increased and the plant efficiency can be improved.

(第6の実施の形態)
図8は本発明の第6の実施の形態に係わる加熱器の構成図である。この第6の実施の形態は、図7に示した第5の実施の形態に対し、U字管のUベンド部の近傍にじゃま板を取り付け、Uベンド部への被加熱蒸気の流入を遮るようにしたものである。図7と同一要素には同一符号を付し重複する説明は省略する。
(Sixth embodiment)
FIG. 8 is a block diagram of a heater according to the sixth embodiment of the present invention. In the sixth embodiment, in contrast to the fifth embodiment shown in FIG. 7, a baffle plate is attached in the vicinity of the U bend portion of the U-shaped tube to block the flow of heated steam into the U bend portion. It is what I did. The same elements as those in FIG.

図8に示すように、U字管20のUベンド部のベンド開始部分と終了部分との近傍にじゃま板24が取り付けられている。これにより、被加熱蒸気はじゃま板24によりUベンド部に流入することが遮られるので管束14を通過することになる。   As shown in FIG. 8, a baffle plate 24 is attached in the vicinity of the bend start portion and the end portion of the U bend portion of the U-shaped tube 20. Accordingly, the steam to be heated is blocked by the baffle plate 24 from flowing into the U-bend portion, so that it passes through the tube bundle 14.

第6の実施の形態によれば、じゃま板24によりU字管20のUベンド部に被加熱蒸気が流れることを遮るので、Uベンド部の被加熱蒸気の流れが阻止され、Uベンド部の被加熱蒸気流動による振動を防止することができる。   According to the sixth embodiment, the baffle plate 24 prevents the heated steam from flowing to the U bend portion of the U-shaped tube 20, so that the flow of the heated vapor in the U bend portion is blocked, and the U bend portion It is possible to prevent vibration due to the flow of heated steam.

(第7の実施の形態)
図9は本発明の第7の実施の形態に係わる加熱器の構成図である。この第7の実施の形態は、図7に示した第5の実施の形態に対し、U字管のUベンド部に被加熱蒸気のフローガイド板を取付けたものである。図7と同一要素には同一符号を付し重複する説明は省略する。
(Seventh embodiment)
FIG. 9 is a block diagram of a heater according to the seventh embodiment of the present invention. In the seventh embodiment, a flow guide plate for steam to be heated is attached to the U-bend portion of the U-shaped tube as compared with the fifth embodiment shown in FIG. The same elements as those in FIG.

図9に示すように、U字管20のUベンド部に被加熱蒸気のフローガイド板25が取り付けられている。フローガイド板25は断面がV字状に形成されており、被加熱蒸気をU字管20のUベンド部の頂部を避けて流れるように案内する。これにより、被加熱蒸気はフローガイド板25で囲まれたUベンド部には流入せず管束14を通過する。   As shown in FIG. 9, a flow guide plate 25 for steam to be heated is attached to the U bend portion of the U-shaped tube 20. The flow guide plate 25 has a V-shaped cross section and guides the steam to be heated so as to flow away from the top of the U bend portion of the U-shaped tube 20. Thus, the steam to be heated does not flow into the U bend portion surrounded by the flow guide plate 25 and passes through the tube bundle 14.

第7の実施の形態によれば、被加熱蒸気がUベンド部に流れる量を制限できるので、Uベンド部の被加熱蒸気流動による振動を緩和できる。また、フローガイド板25により管束14から流出する被加熱蒸気をスムーズに流すことができ、被加熱蒸気の圧力損失を低減できる。従って圧力の高い被加熱蒸気を低圧タービンに提供することができプラント出力の増大及びプラント効率向上を図ることができる。   According to the seventh embodiment, the amount of steam to be heated flowing to the U bend part can be limited, and therefore vibration due to the steam to be heated in the U bend part can be mitigated. In addition, the heated steam flowing out from the tube bundle 14 can be flowed smoothly by the flow guide plate 25, and the pressure loss of the heated steam can be reduced. Therefore, heated steam having a high pressure can be provided to the low-pressure turbine, and the plant output can be increased and the plant efficiency can be improved.

次に、前述した各々の実施の形態における加熱器の配置について説明する。図10は加熱器26とクロスアラウンド管18−1、18−2との接続関係の説明図である。加熱器26のシェル11の中心軸とクロスアラウンド管18−1、18−2の中心軸とを平行に配置する構成とする。これにより、新設のプラント配管の配置計画あるいは既設のプラントへの配置計画を簡単化にすることができる。   Next, the arrangement of the heaters in each of the embodiments described above will be described. FIG. 10 is an explanatory diagram of the connection relationship between the heater 26 and the cross-around pipes 18-1 and 18-2. The central axis of the shell 11 of the heater 26 and the central axes of the cross-around pipes 18-1 and 18-2 are arranged in parallel. As a result, it is possible to simplify the arrangement plan of a new plant pipe or an arrangement plan to an existing plant.

また、図11に示すように、加熱器26のシェル11の中心軸とクロスアラウンド管18−1、18−2の中心軸とを平行でない方向に配置することも可能である。図11(a)は加熱器26のシェル11の中心軸とクロスアラウンド管18−1の中心軸とを平行でない方向には位置した一例の説明図である。片側平行でない方向に変えて両側平行でない方向に配置するようにしてもよい。また、図11(b)に示すように、また、ヘッダー13がクロスアラウンド管18−1の外部に配置される構成としてもよい。これにより、新設のプラント配管の配置計画あるいは既設のプラントへの配置計画に多様な手段を提供することができる。また、ヘッダー13と加熱蒸気管の接続構造が簡単化されかつヘッダー13と加熱蒸気入口15や加熱蒸気出口16のメンテナンス性を向上することができる。   Moreover, as shown in FIG. 11, it is also possible to arrange | position the center axis | shaft of the shell 11 of the heater 26, and the center axis | shaft of the cross-around pipes 18-1 and 18-2 in the direction which is not parallel. FIG. 11A is an explanatory diagram of an example in which the central axis of the shell 11 of the heater 26 and the central axis of the cross-around pipe 18-1 are positioned in a non-parallel direction. You may make it arrange | position in the direction which is not parallel on both sides, changing to the direction which is not parallel on one side. Moreover, as shown in FIG.11 (b), it is good also as a structure by which the header 13 is arrange | positioned outside the cross-around pipe | tube 18-1. Thereby, various means can be provided for the arrangement plan of a new plant pipe or an arrangement plan for an existing plant. Moreover, the connection structure of the header 13 and the heating steam pipe is simplified, and the maintainability of the header 13, the heating steam inlet 15 and the heating steam outlet 16 can be improved.

また、加熱器26は、インターミディエイトコンバインドバルブ(ICV)撤去後の開口部に配置されるので、加熱器26の機器外径は、インターミディエイトコンバインドバルブ(ICV)撤去後の開口部より小さいサイズで形成する。ICVを撤去後の開口部から搬入することが可能となる。また、加熱器26を構成する機器をプラントの建屋内部に分割搬入し、現地で組立てるようにする。これにより、現地で組立てることが可能となり加熱器の建屋内搬入や組み立てが容易となる。   In addition, since the heater 26 is disposed in the opening after the intermediate combined valve (ICV) is removed, the outer diameter of the heater 26 is smaller than the opening after the intermediate combined valve (ICV) is removed. Form. It becomes possible to carry in ICV from the opening part after removal. In addition, the equipment constituting the heater 26 is divided and carried into the plant building and assembled on site. As a result, it is possible to assemble on-site, and it becomes easy to carry in and assemble the heater.

本発明の第1の実施の形態に係わる加熱器の構成図。The block diagram of the heater concerning the 1st Embodiment of this invention. 本発明の第2の実施の形態に係わる加熱器の構成図。The block diagram of the heater concerning the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係わる加熱器の一例を示す構成図。The block diagram which shows an example of the heater concerning the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係わる加熱器の他の一例を示す構成図。The block diagram which shows another example of the heater concerning the 3rd Embodiment of this invention. 本発明の第3の実施の形態に係わる加熱器の別の他の一例を示す構成図。The block diagram which shows another another example of the heater concerning the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係わる加熱器の構成図。The block diagram of the heater concerning the 4th Embodiment of this invention. 本発明の第5の実施の形態に係わる加熱器の構成図。The block diagram of the heater concerning the 5th Embodiment of this invention. 本発明の第6の実施の形態に係わる加熱器の構成図。The block diagram of the heater concerning the 6th Embodiment of this invention. 本発明の第7の実施の形態に係わる加熱器の構成図。The block diagram of the heater concerning the 7th Embodiment of this invention. 加熱器とクロスアラウンド管との接続関係の一例の説明図。Explanatory drawing of an example of the connection relation of a heater and a cross-around pipe | tube. 加熱器とクロスアラウンド管との接続関係の他の一例の説明図。Explanatory drawing of another example of the connection relation of a heater and a cross-around pipe | tube.

符号の説明Explanation of symbols

11…シェル、12…加熱器本体、13…ヘッダー、14…管束、15…加熱蒸気入口管、16…加熱蒸気出口管、17…支え板、18−1、18−2…クロスアラウンド管、19…ショートパス防止板、20…U字管、21…仕切板、22…短冊板、23…外輪部、24…じゃま板、25…フローガイド板、26…加熱器
DESCRIPTION OF SYMBOLS 11 ... Shell, 12 ... Heater main body, 13 ... Header, 14 ... Tube bundle, 15 ... Heating steam inlet pipe, 16 ... Heating steam outlet pipe, 17 ... Supporting plate, 18-1, 18-2 ... Cross-around pipe, 19 ... Short path prevention plate, 20 ... U-shaped tube, 21 ... Partition plate, 22 ... Strip plate, 23 ... Outer ring portion, 24 ... Baffle plate, 25 ... Flow guide plate, 26 ... Heater

Claims (9)

加熱蒸気が通過する複数の伝熱管を管束として有した加熱器本体と、主蒸気系統の配管に設けられ前記加熱器本体を収納したシェルと、前記加熱器本体の管束を支持すると共に前記主蒸気系統の配管を流れる被加熱蒸気を前記加熱器本体と熱交換しながら配管の軸方向に流通させる支え板とを備え、前記支え板は、被加熱蒸気の流下方向に適宜間隔をおいて交互に配置された2種類の支え板で構成し、一方の支え板は外周部が前記シェル内面に接する程度の大きさで、中心部に穴を有する円環状の板であり、他方の支え板は外周部が前記管束の外周部とほぼ等しい大きさで、中心部に穴のない円盤状の板であることことを特徴とする加熱器。   A heater body having a plurality of heat transfer tubes through which the heating steam passes as a tube bundle, a shell provided in piping of a main steam system and housing the heater body, and supporting the tube bundle of the heater body and the main steam A support plate that circulates the heated steam flowing through the piping of the system in the axial direction of the piping while exchanging heat with the heater body, and the support plates are alternately spaced at appropriate intervals in the flow-down direction of the heated steam. It is composed of two types of support plates arranged, one support plate is an annular plate having a size such that the outer peripheral portion is in contact with the inner surface of the shell and having a hole in the center portion, and the other support plate is an outer periphery The heater is characterized in that the portion is a disk-shaped plate having substantially the same size as the outer peripheral portion of the tube bundle and having no hole in the central portion. 前記加熱器本体は、複数の伝熱管として複数の直管が使用され、その複数の直管の両端部にヘッダーを取り付けて管束として形成され、その管束を前記シェルの長手方向軸と平行に設置したことを特徴とする請求項1記載の加熱器。   The heater body uses a plurality of straight tubes as a plurality of heat transfer tubes, and is formed as a tube bundle by attaching headers to both ends of the plurality of straight tubes, and the tube bundle is installed in parallel with the longitudinal axis of the shell. The heater according to claim 1. 前記管束は、複数の伝熱管の配列形状が、多角形状、円筒形状、または円柱形状のいずれかになるように形成されたことを特徴とする請求項1または2記載の加熱器。   The heater according to claim 1 or 2, wherein the tube bundle is formed such that an array shape of the plurality of heat transfer tubes is any one of a polygonal shape, a cylindrical shape, and a columnar shape. 前記加熱器本体は、複数の伝熱管として複数のU字管が使用され、その複数のU字管の端部にヘッダーが取り付けられて管束として形成され、一または複数の管束を前記シェルの長手方向軸と平行に設置したことを特徴とする請求項1または3記載の加熱器。   The heater body uses a plurality of U-shaped tubes as a plurality of heat transfer tubes, a header is attached to the ends of the plurality of U-shaped tubes, and is formed as a tube bundle. The heater according to claim 1 or 3, wherein the heater is installed in parallel with the direction axis. 前記ヘッダー内部を仕切板で仕切り、加熱蒸気の流れを多パスにしたことを特徴とする請求項2ないし4のいずれか一記載の加熱器。   The heater according to any one of claims 2 to 4, wherein the inside of the header is partitioned by a partition plate, and the flow of the heating steam is made into multiple passes. 前記支え板は、前記シェル内部を流れる被加熱蒸気が前記管束の伝熱管と直角方向の流れ成分を持つように配置されたことを特徴とする請求項1ないし5のいずれか一記載の加熱器。   The heater according to any one of claims 1 to 5, wherein the support plate is arranged so that the steam to be heated flowing inside the shell has a flow component perpendicular to the heat transfer tubes of the tube bundle. . 加熱蒸気が通過する複数の伝熱管を管束として有した加熱器本体と、主蒸気系統の配管に設けられ前記加熱器本体を収納したシェルと、前記加熱器本体の管束を支持すると共に前記主蒸気系統の配管を流れる被加熱蒸気を前記加熱器本体と熱交換しながら配管の軸方向に流通させる支え板とを備え、前記支え板は、複数の帯板を縦横方向に配置して複数の格子を有した円板状の短冊板を形成し、前記格子に前記伝熱管を通して伝熱管を支持すると共に、外周に前記シェルに取り付けられる外輪部を有したことを特徴とする加熱器。   A heater body having a plurality of heat transfer tubes through which the heating steam passes as a tube bundle, a shell provided in piping of a main steam system and housing the heater body, and supporting the tube bundle of the heater body and the main steam A support plate that circulates the heated steam flowing through the piping of the system in the axial direction of the piping while exchanging heat with the main body of the heater, and the support plate has a plurality of grids arranged in a vertical and horizontal direction. A heater having an outer ring portion attached to the shell on an outer periphery thereof, and a disk-shaped strip plate having a shape of the plate, and supporting the heat transfer tube through the heat transfer tube through the lattice. 前記U字管のUベンド部のベンド開始部分と終了部分との近傍にじゃま板を取り付け、Uベンド部への被加熱蒸気の流入を遮ることを特徴とする請求項4ないし7のいずれか一記載の加熱器。   8. A baffle plate is attached in the vicinity of a bend start portion and an end portion of a U bend portion of the U-shaped tube to block the flow of heated steam into the U bend portion. The heater described. 前記U字管のUベンド部に被加熱蒸気のフローガイド板を取付けたこを特徴とする請求項4ないし7のいずれか一記載の加熱器。   The heater according to any one of claims 4 to 7, wherein a flow guide plate for steam to be heated is attached to a U bend portion of the U-shaped tube.
JP2005011612A 2005-01-19 2005-01-19 Heater Pending JP2006200789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011612A JP2006200789A (en) 2005-01-19 2005-01-19 Heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011612A JP2006200789A (en) 2005-01-19 2005-01-19 Heater

Publications (1)

Publication Number Publication Date
JP2006200789A true JP2006200789A (en) 2006-08-03

Family

ID=36958952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011612A Pending JP2006200789A (en) 2005-01-19 2005-01-19 Heater

Country Status (1)

Country Link
JP (1) JP2006200789A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029911A1 (en) * 2015-08-19 2017-02-23 三菱日立パワーシステムズ株式会社 Moisture separation unit and vapor turbine plant
CN112806469A (en) * 2021-01-08 2021-05-18 高唐鲁发信德生物科技有限公司 Production process for improving protein gel property

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029911A1 (en) * 2015-08-19 2017-02-23 三菱日立パワーシステムズ株式会社 Moisture separation unit and vapor turbine plant
CN107923262A (en) * 2015-08-19 2018-04-17 三菱日立电力系统株式会社 Hygroscopic water separative element and steam turbine plant
CN112806469A (en) * 2021-01-08 2021-05-18 高唐鲁发信德生物科技有限公司 Production process for improving protein gel property

Similar Documents

Publication Publication Date Title
ES2582657T3 (en) Heat exchanger in modular construction mode
US20130180471A1 (en) Tube arrangement in a once-through horizontal evaporator
RU2726035C1 (en) Shell-and-tube heat exchanger
CN110691953B (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant
US11454452B2 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (III)
JP5207053B2 (en) Heat exchanger and water heater
JP5456071B2 (en) Once-through evaporator
JP2012529613A (en) Once-through evaporator
CN112071453A (en) Design scheme of direct-current countercurrent pore channel type heat exchanger/evaporator
JP2006200789A (en) Heater
JP2007271259A (en) Steam generator
US9922740B2 (en) Nuclear power generation system
RU105730U1 (en) SPIRAL HEAT EXCHANGER COIL
EP3502608B1 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (iii)
KR102514159B1 (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant (iii)
KR101528222B1 (en) Mixed type steam generator and nuclear power plant having the same
JP2023539177A (en) Vertical rod baffle heat exchanger system and method
US11879691B2 (en) Counter-flow heat exchanger
KR20210039191A (en) Heat Recovery System for Boiler
CN109959275B (en) Heat exchanger and molten salt steam generator comprising at least one heat exchanger series
RU2383814C1 (en) Steam generator
RU97478U1 (en) HIGH PRESSURE HEATER FOR TURBO INSTALLATIONS
RU185441U1 (en) STEAM HEATER CASSETTE
JP5787154B2 (en) Waste heat recovery boiler
RU2196272C2 (en) Steam generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070418

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20081217

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081219

A02 Decision of refusal

Effective date: 20090602

Free format text: JAPANESE INTERMEDIATE CODE: A02